An Insight into the Prospects and Drawbacks of Stem Cell Therapy for Spinal Cord Injuries: Ongoing Trials and Future Directions
Abstract
:1. Introduction
2. Methodology
- Inclusion and exclusion criteria
3. Ongoing Clinical Trials of Stem Cell Therapy for SCI
4. Advances and Prospects of Stem Cell Therapy for SCI
5. Drawbacks of Stem Cell Therapy for SCI
6. Future Research and Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhat, I.A.; Sivanarayanan, T.B.; Somal, A.; Pandey, S.; Bharti, M.K.; Panda, B.S.; Verma, M.; Sonwane, A.; Kumar, G.S.; Amarpal; et al. An allogenic therapeutic strategy for canine spinal cord injury using mesenchymal stem cells. J. Cell. Physiol. 2019, 234, 2705–2718. [Google Scholar] [CrossRef] [PubMed]
- Vismara, I.; Papa, S.; Rossi, F.; Forloni, G.; Veglianese, P. Current Options for Cell Therapy in Spinal Cord Injury. Trends Mol. Med. 2017, 23, 831–849. [Google Scholar] [CrossRef] [PubMed]
- Patek, M.; Stewart, M. Spinal cord injury. Anaesth. Intensive Care Med. 2020, 21, 411–416. [Google Scholar] [CrossRef]
- Thompson, C.; Mutch, J.; Parent, S.; Mac-Thiong, J.-M. The changing demographics of traumatic spinal cord injury: An 11-year study of 831 patients. J. Spinal Cord Med. 2015, 38, 214–223. [Google Scholar] [CrossRef]
- Anjum, A.; Yazid, M.D.; Daud, M.F.; Idris, J.; Ng, A.M.H.; Naicker, A.S.; Ismail, O.H.R.; Kumar, R.K.A.; Lokanathan, Y. Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. Int. J. Mol. Sci. 2020, 21, 7533. [Google Scholar] [CrossRef] [PubMed]
- Dvorak, M.F.; Noonan, V.K.; Fallah, N.; Fisher, C.G.; Finkelstein, J.; Kwon, B.K.; Rivers, C.S.; Ahn, H.; Tsai, E.C.; Townson, A.; et al. The influence of time from injury to surgery on motor recovery and length of hospital stay in acute traumatic spinal cord injury: An observational Canadian cohort study. J. Neurotrauma 2015, 32, 645–654. [Google Scholar] [CrossRef]
- Bonosi, L.; Silven, M.P.; Biancardino, A.A.; Sciortino, A.; Giammalva, G.R.; Scerrati, A.; Sturiale, C.L.; Albanese, A.; Tumbiolo, S.; Visocchi, M.; et al. Stem Cell Strategies in Promoting Neuronal Regeneration after Spinal Cord Injury: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 12996. [Google Scholar] [CrossRef]
- Thomas, A.X.; Riviello, J.J.; Davila-Williams, D.; Thomas, S.P.; Erklauer, J.C.; Bauer, D.F.; Cokley, J.A. Pharmacologic and Acute Management of Spinal Cord Injury in Adults and Children. Curr. Treat. Options Neurol. 2022, 24, 285–304. [Google Scholar] [CrossRef]
- Rowland, J.W.; Hawryluk, G.W.J.; Kwon, B.; Fehlings, M.G. Current status of acute spinal cord injury pathophysiology and emerging therapies: Promise on the horizon. Neurosurg. Focus 2008, 25, E2. [Google Scholar] [CrossRef]
- Fehlings, M.G.; Tetreault, L.A.; Wilson, J.R.; Kwon, B.K.; Burns, A.S.; Martin, A.R.; Hawryluk, G.; Harrop, J.S. A Clinical Practice Guideline for the Management of Acute Spinal Cord Injury: Introduction, Rationale, and Scope. Glob. Spine J. 2017, 7 (Suppl. S3), 84S–94S. [Google Scholar] [CrossRef]
- Zhang, Y.; Al Mamun, A.; Yuan, Y.; Lu, Q.; Xiong, J.; Yang, S.; Wu, C.; Wu, Y.; Wang, J. Acute spinal cord injury: Pathophysiology and pharmacological intervention (Review). Mol. Med. Rep. 2021, 23, 417. [Google Scholar] [CrossRef] [PubMed]
