Does Multisession Cathodal Transcranial Direct Current Stimulation of the Left Dorsolateral Prefrontal Cortex Prime the Effects of Cognitive Behavioral Therapy on Fear of Pain, Fear of Movement, and Disability in Patients with Nonspecific Low Back Pain? A Randomized Clinical Trial Study
Abstract
:1. Introduction
- Multiple sessions of a CBT program or sham tDCS with CBT reduces pain-related anxiety, fear of movement, and disability in LBP patients with high pain-related anxiety.
- Multiple sessions of concurrent CBT with c-tDCS over the left DLPFC will be more effective for the reduction in the pain-related anxiety, fear of movement, and disability in LBP patients with high pain-related anxiety compared to CBT alone or concurrent CBT and sham c-tDCS of the left DLPFC.
- Multiple sessions of concurrent CBT with c-tDCS over the left DLPFC will have a more lasting effect on the reduction in the pain-related anxiety, fear of movement, and disability in LBP patients with high pain-related anxiety compared to CBT alone or concurrent CBT and sham c-tDCS of the left DLPFC.
2. Method and Materials
2.1. Participants
2.2. Study Design
2.3. Transcranial Direct Current Stimulation
2.4. Cognitive Behavioral Therapy (CBT)
2.5. Outcome Measures
3. Results
Safety and Side Effects of c-tDCS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Sullivan, P. Diagnosis and classification of chronic low back pain disorders: Maladaptive movement and motor control impairments as underlying mechanism. Man. Ther. 2005, 10, 242–255. [Google Scholar] [CrossRef]
- Twomey, L.T.; Taylor, J.R. Physical Therapy of the Low Back; Churchill Livingstone: London, UK, 2000. [Google Scholar]
- Carey, T.S.; Garrett, J.M.; Jackman, A.M. Beyond the good prognosis: Examination of an inception cohort of patients with chronic low back pain. Spine 2000, 25, 115. [Google Scholar] [CrossRef] [PubMed]
- Izzo, R.; Popolizio, T.; D’Aprile, P.; Muto, M. Spinal pain. Eur. J. Radiol. 2015, 84, 746–756. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, R.; Higgins, J.; Bourbonnais, D. Is neuroplasticity in the central nervous system the missing link to our understanding of chronic musculoskeletal disorders? BMC Musculoskelet. Disord. 2015, 16, 25. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, R.; Higgins, J.; Bourbonnais, D. Addressing neuroplastic changes in distributed areas of the nervous system associated with chronic musculoskeletal disorders. Phys. Ther. 2015, 95, 1582–1591. [Google Scholar] [CrossRef] [PubMed]
- Apkarian, A.V.; Hashmi, J.A.; Baliki, M.N. Pain and the brain: Specificity and plasticity of the brain in clinical chronic pain. Pain 2011, 152, S49–S64. [Google Scholar] [CrossRef] [PubMed]
- Gatchel, R.J.; Polatin, P.B.; Mayer, T.G. The dominant role of psychosocial risk factors in the development of chronic low back pain disability. Spine 1995, 20, 2702–2709. [Google Scholar] [CrossRef]
- Linton, S.J. A review of psychological risk factors in back and neck pain. Spine 2000, 25, 1148–1156. [Google Scholar] [CrossRef]
- Cox, M.E.; Asselin, S.; Gracovetsky, S.A.; Richards, M.P.; Newman, N.M.; Karakusevic, V.; Zhong, L.; Fogel, J.N. Relationship between functional evaluation measures and self-assessment in nonacute low back pain. Spine 2000, 25, 1817–1826. [Google Scholar] [CrossRef]
