Effectiveness of Anodal otDCS Following with Anodal tDCS Rather than tDCS Alone for Increasing of Relative Power of Intrinsic Matched EEG Bands in Rat Brains
Abstract
:1. Introduction and Aim
2. Materials and Methods
2.1. Animals
2.2. Surgery
2.3. Stimulation Parameters for Both Anodal tDCS and otDCS
2.4. Current Intensity and Time Duration
2.5. Oscillation Values
2.6. Stimulation Protocol and Experimental Design
2.7. EEG Data Processing and Analysis
2.8. Data Statistical Analysis
3. Results
4. Discussion
Study | Stimulation Patterns /Frequency | Study Samples | EEG Findings and Power Effect at Stimulation Frequency |
---|---|---|---|
Zaehle, et al. [45] | tACS (8–12 Hz) | Healthy participant | tACS to modulate ongoing brain waves |
Binder et al. [46] | Slow otDCS (1.5 Hz) | Male Long Evans rats | Enhanced ongoing wave’s upperDelta (2–4 Hz) Drop in theta band |
Helfrich et al. [47] | 10 Hz (α-tACS) | Healthy subjects | Enhance the power of ongoing brain waves |
Neuling et al. [48] | 10Hz (α-tDCS) | Healthy subjects | Enhancement of α-power |
Krause et al. [49] | 20 Hz β-tACS | Healthy subjects | No effect |
5. Conclusions
- Well-known anodal tDCS has a general acute potent stimulation power, which is non-specific for matched endogenous oscillation bands.
- Stimulation of the brain cortex with anodal otDCS makes the mild power effect on frequency-matched endogenous bands acute. However, if it is followed by anodal tDCS, it will make a marked acute power increase in the matched endogenous band.
- There was evidence that anodal otDCS with a certain frequency rate followed by anodal tDCS produces a marked acute power increase in the above bands of the matched endogenous band. However, the same result did not appear in the case of the anodal tDCS-otDCS pattern (i.e., starting with anodal tDCS followed by anodal otDCS within stimulation patterns).
- The findings suggested that the otDCS-tDCS pattern results in a mild increase in the power of the matched endogenous band (analogs of otDCS frequency) and a marked increase in the upper bands in an ascending manner.
6. Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Márquez-Ruiz, J.; Leal-Campanario, R.; Sánchez-Campusano, R.; Molaee-Ardekani, B.; Wendling, F.; Miranda, P.C.; Ruffini, G.; Gruart, A.; Delgado-García, J.M. Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits. Proc. Natl. Acad. Sci. USA 2012, 109, 6710–6715. [Google Scholar] [CrossRef] [Green Version]
- Dockery, C.A.; Liebetanz, D.; Birbaumer, N.; Malinowska, M.; Wesierska, M.J. Cumulative benefits of frontal transcranial direct current stimulation on visuospatial working memory training and skill learning in rats. Neurobiol. Learn Mem. 2011, 96, 452–460. [Google Scholar] [CrossRef]
- Fregni, F.; Boggio, P.S.; Mansur, C.G.; Wagner, T.; Ferreira, M.J.L.; Lima, M.C.; Rigonatti, S.P.; Marcolin, M.A.; Freedman, S.D.; Nitsche, M.A.; et al. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport 2005, 16, 1551–1555. [Google Scholar] [CrossRef]
- Fregni, F.; Thome-Souza, S.; Nitsche, M.A.; Freedman, S.D.; Valente, K.D.; Pascual-Leone, A. A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy. Epilepsia 2006, 47, 335–342. [Google Scholar] [CrossRef]