- Karsy, M.; Hawryluk, G. Modern Medical Management of Spinal Cord Injury. Curr. Neurol. Neurosci. Rep. 2019, 19, 65. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Fu, C.; Xiong, F.; He, C.; Wei, Q. Stem Cell Therapy for Spinal Cord Injury. Cell Transplant. 2021, 30, 963689721989266. [Google Scholar] [CrossRef] [PubMed]
- Damianakis, E.I.; Benetos, I.S.; Evangelopoulos, D.S.; Kotroni, A.; Vlamis, J.; Pneumaticos, S.G. Stem Cell Therapy for Spinal Cord Injury: A Review of Recent Clinical Trials. Cureus 2022, 14, e24575. [Google Scholar] [CrossRef] [PubMed]
- Kwaśniewska, A.; Miazga, K.; Majczyński, H.; Jordan, L.M.; Zawadzka, M.; Sławińska, U. Noradrenergic Components of Locomotor Recovery Induced by Intraspinal Grafting of the Embryonic Brainstem in Adult Paraplegic Rats. Int. J. Mol. Sci. 2020, 21, 5520. [Google Scholar] [CrossRef] [PubMed]
- Chari, S.; Nguyen, A.; Saxe, J. Stem Cells in the Clinic. Cell Stem Cell 2018, 22, 781–782. [Google Scholar] [CrossRef]
- Shang, Z.; Wang, M.; Zhang, B.; Wang, X.; Wanyan, P. Clinical translation of stem cell therapy for spinal cord injury still premature: Results from a single-arm meta-analysis based on 62 clinical trials. BMC Med. 2022, 20, 284. [Google Scholar] [CrossRef]
- Yang, Y.; Pang, M.; Du, C.; Liu, Z.-Y.; Chen, Z.-H.; Wang, N.-X.; Zhang, L.-M.; Chen, Y.-Y.; Mo, J.; Dong, J.-W.; et al. Repeated subarachnoid administrations of allogeneic human umbilical cord mesenchymal stem cells for spinal cord injury: A phase 1/2 pilot study. Cytotherapy 2021, 23, 57–64. [Google Scholar] [CrossRef]
- Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem cells: Past, present, and future. Stem Cell Res. Ther. 2019, 10, 68. [Google Scholar] [CrossRef]
- Aboul-Soud, M.A.M.; Alzahrani, A.J.; Mahmoud, A. Induced Pluripotent Stem Cells (iPSCs)-Roles in Regenerative Therapies, Disease Modelling and Drug Screening. Cells 2021, 10, 2319. [Google Scholar] [CrossRef]
- Tang, F.; Tang, J.; Zhao, Y.; Zhang, J.; Xiao, Z.; Chen, B.; Han, G.; Yin, N.; Jiang, X.; Zhao, C.; et al. Long-term clinical observation of patients with acute and chronic complete spinal cord injury after transplantation of NeuroRegen scaffold. Sci. China Life Sci. 2022, 65, 909–926. [Google Scholar] [CrossRef]
- Vaquero, J.; Zurita, M.; Rico, M.A.; Bonilla, C.; Aguayo, C.; Montilla, J.; Bustamante, S.; Carballido, J.; Marin, E.; Martinez, F.; et al. An approach to personalized cell therapy in chronic complete paraplegia: The Puerta de Hierro phase I/II clinical trial. Cytotherapy 2016, 18, 1025–1036. [Google Scholar] [CrossRef] [PubMed]
- Vaquero, J.; Zurita, M.; Rico, M.A.; Aguayo, C.; Fernandez, C.; Rodriguez-Boto, G.; Marin, E.; Tapiador, N.; Sevilla, M.; Carballido, J.; et al. Cell therapy with autologous mesenchymal stromal cells in post-traumatic syringomyelia. Cytotherapy 2018, 20, 796–805. [Google Scholar] [CrossRef]