- ML, P. The joint contribution of physical pathology, pain-related fear and catastrophizing to chronic back pain disability. Pain 2005, 113, 40–45. [Google Scholar]
- Waddell, G.; Newton, M.; Henderson, I.; Somerville, D.; Main, C.J. A Fear-Avoidance Beliefs Questionnaire (FABQ) and the role of fear-avoidance beliefs in chronic low back pain and disability. Pain 1993, 52, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Karayannis, N.V.; Smeets, R.J.; van den Hoorn, W.; Hodges, P.W. Fear of movement is related to trunk stiffness in low back pain. PLoS ONE 2013, 8, e67779. [Google Scholar] [CrossRef]
- Massé-Alarie, H.; Beaulieu, L.-D.; Preuss, R.; Schneider, C. Influence of chronic low back pain and fear of movement on the activation of the transversely oriented abdominal muscles during forward bending. J. Electromyogr. Kinesiol. 2016, 27, 87–94. [Google Scholar] [PubMed]
- Luedtke, K.; Rushton, A.; Wright, C.; Jürgens, T.; Polzer, A.; Mueller, G.; May, A. Effectiveness of transcranial direct current stimulation preceding cognitive behavioural management for chronic low back pain: Sham controlled double blinded randomised controlled trial. BMJ 2015, 350, h1640. [Google Scholar] [CrossRef] [PubMed]
- Vakili, N.; Neshat Doost, H.; Asgari, K.; Rezaee, F.; Najafi, M. The effect of cognitive-behavioral group pain management therapy on depression of the female with chronic low back pain. J. Clin. Psychol. 2010, 1, 11–19. [Google Scholar]
- Aneis, M.; Shaker, H.A.; Fahmy, E.M.; Yousef, K.H. Efect of cognitive behavior therapy in patients with chronic nonspecific low back pain. Turk. J. Physiother. Rehabil. 2021, 32, 3. [Google Scholar]
- Yang, J.; Lo, W.L.A.; Zheng, F.; Cheng, X.; Yu, Q.; Wang, C. Evaluation of cognitive behavioral therapy on improving pain, fear avoidance, and self-efficacy in patients with chronic low back pain: A systematic review and meta-analysis. Pain Res. Manag. 2022, 2022, 4276175. [Google Scholar] [CrossRef]
- Mohammadi, R.; Mahmoudi, Z.; Mahmoodian, N. The Effects of Cerebellar Transcranial Direct Current Stimulation (tDCS) on Timed Up and Go Test with Foot Placement in Chronic Stroke Patients. Middle East J. Rehabil. Health Stud. 2021, 8, 730–738. [Google Scholar] [CrossRef]
- Jamebozorgi, A.; Rahimi, A.; Daryabar, A.; Kazemi, M.; Jamebozorgi, F. The Effects of Transcranial Direct Current Stimulation (tDCS) and Biofeedback on Proprioception and Functional Balance in Athletes with ACL-deficiency. East J. Rehabil. Health Stud. 2023, 10, e130364. [Google Scholar] [CrossRef]
- Pacheco-Barrios, K.; Cardenas-Rojas, A.; Tibout, A.; Frengi, F. Methods and strategies of tDCS for the treatment of pain: Current status and future directions. Expert Rev. Med. Devices 2020, 19, 879–898. [Google Scholar] [CrossRef]
- DaSilva, A.F.; Mendonca, M.E.; Zaghi, S.; Lopes, M.; DosSantos, M.F.; Spierings, E.L.; Bajwa, Z.; Datta, A.; Bikson, M.; Fregni, F. tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine. Headache J. Head Face Pain 2012, 52, 1283–1295. [Google Scholar] [CrossRef] [PubMed]