- Fregni, F.; Boggio, P.S.; Santos, M.C.; Lima, M.; Vieira, A.L.; Rigonatti, S.P.; Silva, M.T.A.; Barbosa, E.R.; Nitsche, M.A.; Pascual-Leone, A. Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov. Disord. 2006, 21, 1693–1702. [Google Scholar] [CrossRef]
- Ozen, S.; Sirota, A.; Belluscio, M.A.; Anastassiou, C.A.; Stark, E.; Koch, C.; Buzsáki, G. Transcranial electric stimulation entrains cortical neuronal populations in rats. J. Neurosci. 2010, 30, 11476–11485. [Google Scholar] [CrossRef] [Green Version]
- Buzsáki, G.; Draguhn, A. Neuronal oscillations in cortical networks. Science 2004, 304, 1926–1929. [Google Scholar] [CrossRef] [Green Version]
- Brown, P.; Oliviero, A.; Mazzone, P.; Insola, A.; Tonali, P.; Di Lazzaro, V. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J. Neurosci. 2001, 21, 1033–1038. [Google Scholar] [CrossRef] [Green Version]
- Montez, T.; Poil, S.-S.; Jones, B.F.; Manshanden, I.; Verbunt, J.P.A.; van Dijk, B.W.; Brussaard, A.B.; van Ooyen, A.; Stam, C.J.; Scheltens, P.; et al. Altered temporal correlations in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer disease. Proc. Natl. Acad. Sci. USA 2009, 106, 1614–1619. [Google Scholar] [CrossRef] [Green Version]
- Worrell, G.A.; Parish, L.; Cranstoun, S.D.; Jonas, R.; Baltuch, G.; Litt, B. High-frequency oscillations and seizure generation in neocortical epilepsy. Brain 2004, 127, 1496–1506. [Google Scholar] [CrossRef]
- Hussain, I.; Young, S.; Kim, C.H.; Benjamin, H.C.M.; Park, S.J. Quantifying physiological biomarkers of a microwave brain stimulation device. Sensors 2021, 21, 1896. [Google Scholar] [CrossRef]
- Klassen, B.T.; Hentz, J.G.; Shill, H.A.; Driver-Dunckley, E.; Evidente, V.G.H.; Sabbagh, M.N.; Caviness, J.N. Quantitative EEG as a predictive biomarker for Parkinson disease dementia. Neurology 2011, 77, 118–124. [Google Scholar] [CrossRef] [Green Version]
- D’Atri, A.; De Simoni, E.; Gorgoni, M.; Ferrara, M.; Ferlazzo, F.; Rossini, P.M.; De Gennaro, L. Frequency-dependent effects of oscillatory-tDCS on EEG oscillations: A study with better oscillation detection method (BOSC). Arch. Ital. Biol. 2015, 153, 124–134. [Google Scholar]
- Vulić, K.; Bjekić, J.; Paunović, D.; Jovanović, M.; Milanović, S.; Filipović, S.R. Theta-modulated oscillatory transcranial direct current stimulation over posterior parietal cortex improves associative memory. Sci. Rep. 2021, 11, 3013. [Google Scholar] [CrossRef]
- Marshall, L.; Helgadóttir, H.; Mölle, M.; Born, J. Boosting slow oscillations during sleep potentiates memory. Nature 2006, 444, 610–613. [Google Scholar] [CrossRef]
- Polanía, R.; Nitsche, M.A.; Korman, C.; Batsikadze, G.; Paulus, W. The importance of timing in segregated theta phase-coupling for cognitive performance. Curr Biol. 2012, 22, 1314–1318. [Google Scholar] [CrossRef] [Green Version]
- Brener, K.; Amitai, Y.; Jefferys, J.G.R.; Gutnick, M.J. Chronic epileptic foci in neocortex: In vivo and in vitro effects of tetanus toxin. Eur. J. Neurosci. 1991, 3, 47–54. [Google Scholar] [CrossRef]
