Anomia: Deciphering Functional Neuroanatomy in Primary Progressive Aphasia Variants
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grossman, M.; Irwin, D.J. Primary Progressive Aphasia and Stroke Aphasia. Continuum 2018, 24, 745–767. [Google Scholar] [CrossRef]
- Gorno-Tempini, M.L.; Hillis, A.E.; Weintraub, S.; Kertesz, A.; Mendez, M.; Cappa, S.F.; Ogar, J.M.; Rohrer, J.D.; Black, S.; Boeve, B.F.; et al. Classification of primary progressive aphasia and its variants. Neurology 2011, 76, 1006–1014. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, D.; Gorno-Tempini, M.L.; Rabinovici, G.D.; Santos-Santos, M.A.; Seeley, W.; Miller, B.L.; Pijnenburg, Y.; Keulen, M.A.; Groot, C.; van Berckel, B.N.M.; et al. Prevalence of amyloid-β pathology in distinct variants of primary progressive aphasia. Ann. Neurol. 2018, 84, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, I.R.; Neumann, M. Molecular neuropathology of frontotemporal dementia: Insights into disease mechanisms from postmortem studies. J. Neurochem. 2016, 138, 54–70. [Google Scholar] [CrossRef] [PubMed]
- Krzosek, P.; Madetko, N.; Migda, A.; Migda, B.; Jaguś, D.; Alster, P. Differential diagnosis of rare subtypes of progressive supranuclear palsy and psp-like syndromes-infrequent manifestations of the most common form of atypical parkinsonism. Front. Aging Neurosci. 2022, 14, 804385. [Google Scholar] [CrossRef]
- Harris, J.M.; Saxon, J.A.; Jones, M.; Snowden, J.S.; Thompson, J.C. Neuropsychological differentiation of progressive aphasic disorders. J. Neuropsychol. 2019, 13, 214–239. [Google Scholar] [CrossRef]
- Migliaccio, R.; Boutet, C.; Valabregue, R.; Ferrieux, S.; Nogues, M.; Lehéricy, S.; Dormont, D.; Levy, R.; Dubois, B.; Teichmann, M. The Brain Network of Naming: A Lesson from Primary Progressive Aphasia. PLoS ONE 2016, 11, e0148707. [Google Scholar] [CrossRef]
- Grossman, M.; McMillan, C.; Moore, P.; Ding, L.; Glosser, G.; Work, M.; Gee, J. What’s in a name: Voxel-based morphometric analyses of MRI and naming difficulty in Alzheimer’s disease, frontotemporal dementia and corticobasal degeneration. Brain 2004, 127, 628–649. [Google Scholar] [CrossRef]
- Breining, B.L.; Faria, A.V.; Tippett, D.C.; Stockbridge, M.D.; Meier, E.L.; Caffo, B.; Hermann, O.; Friedman, R.; Meyer, A.; Tsapkini, K.; et al. Association of Regional Atrophy With Naming Decline in Primary Progressive Aphasia. Neurology 2023, 100, e582–e594. [Google Scholar] [CrossRef]
- Chapman, C.A.; Polyakova, M.; Mueller, K.; Weise, C.; Fassbender, K.; Fliessbach, K.; Kornhuber, J.; Lauer, M.; Anderl-Straub, S.; Ludolph, A.; et al. Structural correlates of language processing in primary progressive aphasia. Brain Commun. 2023, 5, fcad076. [Google Scholar] [CrossRef]
- Race, D.S.; Tsapkini, K.; Crinion, J.; Newhart, M.; Davis, C.; Gomez, Y.; Hillis, A.E.; Faria, A.V. An area essential for linking word meanings to word forms: Evidence from primary progressive aphasia. Brain Lang. 2013, 127, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.M.; Faria, A.V.; Tippett, D.C.; Hillis, A.E.; Friedman, R.B. The relationship between baseline volume in temporal areas and post-treatment naming accuracy in primary progressive aphasia. Aphasiology 2017, 31, 1059–1077. [Google Scholar] [CrossRef] [PubMed]
- Mesulam, M.-M.; Thompson, C.K.; Weintraub, S.; Rogalski, E.J. The Wernicke conundrum and the anatomy of language comprehension in primary progressive aphasia. Brain 2015, 138, 2423–2437. [Google Scholar] [CrossRef] [PubMed]