- Vaquero, J.; Zurita, M.; Rico, M.; Aguayo, C.; Fernández, C.; Gutiérrez, R.; Rodríguez-Boto, G.; Saab, A.; Hassan, R.; Ortega, C. Intrathecal administration of autologous bone marrow stromal cells improves neuropathic pain in patients with spinal cord injury. Neurosci. Lett. 2018, 670, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Vaquero, J.; Zurita, M.; Rico, M.A.; Bonilla, C.; Aguayo, C.; Fernández, C.; Tapiador, N.; Sevilla, M.; Morejón, C.; Montilla, J.; et al. Repeated subarachnoid administrations of autologous mesenchymal stromal cells supported in autologous plasma improve quality of life in patients suffering incomplete spinal cord injury. Cytotherapy 2017, 19, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Larocca, T.F.; Macêdo, C.T.; Souza, B.S.d.F.; Andrade-Souza, Y.M.; Villarreal, C.F.; Matos, A.C.; Silva, D.N.; da Silva, K.N.; Souza, C.L.e.M.d.; Paixão, D.d.S.; et al. Image-guided percutaneous intralesional administration of mesenchymal stromal cells in subjects with chronic complete spinal cord injury: A pilot study. Cytotherapy 2017, 19, 1189–1196. [Google Scholar] [CrossRef]
- Santamaria, A.J.; Benavides, F.D.; DiFede, D.L.; Khan, A.; Pujol, M.V.; Dietrich, W.D.; Marttos, A.; Green, B.A.; Hare, J.M.; Guest, J.D. Clinical and Neurophysiological Changes after Targeted Intrathecal Injections of Bone Marrow Stem Cells in a C3 Tetraplegic Subject. J. Neurotrauma 2019, 36, 500–516. [Google Scholar] [CrossRef]
- Xiao, Z.; Tang, F.; Zhao, Y.; Han, G.; Yin, N.; Li, X.; Chen, B.; Han, S.; Jiang, X.; Yun, C.; et al. Significant Improvement of Acute Complete Spinal Cord Injury Patients Diagnosed by a Combined Criteria Implanted with NeuroRegen Scaffolds and Mesenchymal Stem Cells. Cell Transplant. 2018, 27, 907–915. [Google Scholar] [CrossRef]
- Levi, A.D.; Anderson, K.D.; Okonkwo, D.O.; Park, P.; Bryce, T.N.; Kurpad, S.N.; Aarabi, B.; Hsieh, J.; Gant, K. Clinical Outcomes from a Multi-Center Study of Human Neural Stem Cell Transplantation in Chronic Cervical Spinal Cord Injury. J. Neurotrauma 2019, 36, 891–902. [Google Scholar] [CrossRef]
- Oraee-Yazdani, S.; Akhlaghpasand, M.; Golmohammadi, M.; Hafizi, M.; Zomorrod, M.S.; Kabir, N.M.; Oraee-Yazdani, M.; Ashrafi, F.; Zali, A.; Soleimani, M. Combining cell therapy with human autologous Schwann cell and bone marrow-derived mesenchymal stem cell in patients with subacute complete spinal cord injury: Safety considerations and possible outcomes. Stem Cell Res. Ther. 2021, 12, 445. [Google Scholar] [CrossRef]
- Oraee-Yazdani, S.; Hafizi, M.; Atashi, A.; Ashrafi, F.; Seddighi, A.-S.; Hashemi, S.M.; Soleimani, M.; Zali, A. Co-transplantation of autologous bone marrow mesenchymal stem cells and Schwann cells through cerebral spinal fluid for the treatment of patients with chronic spinal cord injury: Safety and possible outcome. Spinal Cord 2016, 54, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.K.; Choi, K.H.; Yoo, J.Y.; Kim, D.Y.; Kim, S.J.; Jeon, S.R. A Phase III Clinical Trial Showing Limited Efficacy of Autologous Mesenchymal Stem Cell Therapy for Spinal Cord Injury. Neurosurgery 2016, 78, 436–447; discussion 447. [Google Scholar] [CrossRef] [PubMed]
- Chotivichit, A.; Ruangchainikom, M.; Chiewvit, P.; Wongkajornsilp, A.; Sujirattanawimol, K. Chronic spinal cord injury treated with transplanted autologous bone marrow-derived mesenchymal stem cells tracked by magnetic resonance imaging: A case report. J. Med. Case Rep. 2015, 9, 79. [Google Scholar] [CrossRef] [PubMed]
