Polypathologies and Animal Models of Traumatic Brain Injury
Abstract
:1. Introduction
2. Polypathology of TBI
2.1. Diffuse Axonal Injury
2.2. Tau, Amyloid, and TAR DNA-Binding Protein-43
2.3. Inflammatory Response to TBI
3. Current Animal Models of TBI
3.1. Fluid Percussion Injury (FPI) Model
3.2. Weight Drop Model
3.3. Controlled Cortical Impact (CCI) Model
3.4. Closed Head Impact Model of Engineered Rotational Acceleration (CHIMERA) Model
3.5. Blast TBI Models
3.6. Penetrating TBI Models
3.7. Rotational TBI Models
3.8. Non-Mammal Models
Animal Models References | Experimental Procedure | Animals | Technical Features & Variations Used | Pathology | Strengths | Limitations |
---|---|---|---|---|---|---|
FPI model [5,14,36,37,42,45] | Fixed animal’s brain is exposed via a craniotomy A cap is attached to the skull and a reservoir of saline water in a cylindrical tube is attached to the cap At the other end of the reservoir there is a transducer measuring pressure changes A pendulum strikes a piston connected to the transducer which conducts a pressure pulse to the dura of the animal This displaces and deforms the brain tissue, with varying severity | Cat Rabbit Swine Rat Dog Mouse | Position of the craniotomy: central-sagittal, lateral-parietal, para-sagittal Can alter height of pendulum to control severity of injury Variations in tube length, material angle | Can cause mild–severe TBI without skull fracture Central: diffuse contusions, haemorrhages, concussion, neuroinflammation, BBB dysfunction Lateral: focal contusions, diffuse subcortical and contralateral injury, haemorrhage | Motor, behavioural, and cognitive deficits seen, lasting for weeks to months EEG abnormalities corresponding to severity of injury Contusions and axonal damage produced in rodents similar to humans Bradycardia, haemorrhage at grey–white matter interface, increased plasma glucose levels, hypertension | High mortality Difficulty calibrating pendulum (improved with addition of microprocessor-controlled pneumatically driven instruments) Requirement of craniotomy Progressive tissue atrophy consistently seen in rodents—unclear if this mirrors human pathophysiology |
Weight drop model [14,36,37,45,49,52] | Guided falling of a weight onto the unconstrained skull of an animal: Feeney’s: craniotomy used Marmarou’s: exposed dorsal–ventral skull covered with steel disk resting on foam pad Maryland: impact applied to anterior part of skull Shohami’s: weight applied to one side of unprotected skull resting on hard surface | Rat Mouse Zebrafish | Adjust height of drop Alter the mass, shape, material of weight used With or without craniotomy Change contact surface material or area | Feeney’s: contusion type injury, concussion, traumatic axonal injury, haemorrhage development of a necrotic cavity Shohami’s and Marmarou’s: concussions and traumatic axonal injury primarily, contusions and possible skull fractures Maryland’s: primarily traumatic axonal injury with concussion and haemorrhage | Closely resembles clinical TBI Scalable model as height and mass of weight can be adjusted for severity Simple mechanism and construction Shohami model demonstrates impaired neurological and cognitive outcomes (motor, learning, memory, and anxiety) Use in zebrafish shows genomic changes in CNS injury pathways | Variability seen in injury deliverability Use of metal plate in Marmarou’s/Maryland’s does not reflect human TBI Feeney: craniotomy-associated damage Marmarou’s: higher fatality rate Shohami’s: increased probability of skull fractures |