- Snowden, J.S.; Harris, J.M.; Thompson, J.C.; Kobylecki, C.; Jones, M.; Richardson, A.M.; Neary, D. Semantic dementia and the left and right temporal lobes. Cortex 2018, 107, 188–203. [Google Scholar] [CrossRef] [PubMed]
- Mesulam, M.-M.; Wieneke, C.; Hurley, R.; Rademaker, A.; Thompson, C.K.; Weintraub, S.; Rogalski, E.J. Words and objects at the tip of the left temporal lobe in primary progressive aphasia. Brain 2013, 136, 601–618. [Google Scholar] [CrossRef] [PubMed]
- Bruffaerts, R.; Schaeverbeke, J.; De Weer, A.S.; Nelissen, N.; Dries, E.; Van Bouwel, K.; Sieben, A.; Bergmans, B.; Swinnen, C.; Pijnenburg, Y.; et al. Multivariate analysis reveals anatomical correlates of naming errors in primary progressive aphasia. Neurobiol. Aging 2020, 88, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Catricalà, E.; Polito, C.; Presotto, L.; Esposito, V.; Sala, A.; Conca, F.; Gasparri, C.; Berti, V.; Filippi, M.; Pupi, A.; et al. Neural correlates of naming errors across different neurodegenerative diseases: An FDG-PET study. Neurology 2020, 95, e2816–e2830. [Google Scholar] [CrossRef]
- Hillis, A.E.; Oh, S.; Ken, L. Deterioration of naming nouns versus verbs in primary progressive aphasia. Ann. Neurol. 2004, 55, 268–275. [Google Scholar] [CrossRef]
- Lukic, S.; Borghesani, V.; Weis, E.; Welch, A.; Bogley, R.; Neuhaus, J.; Deleon, J.; Miller, Z.A.; Kramer, J.H.; Miller, B.L.; et al. Dissociating nouns and verbs in temporal and perisylvian networks: Evidence from neurodegenerative diseases. Cortex 2021, 142, 47–61. [Google Scholar] [CrossRef]
- Riello, M.; Faria, A.V.; Ficek, B.; Webster, K.; Onyike, C.U.; Desmond, J.; Frangakis, C.; Tsapkini, K. The Role of Language Severity and Education in Explaining Performance on Object and Action Naming in Primary Progressive Aphasia. Front. Aging Neurosci. 2018, 10, 346. [Google Scholar] [CrossRef]
- Breining, B.L.; Faria, A.V.; Caffo, B.; Meier, E.L.; Sheppard, S.M.; Sebastian, R.; Tippett, D.C.; Hillis, A.E. Neural regions underlying object and action naming: Complementary evidence from acute stroke and primary progressive aphasia. Aphasiology 2022, 36, 732–760. [Google Scholar] [CrossRef] [PubMed]
- Canu, E.; Agosta, F.; Battistella, G.; Spinelli, E.G.; DeLeon, J.; Welch, A.E.; Mandelli, M.L.; Hubbard, H.I.; Moro, A.; Magnani, G. Speech production differences in English and Italian speakers with nonfluent variant PPA. Neurology 2020, 94, e1062–e1072. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ota, S.; Kawakami, N.; Kanno, S.; Suzuki, K. Dyslexia and dysgraphia of primary progressive aphasia in Chinese: A systematic review. Front. Neurol. 2022, 13, 1025660. [Google Scholar] [CrossRef] [PubMed]
- Kremin, H.; Akhutina, T.; Basso, A.; Davidoff, J.; De Wilde, M.; Kitzing, P.; Lorenz, A.; Perrier, D.; van der Sandt-Koenderman, M.; Vendrell, J.; et al. A cross-linguistic data bank for oral picture naming in Dutch, English, German, French, Italian, Russian, Spanish, and Swedish (PEDOI). Brain Cogn. 2003, 53, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Torrance, M.; Nottbusch, G.; Alves, R.A.; Arfé, B.; Chanquoy, L.; Chukharev-Hudilainen, E.; Dimakos, I.; Fidalgo, R.; Hyönä, J.; Jóhannesson, Ó.I.; et al. Timed written picture naming in 14 European languages. Behav. Res. Methods 2018, 50, 744–758. [Google Scholar] [CrossRef] [PubMed]
- Tsvetkova, L.S. Afaziya i Vosstanovitel’noe Obuchenie: Uchebnoe Posobie Dlya Studentov Defektologov Fakul’tetov Pedagogicheskih Institutov; Prosveshchenie: Moscow, Russia, 1988; pp. 129–143. [Google Scholar]
- BSPMVIEW v.20161108. Available online: https://zenodo.org/badge/latestdoi/21612/spunt/bspmview (accessed on 20 September 2023).