- Satti, H.S.; Waheed, A.; Ahmed, P.; Ahmed, K.; Akram, Z.; Aziz, T.; Satti, T.M.; Shahbaz, N.; Khan, M.A.; Malik, S.A. Autologous mesenchymal stromal cell transplantation for spinal cord injury: A Phase I pilot study. Cytotherapy 2016, 18, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Albu, S.; Kumru, H.; Coll, R.; Vives, J.; Vallés, M.; Benito-Penalva, J.; Rodríguez, L.; Codinach, M.; Hernández, J.; Navarro, X.; et al. Clinical effects of intrathecal administration of expanded Wharton jelly mesenchymal stromal cells in patients with chronic complete spinal cord injury: A randomized controlled study. Cytotherapy 2021, 23, 146–156. [Google Scholar] [CrossRef]
- Al-Zoubi, A.; Jafar, E.; Jamous, M.; Al-Twal, F.; Al-Bakheet, S.; Zalloum, M.; Khalifeh, F.; Abu Radi, S.; El-Khateeb, M.; Al-Zoubi, Z. Transplantation of purified autologous leukapheresis-derived CD34+ and CD133+ stem cells for patients with chronic spinal cord injuries: Long-term evaluation of safety and efficacy. Cell Transplant. 2014, 23, S25–S34. [Google Scholar] [CrossRef]
- Ammar, A.S.; Osman, Y.; Hendam, A.T.; Hasen, M.A.; Al Rubaish, F.A.; Al Nujaidi, D.Y.; Al Abbas, F.M. A Method for Reconstruction of Severely Damaged Spinal Cord using Autologous Hematopoietic Stem Cells and Platelet-rich Protein as a Biological Scaffold. Asian J. Neurosurg. 2017, 12, 681–690. [Google Scholar] [CrossRef]
- Curt, A.; Hsieh, J.; Schubert, M.; Hupp, M.; Friedl, S.; Freund, P.; Huber, E.; Pfyffer, D.; Sutter, R.; Jutzeler, C.; et al. The Damaged Spinal Cord Is a Suitable Target for Stem Cell Transplantation. Neurorehabilit. Neural Repair 2020, 34, 758–768. [Google Scholar] [CrossRef]
- Levi, A.D.; O Okonkwo, D.; Park, P.; Jenkins, A.L.; Kurpad, S.N.; Parr, A.M.; Ganju, A.; Aarabi, B.; Kim, D.; Casha, S.; et al. Emerging Safety of Intramedullary Transplantation of Human Neural Stem Cells in Chronic Cervical and Thoracic Spinal Cord Injury. Neurosurgery 2018, 82, 562–575. [Google Scholar] [CrossRef]
- Curtis, E.; Martin, J.R.; Gabel, B.; Sidhu, N.; Rzesiewicz, T.K.; Mandeville, R.; Van Gorp, S.; Leerink, M.; Tadokoro, T.; Marsala, S.; et al. A First-in-Human, Phase I Study of Neural Stem Cell Transplantation for Chronic Spinal Cord Injury. Cell Stem Cell 2018, 22, 941–950.e6. [Google Scholar] [CrossRef]
- Shin, J.C.; Kim, K.N.; Yoo, J.; Kim, I.-S.; Yun, S.; Lee, H.; Jung, K.; Hwang, K.; Kim, M.; Lee, I.-S.; et al. Clinical Trial of Human Fetal Brain-Derived Neural Stem/Progenitor Cell Transplantation in Patients with Traumatic Cervical Spinal Cord Injury. Neural Plast. 2015, 2015, 630932. [Google Scholar] [CrossRef]
- Saini, R.; Pahwa, B.; Agrawal, D.; Singh, P.; Gujjar, H.; Mishra, S.; Jagdevan, A.; Misra, M. Efficacy and outcome of bone marrow derived stem cells transplanted via intramedullary route in acute complete spinal cord injury—A randomized placebo controlled trial. J. Clin. Neurosci. 2022, 100, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.D.; Guest, J.D.; Dietrich, W.D.; Bunge, M.B.; Curiel, R.; Dididze, M.; Green, B.A.; Khan, A.; Pearse, D.D.; Saraf-Lavi, E.; et al. Safety of Autologous Human Schwann Cell Transplantation in Subacute Thoracic Spinal Cord Injury. J. Neurotrauma 2017, 34, 2950–2963. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, L.; Moviglia, G.; Sharma, A.; Al Zoubi, Z.M.; He, X.; Chen, D. Advances and prospects of cell therapy for spinal cord injury patients. J. Neurorestoratology 2022, 10, 13–30. [Google Scholar] [CrossRef]