CCI [14,36,37,41,53] | Craniotomy performed on restrained animal skull Use of a pneumatic or electromagnetic impact device to deliver an injury to exposed dura Deformation of underlying cortex | Ferret Mouse Rat Monkey Swine Xenopus | Craniotomy can alter the position and depth. Can alter the speed or angle of the impactor, the diameter of the tip, depth of impact | Cortical tissue loss, subdural haematomas, axonal injury, concussion, BBB dysfunction, increased ICP, haemorrhages if severe Pathology can be focal or diffuse, depending on the severity of the injury delivered | Ability to precisely calibrate injury parameters improves accuracy of injury and therefore reproducibility Reduced risk of rebound injury Motor, emotional, and cognitive deficits seen in walking and memory which correlate with severity and persist for up to 1 year Can be used in small and large animal models | Expensive equipment Craniotomy-associated damage Most CCI models cannot produce DAI Dural laceration as a complication |
Penetrating TBI model [14,37,42,46,49] | Animal placed in a frame and head fixed Frontal sinus removed Exposed to different projectiles: missiles, gunshots, sharp objects Creates severe deformational damage through a visible cavity | Cat Dog Monkey Sheep Rat Mouse Zebrafish | Anatomical path, velocity, and angle of projectile Low-velocity pellet model: non-fatal | Model for moderate to severe TBI Creates a large focal cavity in the brain. White and grey matter damage. Brain swelling seizures, neuroinflammation, and BBB dysfunction Extensive intracerebral haemorrhage Low-velocity pellet model produces a cavity, haemorrhage, oedema, gliosis, and white matter degeneration | Cognitive: specifically memory impairment and sensorimotor impairment Neurofunctional deficits correlate with injury severity Produces clinically relevant outcomes like raised ICP Move injury site to target precise lesions | Extensive haemorrhage produced Heat damage from velocity of projectile Less standardised than other models High mortality rate |
CHIMERA [14,38,43,54] | Head of animal unconstrained in supine position Pressure-driven piston controlled with a regulator and digital pressure gauge Impact applied to the dorsum of the head, allowing head to flex forward after injury | Rat Mouse Ferret | Can control the parameters of injury including direction, velocity, and impact energy High-speed camera analysis available | Causes axonal injury DAI, neuroinflammation, neurodegeneration, tau, hyperphosphorylation, and white matter inflammation | Non-surgical technique Can be used repeatedly to study long-term effects Semi-automated procedure Variety of dynamic injuries produced Allows for movement of the head after impact Motor, cognitive, and neuropsychiatric outcomes shown with greater consistency than other models | Standardisation of head plates required No large animal model validated for comparison Relatively few publications compared to other models |