- Takano, Y.; Yokawa, T.; Masuda, A.; Niimi, J.; Tanaka, S.; Hironaka, N. A rat model for measuring the effectiveness of transcranial direct current stimulation using fMRI. Neurosci. Lett. 2011, 491, 40–43. [Google Scholar] [CrossRef]
- Bennabi, D.; Pedron, S.; Haffen, E.; Monnin, J.; Peterschmitt, Y.; Van Waes, V. Transcranial direct current stimulation for memory enhancement: From clinical research to animal models. Front. Syst. Neurosci. 2014, 8, 159. [Google Scholar] [CrossRef] [Green Version]
- Wharton, C.M.; Grafman, J. Deductive reasoning and the brain. Trends Cogn. Sci. 1998, 2, 54–59. [Google Scholar] [CrossRef]
- Berke, J.D.; Okatan, M.; Skurski, J.; Eichenbaum, H.B. Oscillatory entrainment of striatal neurons in freely moving rats. Neuron 2004, 43, 883–896. [Google Scholar] [CrossRef]
- Liebetanz, D.; Fregni, F.; Monte-Silva, K.K.; Oliveira, M.B.; Amâncio-dos-Santos, Â.; Nitsche, M.A.; Guedes, R.C.A. After-effects of transcranial direct current stimulation (tDCS) on cortical spreading depression. Neurosci. Lett. 2006, 398, 85–90. [Google Scholar] [CrossRef]
- Neuling, T.; Rach, S.; Wagner, S.; Wolters, C.H.; Herrmann, C.S. Good vibrations: Oscillatory phase shapes perception. Neuroimage 2012, 63, 771–778. [Google Scholar] [CrossRef]
- Abdullah, J.M.; Islam, M.R. Telemetric EEG and the rat: A guide for neuroscientists. Malays. J. Med. Sci. MJMS 2012, 19, 1–5. [Google Scholar]
- Sinnott, C.J.; Cogswell, L.P.; Johnson, A.; Strichartz, G.R. On the mechanism by which epinephrine potentiates lidocaine’s peripheral nerve block. Anesthesiol. J. Am. Soc. Anesthesiol. 2003, 98, 181–188. [Google Scholar] [CrossRef]
- Olson, M.E.; Vizzutti, D.; Morck, D.W.; Cox, A.K. The parasympatholytic effects of atropine sulfate and glycopyrrolate in rats and rabbits. Can. J. Vet. Res. 1994, 58, 254–258. [Google Scholar]
- Binder, S.; Berg, K.; Gasca, F.; Lafon, B.; Parra, L.C.; Born, J.; Marshall, L. Transcranial slow oscillation stimulation during sleep enhances memory consolidation in rats. Brain Stimul. 2014, 7, 508–515. [Google Scholar] [CrossRef]
- Geiger, B.M.; Frank, L.E.; Caldera-Siu, A.D.; Pothos, E.N. Survivable stereotaxic surgery in rodents. JoVE 2008, 20, e880. [Google Scholar] [CrossRef] [Green Version]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Rueger, M.A.; Keuters, M.H.; Walberer, M.; Braun, R.; Klein, R.; Sparing, R.; Fink, G.R.; Graf, R.; Schroeter, M. Multi-session transcranial direct current stimulation (tDCS) elicits inflammatory and regenerative processes in the rat brain. PLoS ONE 2012, 7, e43776. [Google Scholar] [CrossRef] [Green Version]
- Fregni, F.; Pascual-Leone, A. Technology insight: Noninvasive brain stimulation in neurology—Perspectives on the therapeutic potential of rTMS and tDCS. Nat. Clin. Pract. Neurol. 2007, 3, 383–393. [Google Scholar] [CrossRef]
- Liebetanz, D.; Koch, R.; Mayenfels, S.; König, F.; Paulus, W.M.; Nitsche, M.A. Safety limits of cathodal transcranial direct current stimulation in rats. Clin. Neurophysiol. 2009, 120, 1161–1167. [Google Scholar] [CrossRef]
- Li, Y.; Tian, X.; Qian, L.; Yu, X.; Jiang, W. Anodal transcranial direct current stimulation relieves the unilateral bias of a rat model of Parkinson’s disease. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 765–768. [Google Scholar]
