GABAA Receptor Benzodiazepine Binding Sites and Motor Impairments in Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Clinical Test Battery
2.2. Imaging Techniques
2.3. Imaging Analysis
2.4. Statistical Analysis
3. Results
3.1. Availability of Regional Cerebral GABAAR Benzodiazepine Binding Sites and UPDRS Motor Scores
3.2. Post Hoc Analysis of Thalamic GABAAR Benzodiazepine Binding Site Availability, Acetylcholinesterase Hydrolysis Rate, and VMAT2 and Axial UPDRS Motor Scores
3.3. Post Hoc Analysis of Thalamic [11C]Flumazenil K1 Flow Effects and Axial UPDRS Motor Scores
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bloem, B.R.; Steijns, J.A.; Smits-Engelsman, B.C. An update on falls. Curr. Opin. Neurol. 2003, 16, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Bohnen, N.I.; Muller, M.L.; Kotagal, V.; Koeppe, R.A.; Kilbourn, M.R.; Gilman, S.; Albin, R.L.; Frey, K.A. Heterogeneity of cholinergic denervation in Parkinson’s disease without dementia. J. Cereb. Blood Flow Metab. 2012, 32, 1609–1617. [Google Scholar] [CrossRef] [PubMed]
- Muller, M.L.; Albin, R.L.; Kotagal, V.; Koeppe, R.A.; Scott, P.J.; Frey, K.A.; Bohnen, N.I. Thalamic cholinergic innervation and postural sensory integration function in Parkinson’s disease. Brain 2013, 136, 3282–3289. [Google Scholar] [CrossRef] [PubMed]
- Roytman, S.; Paalanen, R.; Griggs, A.; David, S.; Pongmala, C.; Koeppe, R.A.; Scott, P.J.H.; Marusic, U.; Kanel, P.; Bohnen, N.I. Cholinergic system correlates of postural control changes in Parkinson’s disease freezers. Brain 2023, 146, 3243–3257. [Google Scholar] [CrossRef] [PubMed]
- Bowery, N.G.; Bettler, B.; Froestl, W.; Gallagher, J.P.; Marshall, F.; Raiteri, M.; Bonner, T.I.; Enna, S.J. International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid(B) receptors: Structure and function. Pharmacol. Rev. 2002, 54, 247–264. [Google Scholar] [CrossRef] [PubMed]
- Filion, M.; Tremblay, L. Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res. 1991, 547, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Vila, M.; Levy, R.; Herrero, M.T.; Ruberg, M.; Faucheux, B.; Obeso, J.A.; Agid, Y.; Hirsch, E.C. Consequences of nigrostriatal denervation on the functioning of the basal ganglia in human and nonhuman primates: An in situ hybridization study of cytochrome oxidase subunit I mRNA. J. Neurosci. 1997, 17, 765–773. [Google Scholar] [CrossRef]
- Borgkvist, A.; Avegno, E.M.; Wong, M.Y.; Kheirbek, M.A.; Sonders, M.S.; Hen, R.; Sulzer, D. Loss of Striatonigral GABAergic Presynaptic Inhibition Enables Motor Sensitization in Parkinsonian Mice. Neuron 2015, 87, 976–988. [Google Scholar] [CrossRef]
- Boecker, H. Imaging the role of GABA in movement disorders. Curr. Neurol. Neurosci. Rep. 2013, 13, 385. [Google Scholar] [CrossRef]
- Boccalaro, I.L.; Schwerdel, C.; Cristia-Lara, L.; Fritschy, J.M.; Rubi, L. Dopamine depletion induces neuron-specific alterations of GABAergic transmission in the mouse striatum. Eur. J. Neurosci. 2020, 52, 3353–3374. [Google Scholar] [CrossRef]
- Sieghart, W.; Sperk, G. Subunit composition, distribution and function of GABA(A) receptor subtypes. Curr. Top Med. Chem. 2002, 2, 795–816. [Google Scholar] [CrossRef]