Primary blast injury [2,14,37,42,45,49] | Animal fixed to metal tube Blast generated through a detonation or release of compressed air | Rat Mouse Pig Drosophila | Head can be restrained or unrestrained Addition of Kevlar vests to protect thorax Amount of explosives or pressure of compressed air used Plastic net to protect from debris or shrapnel | DAI, changes in intracranial pressure, BBB dysfunction, brain oedema, tau hyperphosphorylation, and neuroinflammation | Deficits seen in social recognition, spatial memory, and motor coordination Use of thoracic and abdominal protection minimises mortality Low-level blasts increase ICP and cause cognitive defects Head immobilisation during blast was associated with reduced learning and memory deficits | Model does not accurately recapitulate the dynamic nature of a blast injury Protection from systemic injuries or debris removes the important comorbidities accompanying TBI |
Rotational acceleration model [14,36,37,45] | The animal’s head is secured to a device or helmet Induction of a graded rotational acceleration forces | Pig Non-human primate Rabbit | Head restrained or unrestrained Angle of injury, rotation, grading of forces | Primarily DAI Non-human primates: severe TBI, swine: mild to severe TBI with DAI, BBB dysfunction, and damage to the hippocampus | Head rotation is associated with poor functional and histopathological outcomes Highly clinically relevant as a model for falls or collisions | Model is technically sophisticated and expensive Ethical concerns about use of non-human primates |
3.9. Outcomes in TBI
4. Recent In Vivo Advancements
4.1. Biomarkers of TBI
4.2. Neuroimaging
4.3. Genetic Technologies
4.4. CHIMERA Model
5. General Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maas, A.I.R.; Menon, D.K.; David Adelson, P.D.; Andelic, N.; Bell, M.J.; Belli, A.; Bragge, P.; Brazinova, A.; Büki, A.; Chesnut, R.M.; et al. Traumatic Brain Injury: Integrated Approaches to Improve Prevention, Clinical Care, and Research. Lancet Neurol. 2017, 16, 987–1048. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, L.E.; Fisher, A.M.; Tagge, C.A.; Zhang, X.L.; Velisek, L.; Sullivan, J.A.; Upreti, C.; Kracht, J.M.; Ericsson, M.; Wojnarowicz, M.W.; et al. Chronic Traumatic Encephalopathy in Blast-Exposed Military Veterans and a Blast Neurotrauma Mouse Model. Sci. Transl. Med. 2012, 4, 134ra60. [Google Scholar] [CrossRef]
- Hay, J.; Johnson, V.E.; Smith, D.H.; Stewart, W. Chronic Traumatic Encephalopathy: The Neuropathological Legacy of Traumatic Brain Injury. Annu. Rev. Pathol. 2016, 11, 21–45. [Google Scholar] [CrossRef] [PubMed]
- Shivaji, T.; Lee, A.; Dougall, N.; McMillan, T.; Stark, C. The Epidemiology of Hospital Treated Traumatic Brain Injury in Scotland. BMC Neurol. 2014, 14, 2. [Google Scholar] [CrossRef] [PubMed]
- Iboaya, A.; Harris, J.L.; Arickx, A.N.; Nudo, R.J. Models of Traumatic Brain Injury in Aged Animals: A Clinical Perspective. Neurorehabil. Neural Repair 2019, 33, 975–988. [Google Scholar] [CrossRef] [PubMed]
- Araki, T.; Yokota, H.; Morita, A. Pediatric Traumatic Brain Injury: Characteristic Features, Diagnosis, and Management. Neurol. Med. Chir. 2017, 57, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Nikam, R.M.; Kecskemethy, H.H.; Kandula, V.V.R.; Averill, L.W.; Langhans, S.A.; Yue, X. Abusive Head Trauma Animal Models: Focus on Biomarkers. Int. J. Mol. Sci. 2023, 24, 4463. [Google Scholar] [CrossRef]
- Mouzon, B.; Chaytow, H.; Crynen, G.; Bachmeier, C.; Stewart, J.; Mullan, M.; Stewart, W.; Crawford, F. Repetitive Mild Traumatic Brain Injury in a Mouse Model Produces Learning and Memory Deficits Accompanied by Histological Changes. J. Neurotrauma 2012, 29, 2761–2773. [Google Scholar] [CrossRef]