- Kimberley, T.J.; Lewis, S.M. Understanding neuroimaging. Phys. Ther. 2007, 87, 670–683. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, M.J.; Beier, J.S.; Simons, B.; Polak, T. Transcranial Direct Current Stimulation (tDCS) of the right inferior frontal gyrus attenuates skin conductance responses to unpredictable threat conditions. Front. Hum. Neurosci. 2016, 10, 352. [Google Scholar] [CrossRef] [PubMed]
- van ‘t Wout, M.; Longo, S.M.; Reddy, M.K.; Philip, N.S.; Bowker, M.T.; Greenberg, B.D. Transcranial direct current stimulation may modulate extinction memory in posttraumatic stress disorder. Brain Behav. 2017, 7, e00681. [Google Scholar] [CrossRef] [PubMed]
- Asthana, M.; Nueckel, K.; Mühlberger, A.; Neueder, D.; Polak, T.; Domschke, K.; Deckert, J.; Herrmann, M.J. Effects of transcranial direct current stimulation on consolidation of fear memory. Front. Psychiatry 2013, 4, 107. [Google Scholar] [CrossRef] [PubMed]
- Villamar, M.F.; Volz, M.S.; Bikson, M.; Datta, A.; DaSilva, A.F.; Fregni, F. Technique and considerations in the use of 4x1 ring high-definition transcranial direct current stimulation (HD-tDCS). JoVE (J. Vis. Exp.) 2013, 14, e50309. [Google Scholar]
- Hawco, C.; Berlim, M.T.; Lepage, M. The dorsolateral prefrontal cortex plays a role in self-initiated elaborative cognitive processing during episodic memory encoding: rTMS evidence. PLoS ONE 2013, 8, e73789. [Google Scholar] [CrossRef] [PubMed]
- Petrides, M. Lateral prefrontal cortex: Architectonic and functional organization. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 781–795. [Google Scholar] [CrossRef]
- Apkarian, A.V.; Baliki, M.N.; Farmer, M.A. Predicting transition to chronic pain. Curr. Opin. Neurol. 2013, 26, 360. [Google Scholar] [CrossRef]
- Medrano-Escalada, Y.; Plaza-Manzano, G.; Fernández-de-Las-Peñas, C.; Valera-Calero, J.A. Structural, functional and neurochemical cortical brain changes associated with chronic low back pain. Tomography 2022, 8, 2153–2163. [Google Scholar] [CrossRef]
- Shanbehzadeh, S.; Salavati, M.; Tavahomi, M.; Khatibi, A.; Talebian, S.; Khademi-Kalantari, K. Reliability and validity of the pain anxiety symptom scale in Persian speaking chronic low back pain patients. Spine 2017, 42, E1238–E1244. [Google Scholar] [CrossRef]
- Airaksinen, O.; Brox, J.I.; Cedraschi, C.; Hildebrandt, J.; Klaber-Moffett, J.; Kovacs, F.; Mannion, A.F.; Reis, S.; Staal, J.; Ursin, H. European guidelines for the management of chronic nonspecific low back pain. Eur. Spine J. 2006, 15, s192. [Google Scholar] [CrossRef] [PubMed]
- Chou, R.; Qaseem, A.; Snow, V.; Casey, D.; Cross, J.T., Jr.; Shekelle, P.; Owens, D.K.; Clinical Efficacy Assessment Subcommittee of the American College of Physicians and the American College of Physicians/American Pain Society Low Back Pain Guidelines Panel*. Diagnosis and treatment of low back pain: A joint clinical practice guideline from the American College of Physicians and the American Pain Society. Ann. Intern. Med. 2007, 147, 478–491. [Google Scholar] [CrossRef] [PubMed]