- Gant, K.L.; Guest, J.D.; Palermo, A.E.; Vedantam, A.; Jimsheleishvili, G.; Bunge, M.B.; Brooks, A.E.; Anderson, K.D.; Thomas, C.K.; Santamaria, A.J.; et al. Phase 1 Safety Trial of Autologous Human Schwann Cell Transplantation in Chronic Spinal Cord Injury. J. Neurotrauma 2022, 39, 285–299. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, A.J.; Benavides, F.D.; Saraiva, P.M.; Anderson, K.D.; Khan, A.; Levi, A.D.; Dietrich, W.D.; Guest, J.D. Neurophysiological Changes in the First Year After Cell Transplantation in Sub-acute Complete Paraplegia. Front. Neurol. 2020, 11, 514181. [Google Scholar] [CrossRef] [PubMed]
- Mulcahey, M.J.; Jones, L.A.T.; Rockhold, F.; Rupp, R.; Kramer, J.L.K.; Kirshblum, S.; Blight, A.; Lammertse, D.; Guest, J.D.; Steeves, J.D. Adaptive trial designs for spinal cord injury clinical trials directed to the central nervous system. Spinal Cord 2020, 58, 1235–1248. [Google Scholar] [CrossRef] [PubMed]
- Bydon, M.; Dietz, A.B.; Goncalves, S.; Moinuddin, F.M.; Alvi, M.A.; Goyal, A.; Yolcu, Y.; Hunt, C.L.; Garlanger, K.L.; Del Fabro, A.S.; et al. CELLTOP clinical trial: First report from a phase 1 trial of autologous adipose tissue–derived mesenchymal stem cells in the treatment of paralysis due to traumatic spinal cord injury. Mayo Clin. Proc. 2019, 95, 406–414. [Google Scholar] [CrossRef]
- Shen, Y.; Cao, X.; Lu, M.; Gu, H.; Li, M.; Posner, D.A. Current treatments after spinal cord injury: Cell engineering, tissue engineering, and combined therapies. Smart Med. 2022, 1, e20220017. [Google Scholar] [CrossRef]
- Sugai, K.; Sumida, M.; Shofuda, T.; Yamaguchi, R.; Tamura, T.; Kohzuki, T.; Abe, T.; Shibata, R.; Kamata, Y.; Ito, S.; et al. First-in-human clinical trial of transplantation of iPSC-derived NS/PCs in subacute complete spinal cord injury: Study protocol. Regen. Ther. 2021, 18, 321–333. [Google Scholar] [CrossRef]
- Goel, A. Stem cell therapy in spinal cord injury: Hollow promise or promising science? J. Craniovertebral Junction Spine 2016, 7, 121–126. [Google Scholar] [CrossRef]
- Liu, G.; David, B.T.; Trawczynski, M.; Fessler, R.G. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Rev. Rep. 2020, 16, 3–32. [Google Scholar] [CrossRef]
- Moradi, S.; Mahdizadeh, H.; Šarić, T.; Kim, J.; Harati, J.; Shahsavarani, H.; Greber, B.; Moore, J.B., IV. Research and therapy with induced pluripotent stem cells (iPSCs): Social, legal, and ethical considerations. Stem Cell Res. Ther. 2019, 10, 341. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, S. Pluripotent Stem Cell-Based Cell Therapy-Promise and Challenges. Cell Stem Cell 2020, 27, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Inoue, H.; Wu, J.C.; Yamanaka, S. Induced pluripotent stem cell technology: A decade of progress. Nat. Rev. Drug Discov. 2017, 16, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Teriyapirom, I.; Batista-Rocha, A.S.; Koo, B.-K. Genetic engineering in organoids. J. Mol. Med. Berl. Ger. 2021, 99, 555–568. [Google Scholar] [CrossRef] [PubMed]