- McKee, A.C.; Cairns, N.J.; Dickson, D.W.; Folkerth, R.D.; Dirk Keene, C.; Litvan, I.; Perl, D.P.; Stein, T.D.; Vonsattel, J.P.; Stewart, W.; et al. The First NINDS/NIBIB Consensus Meeting to Define Neuropathological Criteria for the Diagnosis of Chronic Traumatic Encephalopathy. Acta Neuropathol. 2016, 131, 75–86. [Google Scholar] [CrossRef]
- Perrine, K.; Helcer, J.; Tsiouris, A.J.; Pisapia, D.J.; Stieg, P. Literature Review The Current Status of Research on Chronic Traumatic Encephalopathy. World Neurosurg. 2017, 102, 533–544. [Google Scholar] [CrossRef]
- Johnson, V.E.; Stewart, W.; Smith, D.H. Traumatic Brain Injury and Amyloid-β Pathology: A Link to Alzheimer’s Disease? Nat. Rev. Neurosci. 2010, 11, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.H.; Johnson, V.E.; Stewart, W. Chronic Neuropathologies of Single and Repetitive TBI: Substrates of Dementia? Nat. Rev. Neurol. 2013, 9, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, M.; Denier, C.; Oudinet, J.P.; Adams, D.; Guennoun, R. Progesterone Neuroprotection: The Background of Clinical Trial Failure. J. Steroid Biochem. Mol. Biol. 2016, 160, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.H.; Kochanek, P.M.; Rosi, S.; Meyer, R.; Ferland-beckham, C.; Prager, E.M.; Ahlers, S.T.; Crawford, F. Roadmap for Advancing Pre-Clinical Science in Traumatic Brain Injury. J. Neurotrauma 2021, 3221, 3204–3221. [Google Scholar] [CrossRef] [PubMed]
- Galgano, M.; Toshkezi, G.; Qiu, X.; Russell, T.; Chin, L.; Zhao, L.-R. Traumatic Brain Injury. Cell Transplant. 2017, 26, 1118–1130. [Google Scholar] [CrossRef] [PubMed]
- McCrea, M.A.; Giacino, J.T.; Barber, J.; Temkin, N.R.; Nelson, L.D.; Levin, H.S.; Dikmen, S.; Stein, M.; Bodien, Y.G.; Boase, K.; et al. Functional Outcomes over the First Year after Moderate to Severe Traumatic Brain Injury in the Prospective, Longitudinal TRACK-TBI Study. JAMA Neurol. 2021, 78, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Gratz, D.; Hund, T.J.; Falvo, M.J.; Wold, L.E. Reverse Translation: Using Computational Modeling to Enhance Translational Research. Circ. Res. 2018, 122, 1496–1498. [Google Scholar] [CrossRef]
- Ramirez, F.D.; Motazedian, P.; Jung, R.G.; Di Santo, P.; Macdonald, Z.D.; Moreland, R.; Simard, T.; Clancy, A.A.; Russo, J.J.; Welch, V.A.; et al. Methodological Rigor in Preclinical Cardiovascular Studies. Circ. Res. 2017, 120, 1916–1926. [Google Scholar] [CrossRef]
- Fisher, M.; Feuerstein, G.; Howells, D.W.; Hurn, P.D.; Kent, T.A.; Savitz, S.I.; Lo, E.H. Update of the Stroke Therapy Academic Industry Roundtable Preclinical Recommendations. Stroke 2009, 40, 2244–2250. [Google Scholar] [CrossRef]
- Hietamies, T.M.; Ostrowski, C.; Pei, Z.; Feng, L.; McCabe, C.; Work, L.M.; Quinn, T.J. Variability of Functional Outcome Measures Used in Animal Models of Stroke and Vascular Cognitive Impairment—A Review of Contemporary Studies. J. Cereb. Blood Flow Metab. 2018, 38, 1872–1884. [Google Scholar] [CrossRef]
- Wilson, L.; Stewart, W.; Dams-O’Connor, K.; Diaz-Arrastia, R.; Horton, L.; Menon, D.K.; Polinder, S. The Chronic and Evolving Neurological Consequences of Traumatic Brain Injury. Lancet Neurol. 2017, 16, 813–825. [Google Scholar] [CrossRef] [PubMed]