- Nieto-Castanon, A.; Whitfield-Gabrieli, S. CONN Functional Connectivity Toolbox: RRID SCR_009550, Release 21; Hilbert Press: Boston, MA, USA, 2021. [Google Scholar]
- Nieto-Castanon, A. FMRI denoising pipeline. In Handbook of Functional Connectivity Magnetic Resonance Imaging Methods in CONN; Hilbert Press: Boston, MA, USA, 2020; pp. 17–25. [Google Scholar]
- Cordella, C.; Quimby, M.; Touroutoglou, A.; Brickhouse, M.; Dickerson, B.C.; Green, J.R. Quantification of motor speech impairment and its anatomic basis in primary progressive aphasia. Neurology 2019, 92, e1992–e2004. [Google Scholar] [CrossRef] [PubMed]
- Josephs, K.A.; Duffy, J.R.; Strand, E.A.; Machulda, M.M.; Senjem, M.L.; Gunter, J.L.; Schwarz, C.G.; Reid, R.I.; Spychalla, A.J.; Lowe, V.J.; et al. The evolution of primary progressive apraxia of speech. Brain 2014, 137, 2783–2795. [Google Scholar] [CrossRef] [PubMed]
- Mesulam, M.-M.; Rogalski, E.J.; Wieneke, C.; Hurley, R.S.; Geula, C.; Bigio, E.H.; Thompson, C.K.; Weintraub, S. Primary progressive aphasia and the evolving neurology of the language network. Nat. Rev. Neurol. 2014, 10, 554–569. [Google Scholar] [CrossRef]
- Gleichgerrcht, E.; Fridriksson, J.; Bonilha, L. Neuroanatomical foundations of naming impairments across different neurologic conditions. Neurology 2015, 85, 284–292. [Google Scholar] [CrossRef]
- Schwartz, M.F.; Faseyitan, O.; Kim, J.; Coslett, H.B. The dorsal stream contribution to phonological retrieval in object naming. Brain 2012, 135, 3799–3814. [Google Scholar] [CrossRef]
- Hickok, G.; Poeppel, D. The cortical organization of speech processing. Nat. Rev. Neurosci. 2007, 8, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Aggujaro, S.; Crepaldi, D.; Pistarini, C.; Taricco, M.; Luzzatti, C. Neuro-anatomical correlates of impaired retrieval of verbs and nouns: Interaction of grammatical class, imageability and actionality. J. Neurolinguist. 2006, 19, 175–194. [Google Scholar] [CrossRef]
- Kemmerer, D.; Rudrauf, D.; Manzel, K.; Tranel, D. Behavioral patterns and lesion sites associated with impaired processing of lexical and conceptual knowledge of actions. Cortex 2012, 48, 826–848. [Google Scholar] [CrossRef] [PubMed]
- Bedny, M.; Caramazza, A.; Grossman, E.; Pascual-Leone, A.; Saxe, R. Concepts Are More than Percepts: The Case of Action Verbs. J. Neurosci. 2008, 28, 11347–11353. [Google Scholar] [CrossRef]
- Tyler, L.K.; Randall, B.; Stamatakis, E.A. Cortical differentiation for nouns and verbs depends on grammatical markers. J. Cogn. Neurosci. 2008, 20, 1381–1389. [Google Scholar] [CrossRef] [PubMed]
- Kemmerer, D.; Castillo, J.G.; Talavage, T.; Patterson, S.; Wiley, C. Neuroanatomical distribution of five semantic components of verbs: Evidence from fMRI. Brain Lang. 2008, 107, 16–43. [Google Scholar] [CrossRef]
- Coslett, H.B.; Schwartz, M.F. The parietal lobe and language. Handb. Clin. Neurol. 2018, 151, 365–375. [Google Scholar] [CrossRef]