- Sebban, C.; Zhang, X.Q.; Tesolin-Decros, B.; Millan, M.J.; Spedding, M. Changes in EEG spectral power in the prefrontal cortex of conscious rats elicited by drugs interacting with dopaminergic and noradrenergic transmission. Br. J. Pharmacol. 1999, 128, 1045–1054. [Google Scholar] [CrossRef] [Green Version]
- Zayachkivsky, A.; Lehmkuhle, M.J.; Fisher, J.H.; Ekstrand, J.J.; Dudek, F.E. Recording EEG in immature rats with a novel miniature telemetry system. J. Neurophysiol. 2013, 109, 900–911. [Google Scholar] [CrossRef]
- Schmidt, S.L.; Iyengar, A.K.; Foulser, A.A.; Boyle, M.R.; Fröhlich, F. Endogenous cortical oscillations constrain neuromodulation by weak electric fields. Brain Stimul. 2014, 7, 878–889. [Google Scholar] [CrossRef] [Green Version]
- Romei, V.; Thut, G.; Mok, R.M.; Schyns, P.G.; Driver, J. Causal implication by rhythmic transcranial magnetic stimulation of alpha frequency in feature-based local vs. global attention. Eur. J. Neurosci. 2012, 35, 968–974. [Google Scholar] [CrossRef]
- Herrmann, C.S.; Rach, S.; Neuling, T.; Strüber, D. Transcranial alternating current stimulation: A review of the underlying mechanisms and modulation of cognitive processes. Front. Hum. Neurosci. 2013, 7, 279. [Google Scholar] [CrossRef] [Green Version]
- Kirov, R.; Weiss, C.; Siebner, H.R.; Born, J.; Marshall, L. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding. Proc. Natl. Acad. Sci. USA 2009, 106, 15460–15465. [Google Scholar] [CrossRef] [Green Version]
- Keeser, D.; Padberg, F.; Reisinger, E.; Pogarell, O.; Kirsch, V.; Palm, U.; Karch, S.; Möller, H.-J.; Nitsche, M.A.; Mulert, C. Prefrontal direct current stimulation modulates resting EEG and event-related potentials in healthy subjects: A standardized low resolution tomography (sLORETA) study. Neuroimage 2011, 55, 644–657. [Google Scholar] [CrossRef]
- Mangia, A.L.; Pirini, M.; Cappello, A. Transcranial direct current stimulation and power spectral parameters: A tDCS/EEG co-registration study. Front. Hum. Neurosci. 2014, 8, 601. [Google Scholar] [CrossRef] [Green Version]
- Zaehle, T.; Sandmann, P.; Thorne, J.D.; Jäncke, L.; Herrmann, C.S. Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: Combined behavioural and electrophysiological evidence. BMC Neurosci. 2011, 12, 2. [Google Scholar] [CrossRef] [Green Version]
- Dhamne, S.C.; Ekstein, D.; Zhuo, Z.; Gersner, R.; Zurakowski, D.; Loddenkemper, T.; Pascual-Leone, A.; Jensen, F.E.; Rotenberg, A. Acute seizure suppression by transcranial direct current stimulation in rats. Ann. Clin. Transl. Neurol. 2015, 2, 843–856. [Google Scholar] [CrossRef] [PubMed]
- Miniussi, C.; Brignani, D.; Pellicciari, M.C. Combining transcranial electrical stimulation with electroencephalography: A multimodal approach. Clin. EEG Neurosci. 2012, 43, 184–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bola, M.; Gall, C.; Moewes, C.; Fedorov, A.; Sabel, B. P 125. Transorbital alternating current stimulation strengthens oscillatory activity and functional connectivity in patients with visual system damage: A resting-state EEG study. Clin. Neurophysiol. 2013, 124, e124–e125. [Google Scholar] [CrossRef]