- Gan, Z.S.; Stein, S.C.; Swanson, R.; Guan, S.; Garcia, L.; Mehta, D.; Smith, D.H.; Smith, D.H. Blood Biomarkers for Traumatic Brain Injury: A Quantitative Assessment of Diagnostic and Prognostic Accuracy. Front. Neurol. 2019, 10, 446. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.H.; Johnson, V.E.; Trojanowski, J.Q.; Stewart, W. Chronic Traumatic Encephalopathy—Confusion and Controversies. Nat. Rev. Neurol. 2019, 15, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Johnson, V.E.; Stewart, W.; Smith, D.H. Axonal Pathology in Traumatic Brain Injury. Exp. Neurol. 2013, 246, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Johnson, V.E.; Stewart, J.E.; Begbie, F.D.; Trojanowski, J.Q.; Smith, D.H.; Stewart, W. Inflammation and White Matter Degeneration Persist for Years after a Single Traumatic Brain Injury. Brain 2013, 136, 28–42. [Google Scholar] [CrossRef] [PubMed]
- Iliff, J.J.; Chen, M.J.; Plog, B.A.; Zeppenfeld, D.M.; Soltero, X.; Yang, L.; Singh, I.; Deane, R.; Nedergaard, M. Impairment of Glymphatic Pathway Function Promotes Tau Pathology after Traumatic Brain Injury. J. Neurosci. 2014, 34, 16180–16193. [Google Scholar] [CrossRef] [PubMed]
- Edwards, G.; Zhao, J.; Dash, P.K.; Soto, C.; Moreno-Gonzalez, I. Traumatic Brain Injury Induces Tau Aggregation and Spreading. J. Neurotrauma 2020, 37, 80–92. [Google Scholar] [CrossRef]
- Zanier, E.R.; Bertani, I.; Sammali, E.; Pischiutta, F.; Chiaravalloti, M.A.; Vegliante, G.; Masone, A.; Corbelli, A.; Smith, D.H.; Menon, D.K.; et al. Induction of a Transmissible Tau Pathology by Traumatic Brain Injury. Brain 2018, 141, 2685–2699. [Google Scholar] [CrossRef]
- Jo, M.; Lee, S.; Jeon, Y.; Kim, S.; Kwon, Y.; Kim, H. The Role of TDP-43 Propagation in Neurodegenerative Diseases: Integrating Insights from Clinical and Experimental Studies. Exp. Mol. Med. 2020, 52, 1652–1662. [Google Scholar] [CrossRef]
- Simon, D.W.; McGeachy, M.J.; Bayır, H.; Clark, R.S.B.; Loane, D.J.; Kochanek, P.M. The Far-Reaching Scope of Neuroinflammation after Traumatic Brain Injury. Nat. Rev. Neurol. 2017, 13, 171–191. [Google Scholar] [CrossRef]
- Corps, K.N.; Roth, T.L.; McGavern, D.B. Inflammation and Neuroprotection in Traumatic Brain Injury. JAMA Neurol. 2015, 72, 355. [Google Scholar] [CrossRef] [PubMed]
- Loane, D.J.; Byrnes, K.R. Role of Microglia in Neurotrauma. Neurotherapeutics 2010, 7, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Hay, J.R.; Johnson, V.E.; Young, A.M.H.; Smith, D.H.; Stewart, W. Blood-Brain Barrier Disruption Is an Early Event That May Persist for Many Years After Traumatic Brain Injury in Humans. J. Neuropathol. Exp. Neurol. 2015, 74, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Doherty, C.P.; O’Keefe, E.; Wallace, E.; Loftus, T.; Keaney, J.; Kealy, J.; Humphries, M.M.; Molloy, M.G.; Meaney, J.F.; Farrell, M.; et al. Blood-Brain Barrier Dysfunction as a Hallmark Pathology in Chronic Traumatic Encephalopathy. J. Neuropathol. Exp. Neurol. 2016, 75, 656–662. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.I.; McIntosh, T.K.; Maxwell, W.L.; Nicoll, J.A. Recent Advances in Neurotrauma. J. Neuropathol. Exp. Neurol. 2000, 59, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Rostami, E. Traumatic Brain Injury Models in Animals. In Injury Models of the Central Nervous System: Methods and Protocols; Kobeissy, F.H., Dixon, C.E., Hayes, R.L., Mondello, S., Eds.; Springer: New York, NY, USA, 2016; pp. 47–59. ISBN 978-1-4939-3816-2. [Google Scholar]
- Xiong, Y.; Mahmood, A.; Chopp, M. Animal Models of Traumatic Brain Injury. Nat. Rev. Neurosci. 2013, 14, 128–142. [Google Scholar] [CrossRef]