- Koes, B.W. Evidence-based management of acute low back pain. Lancet 2007, 370, 1595–1596. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, R.; Brunoni, A.R.; Parazzini, M.; Vergari, M.; Rossi, E.; Fumagalli, M.; Mameli, F.; Rosa, M.; Giannicola, G.; Zago, S. Modulating human procedural learning by cerebellar transcranial direct current stimulation. Cerebellum 2013, 12, 485–492. [Google Scholar] [CrossRef]
- Ferrucci, R.; Cortese, F.; Priori, A. Cerebellar tDCS: How to do it. Cerebellum 2015, 14, 27–30. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000, 527, 633. [Google Scholar] [CrossRef]
- Samaei, A.; Ehsani, F.; Zoghi, M.; Hafez Yosephi, M.; Jaberzadeh, S. Online and offline effects of cerebellar transcranial direct current stimulation on motor learning in healthy older adults: A randomized double-blind sham-controlled study. Eur. J. Neurosci. 2017, 45, 1177–1185. [Google Scholar] [CrossRef]
- Brunoni, A.R.; Amadera, J.; Berbel, B.; Volz, M.S.; Rizzerio, B.G.; Fregni, F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int. J. Neuropsychopharmacol. 2011, 14, 1133–1145. [Google Scholar] [CrossRef]
- Zuchowski, M.L.; Timmann, D.; Gerwig, M. Acquisition of conditioned eyeblink responses is modulated by cerebellar tDCS. Brain Stimul. 2014, 7, 525–531. [Google Scholar] [CrossRef]
- Gandiga, P.C.; Hummel, F.C.; Cohen, L.G. Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clin. Neurophysiol. 2006, 117, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Mariano, T.Y.; Urman, R.D.; Hutchison, C.A.; Jamison, R.N.; Edwards, R.R. Cognitive behavioral therapy (CBT) for subacute low back pain: A systematic review. Curr. Pain Headache Rep. 2018, 22, 15. [Google Scholar] [CrossRef] [PubMed]
- Monticone, M.; Ferrante, S.; Rocca, B.; Baiardi, P.; Dal Farra, F.; Foti, C. Effect of a long-lasting multidisciplinary program on disability and fear-avoidance behaviors in patients with chronic low back pain: Results of a randomized controlled trial. Clin. J. Pain 2013, 29, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Jafari, H.; Ebrahimi, I.; Salavati, M.; Kamali, M.; Fata, L. Psychometric properties of Iranian version of Tampa Scale for Kinesiophobia in low back pain patients. Arch. Rehabil. 2010, 11. [Google Scholar]
- Rusu, A.C.; Kreddig, N.; Hallner, D.; Hülsebusch, J.; Hasenbring, M.I. Fear of movement/(Re) injury in low back pain: Confirmatory validation of a German version of the Tampa Scale for Kinesiophobia. BMC Musculoskelet. Disord. 2014, 15, 280. [Google Scholar] [CrossRef] [PubMed]
- Sveinsdottir, V.; Eriksen, H.R.; Reme, S.E. Assessing the role of cognitive behavioral therapy in the management of chronic nonspecific back pain. J. Pain Res. 2012, 5, 371–380. [Google Scholar] [PubMed]
- Ampiah, P.K.; Hendrick, P.; Macias, E.G. Comparative effectiveness of cognitive behavioural therapy combined with exercise versus exercise in the management of non-specific chronic low back pain: A systematic review with meta-analysis. Edorium J. Disabil. Rehabil. 2018, 4, 100041D05PA2018. [Google Scholar]
- Roland, M.; Fairbank, J. The Roland–Morris disability questionnaire and the Oswestry disability questionnaire. Spine 2000, 25, 3115–3124. [Google Scholar] [CrossRef]