- Valenti, M.T.; Serena, M.; Carbonare, L.D.; Zipeto, D. CRISPR/Cas system: An emerging technology in stem cell research. World J. Stem Cells 2019, 11, 937–956. [Google Scholar] [CrossRef] [PubMed]
- Menche, C.; Farin, H.F. Strategies for genetic manipulation of adult stem cell-derived organoids. Exp. Mol. Med. 2021, 53, 1483–1494. [Google Scholar] [CrossRef] [PubMed]
- Hoang, D.M.; Pham, P.T.; Bach, T.Q.; Ngo, A.T.L.; Nguyen, Q.T.; Phan, T.T.K.; Nguyen, G.H.; Le, P.T.T.; Hoang, V.T.; Forsyth, N.R.; et al. Stem cell-based therapy for human diseases. Signal Transduct. Target. Ther. 2022, 7, 272. [Google Scholar] [CrossRef]
- Liu, D.; Cheng, F.; Pan, S.; Liu, Z. Stem cells: A potential treatment option for kidney diseases. Stem Cell Res. Ther. 2020, 11, 249. [Google Scholar] [CrossRef]
- Zeng, C.W. Multipotent Mesenchymal Stem Cell-Based Therapies for Spinal Cord Injury: Current Progress and Future Prospects. Biology 2023, 12, 653. [Google Scholar] [CrossRef] [PubMed]
- Mutepfa, A.R.; Hardy, J.G.; Adams, C.F. Electroactive Scaffolds to Improve Neural Stem Cell Therapy for Spinal Cord Injury. Front. Med. Technol. 2022, 4, 693438. [Google Scholar] [CrossRef]
- Ribeiro, B.F.; da Cruz, B.C.; de Sousa, B.M.; Correia, P.D.; David, N.; Rocha, C.; Almeida, R.D.; da Cunha, M.R.; Baptista, A.A.M.; Vieira, S.I. Cell therapies for spinal cord injury: A review of the clinical trials and cell-type therapeutic potential. Brain J. Neurol. 2023, 146, 2672–2693. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.-W. Advancing Spinal Cord Injury Treatment through Stem Cell Therapy: A Comprehensive Review of Cell Types, Challenges, and Emerging Technologies in Regenerative. Int. J. Mol. Sci. 2023, 24, 14349. [Google Scholar] [CrossRef] [PubMed]
Identifier | Investigator | Title | Lesion Type | Cell Source | Study Phase | Effects on Neural Regeneration |
---|---|---|---|---|---|---|
NCT02481440 | Li-Min Rong | Repeated Subarachnoid Administrations of hUC-MSCs in Treating SCI | Spinal cord injury | Human umbilical cord mesenchymal stem cells | Phase 2 | hUC-MSCs is safe and effective, improved neurological dysfunction |
NCT01909154 | Jesus JV Vaquero Crespo | Safety study of local administration of autologous bone marrow stromal cells in chronic paraplegia (CME-LEM1) | Chronic paraplegia | Autologous bone marrow stromal cells | Phase 1 | Motor enhancement, pain alteration, neurophysiological parameters improved |
NCT01873547 | Yihua An | Different Efficacy Between Rehabilitation Therapy and Stem Cells Transplantation in Patients with SCI in China (SCI-III) | Spinal cord Injury | Mesenchymal stem cells derived from umbilical cord | Phase 3 | Not informed |
NCT02574585 | Ricardo Ribeiro-dos-Santos | Autologous mesenchymal stem cells transplantation in thoracolumbar chronic and complete spinal cord injury spinal cord injury | Thoracolumbar chronic SCI | Autologous bone marrow mesenchymal stem cells | Phase 2 | Not informed |