- Axer, H.; Keyserlingk, A.G.V.; Berks, G.; Keyserlingk, D.G.V. Supra- and Infrasylvian Conduction Aphasia. Brain Lang. 2001, 76, 317–331. [Google Scholar] [CrossRef]
- Baldo, J.V.; Dronkers, N.F. The role of inferior parietal and inferior frontal cortex in working memory. Neuropsychology 2006, 20, 529–538. [Google Scholar] [CrossRef]
- Baldo, J.V.; Katseff, S.; Dronkers, N.F. Brain regions underlying repetition and auditory-verbal short-term memory deficits in aphasia: Evidence from voxel-based lesion symptom mapping. Aphasiology 2012, 26, 338–354. [Google Scholar] [CrossRef]
- Ardila, A.; Bernal, B.; Rosselli, M. Executive Functions Brain System: An Activation Likelihood Estimation Meta-analytic Study. Arch. Clin. Neuropsychol. 2018, 33, 379–405. [Google Scholar] [CrossRef] [PubMed]
- Koenigs, M.; Barbey, A.K.; Postle, B.R.; Grafman, J. Superior Parietal Cortex Is Critical for the Manipulation of Information in Working Memory. J. Neurosci. 2009, 29, 14980–14986. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, J.; Zhang, Y.; Zheng, D.; Zhang, J.; Rong, M.; Wu, H.; Wang, Y.; Zhou, K.; Jiang, T. The Neuroanatomical Basis for Posterior Superior Parietal Lobule Control Lateralization of Visuospatial Attention. Front. Neuroanat. 2016, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Tranel, D.; Manzel, K.; Asp, E.; Kemmerer, D. Naming dynamic and static actions: Neuropsychological evidence. J. Physiol. Paris. 2008, 102, 80–94. [Google Scholar] [CrossRef]
nfvPPA (n = 17) | svPPA (n = 11) | lvPPA (n = 9) | |
---|---|---|---|
Age, years 1 | 64 [60; 67] | 67 [63.5; 68.5] | 65 [56; 67] |
Gender (m/f), n (%) | 6/11 (35/65%) | 5/6 (45/55%) | 6/3 (67/33%) |
Education, years 1 | 15 [13.5; 15] | 15 [13; 15] | 14 [13; 16] |
Disease duration, months 1 | 48 [36; 60] | 36 [16; 48] | 36 [23; 48] |
nfvPPA (n = 17) | svPPA (n = 11) | lvPPA (n = 9) | |
---|---|---|---|
ACE III, total score/100 1 | 71 [45; 83] * | 38 [26; 50] * | 53 [37; 75] |
PASS: word retrieval and expression, n | |||
Normal (0) | 5 | 1 | 0 |
Very mild impairment (0.5) | 7 | 1 | 3 |
Mild impairment (1) | 3 | 5 | 5 |
Moderate impairment (2) | 2 | 4 | 1 |
Severe impairment (3) | 0 | 0 | 0 |
Tsvetkova language assessment scale: | |||
| 55 [40; 59] * | 27.5 [15; 29.5] * | 34 [20.75; 49.5] |
| 29 [22; 29] * | 11 [10; 16] * | 20 [16; 26] |
| 26 [18; 29] * | 15 [4.5; 20] * | 19 [11; 24] |
Cortical Region | Cluster Size | T Value | MNI Coordinates (x, y, z) |
---|---|---|---|
nfvPPA: Tsvetkova language assessment scale, naming (total score) | |||
Left precentral gyrus | 68 | 4.04 | −46, 4, 48 |
3.55 | −44, 4, 40 | ||
svPPA: PASS, word retrieval and expression | |||
Left STG, MTG | 683 | 17.76 | −60, −57, 10 |
11.53 | −60, −62, 2 | ||
11.20 | −66, −51, 8 | ||
svPPA: Tsvetkova language assessment scale, naming (total score) | |||
Left temporal pole | 96 | 6.62 | −58, 8, −27 |
svPPA: Tsvetkova language assessment scale, action naming | |||
Mid-posterior parts of left STG, MTG | 221 | 7.56 | −66, −48, 12 |
svPPA: Tsvetkova language assessment scale, object naming | |||