- Mousavi, S.J.; Parnianpour, M.; Mehdian, H.; Montazeri, A.; Mobini, B. The Oswestry disability index, the Roland-Morris disability questionnaire, and the Quebec back pain disability scale: Translation and validation studies of the Iranian versions. Spine 2006, 31, E454–E459. [Google Scholar] [CrossRef]
- Reid, M.C.; Otis, J.; Barry, L.C.; Kerns, R.D. Cognitive–behavioral therapy for chronic low back pain in older persons: A preliminary study. Pain Med. 2003, 4, 223–230. [Google Scholar] [CrossRef]
- Richmond, H.; Hall, A.M.; Copsey, B.; Hansen, Z.; Williamson, E.; Hoxey-Thomas, N.; Cooper, Z.; Lamb, S.E. The effectiveness of cognitive behavioural treatment for non-specific low back pain: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0134192. [Google Scholar] [CrossRef]
- Parreira, P.; Maher, C.G.; Steffens, D.; Hancock, M.J.; Ferreira, M.L. Risk factors for low back pain and sciatica: An umbrella review. Spine J. 2018, 18, 1715–1721. [Google Scholar] [CrossRef]
- Van Middelkoop, M.; Rubinstein, S.M.; Kuijpers, T.; Verhagen, A.P.; Ostelo, R.; Koes, B.W.; van Tulder, M.W. A systematic review on the effectiveness of physical and rehabilitation interventions for chronic non-specific low back pain. Eur. Spine J. 2011, 20, 19–39. [Google Scholar] [CrossRef]
- Weigand, A.; Richtermeier, A.; Feeser, M.; Guo, J.S.; Briesemeister, B.B.; Grimm, S.; Bajbouj, M. State-dependent effects of prefrontal repetitive transcranial magnetic stimulation on emotional working memory. Brain Stimul. 2013, 6, 905–912. [Google Scholar] [CrossRef]
- Mariano, T.Y.; Burgess, F.W.; Bowker, M.; Kirschner, J.; van’t Wout-Frank, M.; Jones, R.N.; Halladay, C.W.; Stein, M.; Greenberg, B.D. Transcranial direct current stimulation for affective symptoms and functioning in chronic low back pain: A pilot double-blinded, randomized, placebo-controlled trial. Pain Med. 2019, 20, 1166–1177. [Google Scholar] [CrossRef]
Variables | DLPFC tDCS+ CBT | Sham tDCS+ CBT | Control | p Value | |||
---|---|---|---|---|---|---|---|
SEM | Mean | SEM | Mean | SEM | Mean | ||
Age | 1.60 | 33.00 | 1.82 | 33.00 | 1.77 | 33.00 | 0.93 |
Gender (male/female) | - | 7/8 | - | 7/8 | - | 8/7 | 0.89 |
PASS | 4.53 | 52.60 | 3.82 | 51.93 | 2.78 | 49.93 | 0.87 |
TSK | 2.05 | 43.66 | 2.14 | 42.26 | 2.04 | 42.46 | 0.87 |
RMDQ | 1.37 | 13.06 | 1.15 | 12.73 | 1.04 | 12.46 | 0.93 |
Variables | Effect | DF | F | p Value | |
---|---|---|---|---|---|
PASS | Main | Group | 2 | 0.24 | 0.90 |
Time | 2 | 26.11 | * <0.001 | ||
Interaction | Group × Time | 4 | 4.47 | * 0.001 | |
TSK | Main | Group | 2 | 0.01 | 0.990 |
Time | 2 | 7.79 | * <0.001 | ||
Interaction | Group × Time | 4 | 9.78 | * <0.001 | |
RMDQ | Main | Group | 2 | 0.10 | 0.990 |
Time | 2 | 10.26 | * <0.00 | ||
Interaction | Group × Time | 4 | 9.78 | * <0.001 |
Group | Variables | Time Assessment | Mean Difference (95% CI) | p Value | |
---|---|---|---|---|---|
DLPFC c-tDCS with CBT | PASS | T1 | T2 | 19.93 (11.95–27.91) | * <0.001 |
T3 | 23.13 (10.11–36.14) | * 0.004 | |||
TSK | T2 | 6.33 (2.62–10.05) | * 0.003 | ||
T3 | 8.12 (2.01–14.24) | * 0.016 | |||
RMDQ | T2 | 4.73 (2.89–6.57) | * <0.001 | ||
T3 | 5.12 (1.98–8.27) | 0.006 | |||
Sham DLPFC c-tDCS with CBT | PASS | T1 | T2 | 11.13 (6.83–15.43) | * <0.001 |
T3 | 7.71 (−17.23–1.80) | 0.095 | |||