NCT02482194 | Parvez Ahmed | Autologous mesenchymal stem cells transplantation for spinal cord injury-a phase I clinical study | Traumatic spinal cord injury at the thoracic level | Autologous BM MSCs | Completed | BMMSCs (intrathecal administration) is safe, no adverse events |
NCT02981576 | Abdalla Awidi | Safety and Effectiveness of BM-MSC vs. AT-MSC in the Treatment of SCI Patients. | Spinal cord injury | Bone marrow MSC (BM-MSC), adipose tissue MSC (AT-MSC) | Phase 2 | Not informed |
NCT01624779 | Taehyeong Jo | Intrathecal transplantation of autologous adipose tissue derived MSCs in the patients with SCI | Clinical diagnosis of SCI | Adipose-derived MSCs | Phase 1 | Neurological function improved (mild), no serious adverse events |
NCT04288934 | Fatima Jamali | Treatment of Spinal Cord Injuries With (AutoBM-MSCs) vs. (WJ-MSCs) | Spinal cord injury | AutoBM-MSCs, WJ-MSCs | Phase 1 | Not informed |
NCT01162915 | Gabriel P. Lasala | Phase I, single center, trial to assess safety and tolerability of the intrathecal infusion of ex-vivo expanded bone marrow derived MSCs for the treatment of SCI | SCI clinical diagnosis (ASIA A) | Autologous bone marrow MSCs | Phase 1 | Not informed |
NCT03003364 | Joan Vidal | Intrathecal Administration of Expanded Wharton’s Jelly Mesenchymal Stem Cells in Chronic Traumatic Spinal Cord Injury | Chronic traumatic spinal cord injury | Wharton’s jelly mesenchymal stem cells | Phase 2 | Not informed |
NCT01325103 | Ricardo R. dos Santos | Phase I study of autologous bone marrow stem cell transplantation in patients with spinal cord injury | Spinal cord injury | Autologous bone marrow stem cell | Phase 1 | Transplantation of autologous BMSCs is a feasible and safe technique |
NCT01730183 | Yashbir Dewan | Study the safety and efficacy of bone marrow derived autologous cells for treatment of SCI | Spinal cord injury | Bone-marrow-derived autologous cells | Phase 2 | Not informed |
NCT01274975 | SangHan Kim | Autologous adipose derived MSCs transplantation in patient with SCI | Spinal cord injury | Adipose-derived MSCs | Phase 1 | Intravenous administration of AD MSCs is safe with no adverse events |
NCT01186679 | Dr Arvind Bhateja | Surgical transplantation of autologous bone marrow stem cells with glial scar resection for patients of chronic SCI and intra-thecal injection for acute and subacute injury-a preliminary study | Chronic SCI | Autologous bone marrow stem cells | Phase 2 | Not informed |
NCT01393977 | An Yihua | Difference between rehabilitation therapy and stem cells transplantation in patients with spinal cord injury in China | Spinal cord injury | Stem cells | Phase 2 | Improved urinary control, muscle tension, motion, and self-care ability |
NCT03308565 | Mohamad Bydon | Adipose Stem Cells for Traumatic Spinal Cord Injury (CELLTOP) | Traumatic spinal cord injury | Adipose stem cells | Phase 1 | Not informed |
NCT02570932 | Jesús JV Vaquero Crespo | Administration of Expanded Autologous Adult Bone Marrow Mesenchymal Cells in Established Chronic Spinal Cord Injuries | Chronic spinal cord injuries | Adult bone marrow mesenchymal cells | Phase 2 | Neurological function improved (mild), no serious adverse events |