- Ondo, W.G.; Hunter, C. Flumazenil, a GABA antagonist, may improve features of Parkinson’s disease. Mov. Disord. 2003, 18, 683–685. [Google Scholar] [CrossRef] [PubMed]
- Ondo, W.G.; Silay, Y.S. Intravenous flumazenil for Parkinson’s disease: A single dose, double blind, placebo controlled, cross-over trial. Mov. Disord. 2006, 21, 1614–1617. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, K.; Tachibana, H.; Sugita, M.; Fukuchi, M. Impairment of benzodiazepine receptor in Parkinson’s disease evaluated by 123I-iomazenil SPECT. Kaku Igaku 1996, 33, 391–397. [Google Scholar] [PubMed]
- Kawabata, K.; Tachibana, H. Evaluation of benzodiazepine receptor in the cerebral cortex of Parkinson’s disease using 123I-iomazenil SPECT. Nihon Rinsho 1997, 55, 244–248. [Google Scholar] [PubMed]
- Hughes, A.J.; Daniel, S.E.; Kilford, L.; Lees, A.J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 1992, 55, 181–184. [Google Scholar] [CrossRef]
- Goetz, C.G.; Poewe, W.; Rascol, O.; Sampaio, C.; Stebbins, G.T.; Counsell, C.; Giladi, N.; Holloway, R.G.; Moore, C.G.; Wenning, G.K.; et al. Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: Status and recommendations. Mov. Disord. 2004, 19, 1020–1028. [Google Scholar] [CrossRef]
- Fahn, S. Unified Parkinson’s disease rating scale. Recent Dev. Park. Dis. 1987, 0, 153–163. [Google Scholar]
- Frey, K.A.; Holthoff, V.A.; Koeppe, R.A.; Jewett, D.M.; Kilbourn, M.R.; Kuhl, D.E. Parametric in vivo imaging of benzodiazepine receptor distribution in human brain. Ann. Neurol. 1991, 30, 663–672. [Google Scholar] [CrossRef]
- Jewett, D.M.; Kilbourn, M.R.; Lee, L.C. A simple synthesis of [11C]dihydrotetrabenazine (DTBZ). Nucl. Med. Biol. 1997, 24, 197–199. [Google Scholar] [CrossRef]
- Shao, X.; Hoareau, R.; Runkle, A.C.; Tluczek, L.J.M.; Hockley, B.G.; Henderson, B.D.; Scott, P.J.H. Highlighting the versatility of the Tracerlab synthesis modules. Part 2: Fully automated production of [11C]-labeled radiopharmaceuticals using a Tracerlab FXC-Pro. J. Label. Compd. Radiopharm. 2011, 54, 819–838. [Google Scholar] [CrossRef]
- Koeppe, R.A.; Frey, K.A.; Kuhl, D.E.; Kilbourn, M.R. Assessment of extrastriatal vesicular monoamine transporter binding site density using stereoisomers of [11C]dihydrotetrabenazine. J. Cereb. Blood Flow Metab. 1999, 19, 1376–1384. [Google Scholar] [CrossRef]
- Minoshima, S.; Koeppe, R.A.; Fessler, J.A.; Mintun, M.A.; Berger, K.L.; Taylor, S.F.; Kuhl, D.E. Integrated and Automated Data-Analysis Method for Neuronal Activation Studies Using O-15-Water Pet. Int. Congr. Ser. 1993, 1030, 409–417. [Google Scholar]
- Bohnen, N.I.; Frey, K.A.; Studenski, S.; Kotagal, V.; Koeppe, R.A.; Constantine, G.M.; Scott, P.J.; Albin, R.L.; Muller, M.L. Extra-nigral pathological conditions are common in Parkinson’s disease with freezing of gait: An in vivo positron emission tomography study. Mov. Disord. 2014, 29, 1118–1124. [Google Scholar] [CrossRef] [PubMed]
- Logan, J.; Fowler, J.S.; Volkow, N.D.; Wang, G.J.; Ding, Y.S.; Alexoff, D.L. Distribution volume ratios without blood sampling from graphical analysis of PET data. J. Cereb. Blood Flow Metab. 1996, 16, 834–840. [Google Scholar] [CrossRef]
- Millet, P.; Graf, C.; Buck, A.; Walder, B.; Ibanez, V. Evaluation of the reference tissue models for PET and SPECT benzodiazepine binding parameters. Neuroimage 2002, 17, 928–942. [Google Scholar] [CrossRef] [PubMed]