- Cheng, W.H.; Martens, K.M.; Carr, M.; Wilkinson, A.; Fan, J.; Robert, J.; Hayat, A.; Namjoshi, D.R.; Wellington, C.L.; McInnes, K.A.; et al. Merging Pathology with Biomechanics Using CHIMERA (Closed-Head Impact Model of Engineered Rotational Acceleration): A Novel, Surgery-Free Model of Traumatic Brain Injury. Mol. Neurodegener. 2014, 9, 218–252. [Google Scholar]
- Bodnar, C.N.; Roberts, K.N.; Higgins, E.K.; Bachstetter, A.D. A Systematic Review of Closed Head Injury Models of Mild Traumatic Brain Injury in Mice and Rats. J. Neurotrauma 2019, 36, 1683–1706. [Google Scholar] [CrossRef]
- Cole, J.T.; Yarnell, A.; Kean, W.S.; Gold, E.; Lewis, B.; Ren, M.; McMullen, D.C.; Jacobowitz, D.M.; Pollard, H.B.; O’Neill, J.T.; et al. Craniotomy: True Sham for Traumatic Brain Injury, or a Sham of a Sham? J. Neurotrauma 2011, 28, 359–369. [Google Scholar] [CrossRef]
- Fournier, M.-L.; Clément, T.; Aussudre, J.; Plesnila, N.; Obenaus, A.; Badaut, J. Contusion Rodent Model of Traumatic Brain Injury: Controlled Cortical Impact. In Wound Regeneration: Methods and Protocols; Das, H., Ed.; Springer: New York, NY, USA, 2021; pp. 49–65. ISBN 978-1-0716-0845-6. [Google Scholar]
- Zhang, Y.P.; Cai, J.; Shields, L.B.E.; Liu, N.; Xu, X.M.; Shields, C.B. Traumatic Brain Injury Using Mouse Models. Transl. Stroke Res. 2014, 5, 454–471. [Google Scholar] [CrossRef]
- Najem, D.; Rennie, K.; Ribecco-Lutkiewicz, M.; Ly, D.; Haukenfrers, J.; Liu, Q.; Nzau, M.; Fraser, D.D.; Bani-Yaghoub, M. Traumatic Brain Injury: Classification, Models, and Markers. Biochem. Cell Biol. 2018, 96, 391–406. [Google Scholar] [CrossRef] [PubMed]
- Archer, D.P.; McCann, S.K.; Walker, A.M.; Premji, Z.A.; Rogan, K.J.; Hutton, M.J.H.; Gray, L.J. Neuroprotection by Anaesthetics in Rodent Models of Traumatic Brain Injury: A Systematic Review and Network Meta-Analysis. Br. J. Anaesth. 2018, 121, 1272–1281. [Google Scholar] [CrossRef] [PubMed]
- Cernak, I. Animal Models of Head Trauma. NeuroRx 2005, 2, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Plantman, S.; Ng, K.C.; Lu, J.; Davidsson, J.; Risling, M. Characterization of a Novel Rat Model of Penetrating Traumatic Brain Injury. J. Neurotrauma 2012, 29, 1219–1232. [Google Scholar] [CrossRef] [PubMed]
- Johnson, V.E.; Meaney, D.F.; Cullen, D.K.; Smith, D.H. Animal Models of Traumatic Brain Injury. Handb. Clin. Neurol. 2015, 127, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Gennarelli, T.A.; Thibault, L.E.; Adams, J.H.; Graham, D.I.; Thompson, C.J.; Marcincin, R.P. Diffuse Axonal Injury and Traumatic Coma in the Primate. Ann. Neurol. 1982, 12, 564–574. [Google Scholar] [CrossRef] [PubMed]
- Zulazmi, N.A.; Arulsamy, A.; Ali, I.; Zainal Abidin, S.A.; Othman, I.; Shaikh, M.F. The Utilization of Small Non-Mammals in Traumatic Brain Injury Research: A Systematic Review. CNS Neurosci. Ther. 2021, 27, 381–402. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Behnke, J.A.; Hardin, K.R.; Zheng, J.Q. Drosophila Melanogaster as a Model to Study Age and Sex Differences in Brain Injury and Neurodegeneration after Mild Head Trauma. Front. Neurosci. 2023, 17, 1150694. [Google Scholar] [CrossRef]
- McCutcheon, V.; Park, E.; Liu, E.; Sobhebidari, P.; Tavakkoli, J.; Wen, X.-Y.; Baker, A.J. A Novel Model of Traumatic Brain Injury in Adult Zebrafish Demonstrates Response to Injury and Treatment Comparable with Mammalian Models. J. Neurotrauma 2016, 34, 1382–1393. [Google Scholar] [CrossRef]
- Shah, E.J.; Gurdziel, K.; Ruden, D.M. Mammalian Models of Traumatic Brain Injury and a Place for Drosophila in TBI Research. Front. Neurosci. 2019, 13, 409. [Google Scholar] [CrossRef]