NCT01186679 | Dr Arvind Bhateja | Safety and Efficacy of Autologous Bone Marrow Stem Cells in Treating Spinal Cord Injury (ABMST-SCI) | Spinal cord injury | Autologous bone marrow stem cells | Phase 2 | Not informed |
NCT02481440 | Min Li Rong | Repeated Subarachnoid Administrations of hUC-MSCs in Treating SCI | Spinal cord injury | Human umbilical cord mesenchymal stem cells | Phase 2 | Improved control, motion, and self-care ability |
NCT04331405 | Vladimir A. Smirnov | Allogeneic Cord Blood Cells for Adults with Severe Acute Contusion Spinal Cord Injury | Severe acute contusion SCI | Allogeneic cord blood cells | Phase 2 | Not informed |
NCT04205019 | Johannes P de Munter | Safety Stem Cells in Spinal Cord Injury (SSCiSCI) | Spinal cord injury | Neuro-cells | Phase 1 | Not informed |
NCT01769872 | Tai-Hyoung Cho | Safety and Effect of Adipose Tissue Derived Mesenchymal Stem Cell Implantation in Patients with Spinal Cord Injury | Spinal cord injury | Mesenchymal stem cell | Phase 2 | Not informed |
NCT01321333 | Stephen Huhn | Study of Human Central Nervous System Stem Cells (HuCNS-SC) in Patients with Thoracic Spinal Cord Injury | Thoracic spinal cord injury | Central nervous system stem cells | Phase 2 | Not informed |
NCT02163876 | Stephen Huhn | Study of Human Central Nervous System (CNS) Stem Cell Transplantation in Cervical Spinal Cord Injury | Cervical spinal cord injury | Central nervous system stem cell | Phase 2 | Not informed |
NCT02152657 | Ricardo R dos Santos | Evaluation of Autologous Mesenchymal Stem Cell Transplantation in Chronic Spinal Cord Injury: A Pilot Study | Chronic spinal cord injury | Mesenchymal stem cell | Phase 1 | Not informed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.I.; Ahmed, N.; Ahsan, K.; Abbasi, M.; Maugeri, R.; Chowdhury, D.; Bonosi, L.; Brunasso, L.; Costanzo, R.; Iacopino, D.G.; et al. An Insight into the Prospects and Drawbacks of Stem Cell Therapy for Spinal Cord Injuries: Ongoing Trials and Future Directions. Brain Sci. 2023, 13, 1697. https://doi.org/10.3390/brainsci13121697
Khan SI, Ahmed N, Ahsan K, Abbasi M, Maugeri R, Chowdhury D, Bonosi L, Brunasso L, Costanzo R, Iacopino DG, et al. An Insight into the Prospects and Drawbacks of Stem Cell Therapy for Spinal Cord Injuries: Ongoing Trials and Future Directions. Brain Sciences. 2023; 13(12):1697. https://doi.org/10.3390/brainsci13121697
Chicago/Turabian StyleKhan, Shahidul Islam, Nazmin Ahmed, Kamrul Ahsan, Mahmud Abbasi, Rosario Maugeri, Dhiman Chowdhury, Lapo Bonosi, Lara Brunasso, Roberta Costanzo, Domenico Gerardo Iacopino, and et al. 2023. "An Insight into the Prospects and Drawbacks of Stem Cell Therapy for Spinal Cord Injuries: Ongoing Trials and Future Directions" Brain Sciences 13, no. 12: 1697. https://doi.org/10.3390/brainsci13121697
APA StyleKhan, S. I., Ahmed, N., Ahsan, K., Abbasi, M., Maugeri, R., Chowdhury, D., Bonosi, L., Brunasso, L., Costanzo, R., Iacopino, D. G., Umana, G. E., & Chaurasia, B. (2023). An Insight into the Prospects and Drawbacks of Stem Cell Therapy for Spinal Cord Injuries: Ongoing Trials and Future Directions. Brain Sciences, 13(12), 1697. https://doi.org/10.3390/brainsci13121697