Left temporal pole | 175 | 10.06 | −54, 16, −30 |
lvPPA: PASS, word retrieval and expression | |||
Left superior parietal lobule | 88 | 8.48 | −26, −46, 62 |
lvPPA: Tsvetkova language assessment scale, naming (total score) | |||
Left supramarginal gyrus | 51 | 4.18 | −45, −36, 36 |
lvPPA: Tsvetkova language assessment scale, action naming | |||
Left IFG, pars triangularis | 85 | 7.32 | −50, 42, 16 |
Left IFG, pars triangularis | 99 | 6.26 | −52, 45, 0 |
lvPPA: Tsvetkova language assessment scale, object naming | |||
Left IFG, pars triangularis | 183 | 10.20 | −50, 42, 0 |
Left temporal pole, superior part | 55 | 6.13 | −54, 15, −10 |
Cortical Region | Cluster Size | MNI Coordinates (x, y, z) |
---|---|---|
nfvPPA: left precentral gyrus | ||
Left and right precentral gyri, postcentral gyri, SMA, superior and middle frontal gyri | 16,729 | −52, −2, 42 |
svPPA: left temporal pole | ||
Left parahippocampal and fusiform gyri, hippocampus, temporal pole | 538 | −18, 4, −34 |
Right temporal pole | 244 | 22, 12, −44 |
Anterior parts of left MTG and inferior temporal gyrus | 121 | −58, −4, −36 |
svPPA: mid-posterior parts of left STG and MTG | ||
Left temporoparietal junction, posterior parts of STG and MTG | 832 | −60, −52, 6 |
Right STG | 226 | 72, 20, −2 |
Left temporal pole, anterior parts of MTG | 173 | −52, 4, −30 |
Right temporal pole | 167 | 60, 10, −22 |
lvPPA: left superior parietal lobule | ||
Left superior parietal lobule | 287 | −24, −66, 64 |
Left inferior parietal lobule | 117 | −32, −42, 46 |
Posterior part of inferior temporal gyrus | 90 | −54, −64, −12 |
Right supramarginal gyrus | 77 | 38, −40, 42 |
lvPPA: left supramarginal gyrus | ||
Left DLPFC | 460 | −40, 44, −6 |
Left supramarginal and angular gyri | 437 | −52, −46, 34 |
Posterior part of left MTG | 277 | −64, −50, 6 |
Left premotor cortex | 201 | −36, 2, 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhmadullina, D.R.; Konovalov, R.N.; Shpilyukova, Y.A.; Fedotova, E.Y.; Illarioshkin, S.N. Anomia: Deciphering Functional Neuroanatomy in Primary Progressive Aphasia Variants. Brain Sci. 2023, 13, 1703. https://doi.org/10.3390/brainsci13121703
Akhmadullina DR, Konovalov RN, Shpilyukova YA, Fedotova EY, Illarioshkin SN. Anomia: Deciphering Functional Neuroanatomy in Primary Progressive Aphasia Variants. Brain Sciences. 2023; 13(12):1703. https://doi.org/10.3390/brainsci13121703
Chicago/Turabian StyleAkhmadullina, Diliara R., Rodion N. Konovalov, Yulia A. Shpilyukova, Ekaterina Yu. Fedotova, and Sergey N. Illarioshkin. 2023. "Anomia: Deciphering Functional Neuroanatomy in Primary Progressive Aphasia Variants" Brain Sciences 13, no. 12: 1703. https://doi.org/10.3390/brainsci13121703
APA StyleAkhmadullina, D. R., Konovalov, R. N., Shpilyukova, Y. A., Fedotova, E. Y., & Illarioshkin, S. N. (2023). Anomia: Deciphering Functional Neuroanatomy in Primary Progressive Aphasia Variants. Brain Sciences, 13(12), 1703. https://doi.org/10.3390/brainsci13121703