- Spruiell Eldridge, S.L.; Teetsel, J.F.K.; Torres, R.A.; Ulrich, C.H.; Shah, V.V.; Singh, D.; Zamora, M.J.; Zamora, S.; Sater, A.K. A Focal Impact Model of Traumatic Brain Injury in Xenopus Tadpoles Reveals Behavioral Alterations, Neuroinflammation, and an Astroglial Response. Int. J. Mol. Sci. 2022, 23, 7578. [Google Scholar] [CrossRef]
- McNamara, E.H.; Grillakis, A.A.; Tucker, L.B.; McCabe, J.T. The Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA) as an Application for Traumatic Brain Injury Pre-Clinical Research: A Status Report. Exp. Neurol. 2020, 333, 113409. [Google Scholar] [CrossRef] [PubMed]
- DeWitt, D.S.; Hawkins, B.E.; Dixon, C.E.; Kochanek, P.M.; Armstead, W.; Bass, C.R.; Bramlett, H.M.; Buki, A.; Dietrich, W.D.; Ferguson, A.R.; et al. Pre-Clinical Testing of Therapies for Traumatic Brain Injury. J. Neurotrauma 2018, 35, 2737–2754. [Google Scholar] [CrossRef] [PubMed]
- Shultz, S.R.; McDonald, S.J.; Corrigan, F.; Semple, B.D.; Salberg, S.; Zamani, A.; Jones, N.C.; Mychasiuk, R. Clinical Relevance of Behavior Testing in Animal Models of Traumatic Brain Injury. J. Neurotrauma 2020, 37, 2381–2400. [Google Scholar] [CrossRef] [PubMed]
- Lafrenaye, A.; Mondello, S.; Povlishock, J.; Gorse, K.; Walker, S.; Hayes, R.; Wang, K.; Kochanek, P.M. Operation Brain Trauma Therapy: An Exploratory Study of Levetiracetam Treatment Following Mild Traumatic Brain Injury in the Micro Pig. Front. Neurol. 2021, 11, 586958. [Google Scholar] [CrossRef]
- Deshetty, U.M.; Periyasamy, P. Potential Biomarkers in Experimental Animal Models for Traumatic Brain Injury. J. Clin. Med. 2023, 12, 3923. [Google Scholar] [CrossRef]
- Wang, K.K.; Yang, Z.; Zhu, T.; Shi, Y.; Rubenstein, R.; Tyndall, J.A.; Manley, G.T. An Update on Diagnostic and Prognostic Biomarkers for Traumatic Brain Injury. Expert Rev. Mol. Diagn. 2018, 18, 165–180. [Google Scholar] [CrossRef]
- Bao, Q.; Yuan, X.; Bian, X.; Wei, W.; Jin, P.; Jiang, W. Prognostic Significance of Translocator Protein in Brain Tissue Following Traumatic Brain Injury. Turk. Neurosurg. 2022, 33, 736–744. [Google Scholar] [CrossRef]
- Soustiel, J.F.; Vlodavsky, E.; Milman, F.; Gavish, M.; Zaaroor, M. Improvement of Cerebral Metabolism Mediated by Ro5-4864 Is Associated with Relief of Intracranial Pressure and Mitochondrial Protective Effect in Experimental Brain Injury. Pharm. Res. 2011, 28, 2945–2953. [Google Scholar] [CrossRef]
- Houlton, J.; Abumaria, N.; Hinkley, S.F.R.; Clarkson, A.N. Therapeutic Potential of Neurotrophins for Repair after Brain Injury: A Helping Hand from Biomaterials. Front. Genet. 2019, 10, 790. [Google Scholar] [CrossRef]
- Cacialli, P. Neurotrophins Time Point Intervention after Traumatic Brain Injury: From Zebrafish to Human. Int. J. Mol. Sci. 2021, 22, 1585. [Google Scholar] [CrossRef] [PubMed]
- Meissner, L.; Gallozzi, M.; Balbi, M.; Schwarzmaier, S.; Tiedt, S.; Terpolilli, N.A.; Plesnila, N. Temporal Profile of MicroRNA Expression in Contused Cortex after Traumatic Brain Injury in Mice. J. Neurotrauma 2016, 33, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Bhomia, M.; Balakathiresan, N.S.; Wang, K.K.; Papa, L.; Maheshwari, R.K. A Panel of Serum MiRNA Biomarkers for the Diagnosis of Severe to Mild Traumatic Brain Injury in Humans. Sci. Rep. 2016, 6, 28148. [Google Scholar] [CrossRef] [PubMed]
- Mac Donald, C.L.; Dikranian, K.; Song, S.K.; Bayly, P.V.; Holtzman, D.M.; Brody, D.L. Detection of Traumatic Axonal Injury with Diffusion Tensor Imaging in a Mouse Model of Traumatic Brain Injury. Exp. Neurol. 2007, 205, 116–131. [Google Scholar] [CrossRef] [PubMed]