TSK | T2 | 2.67 (1.74−3.59) | * <0.001 | ||
T3 | 1.57 (0.02–3.16) | 0.052 | |||
RMDQ | T2 | 2.33 (1.88–2.78) | * <0.001 | ||
T3 | 1.86 (−0.24–3.95) | 0.073 | |||
CBT alone | PASS | T1 | T2 | 8.46 (6.41–10.51) | * <0.001 |
T3 | 5.14 (−12.60–2.32) | 0.143 | |||
TSK | T2 | 2.46 (1.80–3.12) | * <0.001 | ||
T3 | 1.57 (−1.71–4.86) | 0.286 | |||
RMDQ | T2 | 2.20 (1.53–2.87) | * <0.001 | ||
T3 | 1.28 (−1.02–3.59) | 0.222 |
Cathodal Electrode | Anodal Electrode | ||||
---|---|---|---|---|---|
DLPFC tDCS | Sham tDCS | DLPFC tDCS | Sham tDCS | ||
Tingling sensation | Beginning | 0.65 ± 0.04 | 0.52 ± 0.14 | 4.14 ± 0.18 | 2.54 ± 0.15 |
Middle | 0.75 ± 0.15 | 0.49 ± 0.19 | 5.19 ± 0.13 | 1.36 ± 0.14 | |
End | 0.67 ± 0.12 | 0.51 ± 0.08 | 2.28 ± 0.25 | 0.77 ± 0.15 | |
Itching sensation | Beginning | 0.87 ± 0.23 | 0.79 ± 0.11 | 3.36 ± 0.38 | 1.03 ± 0.25 |
Middle | 0.71 ± 0.17 | 0.47 ± 0.08 | 2.53 ± 0.27 | 0.95 ± 0.19 | |
End | 0.73 ± 0.13 | 0.21 ± 0.04 | 1.73 ± 0.41 | 0.74 ± 0.08 | |
Burning sensation | Beginning | - | - | - | - |
Middle | - | - | - | - | |
End | - | - | - | - | |
Pain | Beginning | - | - | - | - |
Middle | - | - | - | - | |
End | - | - | - | - | |
Headache | Beginning | - | - | - | - |
Middle | - | - | - | - | |
End | - | - | - | - | |
Not tolerated others | Beginning | - | - | - | - |
Middle | - | - | - | - | |
End | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ehsani, F.; Hafez Yousefi, M.S.; Jafarzadeh, A.; Zoghi, M.; Jaberzadeh, S. Does Multisession Cathodal Transcranial Direct Current Stimulation of the Left Dorsolateral Prefrontal Cortex Prime the Effects of Cognitive Behavioral Therapy on Fear of Pain, Fear of Movement, and Disability in Patients with Nonspecific Low Back Pain? A Randomized Clinical Trial Study. Brain Sci. 2023, 13, 1381. https://doi.org/10.3390/brainsci13101381
Ehsani F, Hafez Yousefi MS, Jafarzadeh A, Zoghi M, Jaberzadeh S. Does Multisession Cathodal Transcranial Direct Current Stimulation of the Left Dorsolateral Prefrontal Cortex Prime the Effects of Cognitive Behavioral Therapy on Fear of Pain, Fear of Movement, and Disability in Patients with Nonspecific Low Back Pain? A Randomized Clinical Trial Study. Brain Sciences. 2023; 13(10):1381. https://doi.org/10.3390/brainsci13101381
Chicago/Turabian StyleEhsani, Fatemeh, Mohaddeseh Sadat Hafez Yousefi, Abbas Jafarzadeh, Maryam Zoghi, and Shapour Jaberzadeh. 2023. "Does Multisession Cathodal Transcranial Direct Current Stimulation of the Left Dorsolateral Prefrontal Cortex Prime the Effects of Cognitive Behavioral Therapy on Fear of Pain, Fear of Movement, and Disability in Patients with Nonspecific Low Back Pain? A Randomized Clinical Trial Study" Brain Sciences 13, no. 10: 1381. https://doi.org/10.3390/brainsci13101381
APA StyleEhsani, F., Hafez Yousefi, M. S., Jafarzadeh, A., Zoghi, M., & Jaberzadeh, S. (2023). Does Multisession Cathodal Transcranial Direct Current Stimulation of the Left Dorsolateral Prefrontal Cortex Prime the Effects of Cognitive Behavioral Therapy on Fear of Pain, Fear of Movement, and Disability in Patients with Nonspecific Low Back Pain? A Randomized Clinical Trial Study. Brain Sciences, 13(10), 1381. https://doi.org/10.3390/brainsci13101381