- Zaehle, T.; Rach, S.; Herrmann, C.S. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PloS ONE 2010, 5, e13766. [Google Scholar] [CrossRef] [Green Version]
- Binder, S.; Rawohl, J.; Born, J.; Marshall, L. Transcranial slow oscillation stimulation during NREM sleep enhances acquisition of the radial maze task and modulates cortical network activity in rats. Front. Behav. Neurosci. 2014, 7, 220. [Google Scholar] [CrossRef] [Green Version]
- Helfrich, R.F.; Schneider, T.R.; Rach, S.; Trautmann-Lengsfeld, S.A.; Engel, A.K.; Herrmann, C.S. Entrainment of brain oscillations by transcranial alternating current stimulation. Curr. Biol. 2014, 24, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Krause, V.; Wach, C.; Südmeyer, M.; Ferrea, S.; Schnitzler, A.; Pollok, B. Cortico-muscular coupling and motor performance are modulated by 20 Hz transcranial alternating current stimulation (tACS) in Parkinson’s disease. Front. Hum. Neurosci. 2013, 7, 928. [Google Scholar] [CrossRef] [Green Version]
- Merlet, I.; Birot, G.; Salvador, R.; Molaee-Ardekani, B.; Mekonnen, A.; Soria-Frish, A.; Ruffini, G.; Miranda, P.C.; Wendling, F. From oscillatory transcranial current stimulation to scalp EEG changes: A biophysical and physiological modeling study. PLoS ONE 2013, 8, e57330. [Google Scholar] [CrossRef] [Green Version]
- Izhikevich, E.M. Simple model of spiking neurons. IEEE Trans. Neural Netw. 2003, 14, 1569–1572. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Tawarah, N.M.; Kaptan, Z.; Abu-Harirah, H.A.; Nofal, M.; Almajali, B.; Jarrar, S.; Bayraktaroğlu, Z.; Qaralleh, H.; Khleifat, K.M.; Ziylan, Z.Y.; et al. Effectiveness of Anodal otDCS Following with Anodal tDCS Rather than tDCS Alone for Increasing of Relative Power of Intrinsic Matched EEG Bands in Rat Brains. Brain Sci. 2023, 13, 72. https://doi.org/10.3390/brainsci13010072
Al-Tawarah NM, Kaptan Z, Abu-Harirah HA, Nofal M, Almajali B, Jarrar S, Bayraktaroğlu Z, Qaralleh H, Khleifat KM, Ziylan ZY, et al. Effectiveness of Anodal otDCS Following with Anodal tDCS Rather than tDCS Alone for Increasing of Relative Power of Intrinsic Matched EEG Bands in Rat Brains. Brain Sciences. 2023; 13(1):72. https://doi.org/10.3390/brainsci13010072
Chicago/Turabian StyleAl-Tawarah, Nafe M., Zulal Kaptan, Hashem A. Abu-Harirah, Mohammad Nofal, Belal Almajali, Sultan Jarrar, Zubeyir Bayraktaroğlu, Haitham Qaralleh, Khaled M. Khleifat, Ziya Y. Ziylan, and et al. 2023. "Effectiveness of Anodal otDCS Following with Anodal tDCS Rather than tDCS Alone for Increasing of Relative Power of Intrinsic Matched EEG Bands in Rat Brains" Brain Sciences 13, no. 1: 72. https://doi.org/10.3390/brainsci13010072
APA StyleAl-Tawarah, N. M., Kaptan, Z., Abu-Harirah, H. A., Nofal, M., Almajali, B., Jarrar, S., Bayraktaroğlu, Z., Qaralleh, H., Khleifat, K. M., Ziylan, Z. Y., Al dmour, R. H., Alqaraleh, M., & Karamursel, S. (2023). Effectiveness of Anodal otDCS Following with Anodal tDCS Rather than tDCS Alone for Increasing of Relative Power of Intrinsic Matched EEG Bands in Rat Brains. Brain Sciences, 13(1), 72. https://doi.org/10.3390/brainsci13010072