- Alosco, M.L.; Culhane, J.; Mez, J. Neuroimaging Biomarkers of Chronic Traumatic Encephalopathy: Targets for the Academic Memory Disorders Clinic. Neurotherapeutics 2021, 18, 772–791. [Google Scholar] [CrossRef] [PubMed]
- Knutsen, A.K.; Vidhate, S.; McIlvain, G.; Luster, J.; Galindo, E.J.; Johnson, C.L.; Pham, D.L.; Butman, J.A.; Mejia-Alvarez, R.; Tartis, M.; et al. Characterization of Material Properties and Deformation in the ANGUS Phantom during Mild Head Impacts Using MRI. J. Mech. Behav. Biomed. Mater. 2023, 138, 105586. [Google Scholar] [CrossRef]
- Meng, Q.; Zhuang, Y.; Ying, Z.; Agrawal, R.; Yang, X.; Gomez-Pinilla, F. Traumatic Brain Injury Induces Genome-Wide Transcriptomic, Methylomic, and Network Perturbations in Brain and Blood Predicting Neurological Disorders. EBioMedicine 2017, 16, 184–194. [Google Scholar] [CrossRef]
- Grovola, M.R.; von Reyn, C.; Loane, D.J.; Cullen, D.K. Understanding Microglial Responses in Large Animal Models of Traumatic Brain Injury: An Underutilized Resource for Preclinical and Translational Research. J. Neuroinflamm. 2023, 20, 67. [Google Scholar] [CrossRef]
- Abu Hamdeh, S.; Tenovuo, O.; Peul, W.; Marklund, N. “Omics” in Traumatic Brain Injury: Novel Approaches to a Complex Disease. Acta Neurochir. 2021, 163, 2581–2594. [Google Scholar] [CrossRef]
- Rubin, T.G.; Lipton, M.L. Sex Differences in Animal Models of Traumatic Brain Injury. J. Exp. Neurosci. 2019, 13, 117906951984402. [Google Scholar] [CrossRef]
- Gupte, R.; Brooks, W.; Vukas, R.; Pierce, J.; Harris, J. Sex Differences in Traumatic Brain Injury: What We Know and What We Should Know. J. Neurotrauma 2019, 36, 3063–3091. [Google Scholar] [CrossRef] [PubMed]
- Biegon, A. Considering Biological Sex in Traumatic Brain Injury. Front. Neurol. 2021, 12, 576366. [Google Scholar] [CrossRef] [PubMed]
- Clayton, J.A.; Collins, F.S. Policy: NIH to Balance Sex in Cell and Animal Studies. Nature 2014, 509, 282–283. [Google Scholar] [CrossRef] [PubMed]
- Chinnery, P.F. Traumatic Brain Injury Advances since 2017: What Has Changed? Lancet Neurol. 2022, 21, 953–954. [Google Scholar] [CrossRef]
- Hill, M.D.; Goyal, M.; Menon, B.K.; Nogueira, R.G.; McTaggart, R.A.; Demchuk, A.M.; Poppe, A.Y.; Buck, B.H.; Field, T.S.; Dowlatshahi, D.; et al. Efficacy and Safety of Nerinetide for the Treatment of Acute Ischaemic Stroke (ESCAPE-NA1): A Multicentre, Double-Blind, Randomised Controlled Trial. Lancet 2020, 395, 878–887. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freeman-Jones, E.; Miller, W.H.; Work, L.M.; Fullerton, J.L. Polypathologies and Animal Models of Traumatic Brain Injury. Brain Sci. 2023, 13, 1709. https://doi.org/10.3390/brainsci13121709
Freeman-Jones E, Miller WH, Work LM, Fullerton JL. Polypathologies and Animal Models of Traumatic Brain Injury. Brain Sciences. 2023; 13(12):1709. https://doi.org/10.3390/brainsci13121709
Chicago/Turabian StyleFreeman-Jones, Erin, William H. Miller, Lorraine M. Work, and Josie L. Fullerton. 2023. "Polypathologies and Animal Models of Traumatic Brain Injury" Brain Sciences 13, no. 12: 1709. https://doi.org/10.3390/brainsci13121709
APA StyleFreeman-Jones, E., Miller, W. H., Work, L. M., & Fullerton, J. L. (2023). Polypathologies and Animal Models of Traumatic Brain Injury. Brain Sciences, 13(12), 1709. https://doi.org/10.3390/brainsci13121709