- Odano, I.; Halldin, C.; Karlsson, P.; Varrone, A.; Airaksinen, A.J.; Krasikova, R.N.; Farde, L. [18F]flumazenil binding to central benzodiazepine receptor studies by PET—Quantitative analysis and comparisons with [11C]flumazenil. Neuroimage 2009, 45, 891–902. [Google Scholar] [CrossRef] [PubMed]
- Nagatsuka Si, S.; Fukushi, K.; Shinotoh, H.; Namba, H.; Iyo, M.; Tanaka, N.; Aotsuka, A.; Ota, T.; Tanada, S.; Irie, T. Kinetic analysis of [(11)C]MP4A using a high-radioactivity brain region that represents an integrated input function for measurement of cerebral acetylcholinesterase activity without arterial blood sampling. J. Cereb. Blood Flow Metab. 2001, 21, 1354–1366. [Google Scholar] [CrossRef]
- Halliday, G.M. Thalamic changes in Parkinson’s disease. Park. Relat. Disord. 2009, 15 (Suppl. S3), S152–S155. [Google Scholar] [CrossRef]
- Nambu, A. A new dynamic model of the cortico-basal ganglia loop. Prog. Brain Res. 2004, 143, 461–466. [Google Scholar] [CrossRef]
- Takakusaki, K.; Habaguchi, T.; Ohtinata-Sugimoto, J.; Saitoh, K.; Sakamoto, T. Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: A new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 2003, 119, 293–308. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.J.; Barker, R.A. A pathophysiological model of freezing of gait in Parkinson’s disease. Park. Relat. Disord. 2009, 15, 333–338. [Google Scholar] [CrossRef]
- Lewis, S.J.; Shine, J.M. The Next Step: A Common Neural Mechanism for Freezing of Gait. Neuroscientist 2016, 22, 72–82. [Google Scholar] [CrossRef]
- O’Gorman Tuura, R.L.; Baumann, C.R.; Baumann-Vogel, H. Beyond Dopamine: GABA, Glutamate, and the Axial Symptoms of Parkinson Disease. Front. Neurol. 2018, 9, 806. [Google Scholar] [CrossRef]
- Emmanouilidou, E.; Minakaki, G.; Keramioti, M.V.; Xylaki, M.; Balafas, E.; Chrysanthou-Piterou, M.; Kloukina, I.; Vekrellis, K. GABA transmission via ATP-dependent K+ channels regulates alpha-synuclein secretion in mouse striatum. Brain 2016, 139, 871–890. [Google Scholar] [CrossRef] [PubMed]
- Bohnen, N.I.; Kanel, P.; Zhou, Z.; Koeppe, R.A.; Frey, K.A.; Dauer, W.T.; Albin, R.L.; Müller, M.L. Cholinergic system changes of falls and freezing of gait in Parkinson’s disease. Ann. Neurol. 2019, 85, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Bohnen, N.I.; Muller, M.L.; Koeppe, R.A.; Studenski, S.A.; Kilbourn, M.A.; Frey, K.A.; Albin, R.L. History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology 2009, 73, 1670–1676. [Google Scholar] [CrossRef]
- Chung, K.A.; Lobb, B.M.; Nutt, J.G.; Horak, F.B. Effects of a central cholinesterase inhibitor on reducing falls in Parkinson disease. Neurology 2010, 75, 1263–1269. [Google Scholar] [CrossRef]
- Henderson, E.J.; Lord, S.R.; Brodie, M.A.; Gaunt, D.M.; Lawrence, A.D.; Close, J.C.; Whone, A.L.; Ben-Shlomo, Y. Rivastigmine for gait stability in patients with Parkinson’s disease (ReSPonD): A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 2016, 15, 249–258. [Google Scholar] [CrossRef]
- Bohnen, N.I.; Cham, R. Postural control, gait, and dopamine functions in parkinsonian movement disorders. Clin. Geriatr. Med. 2006, 22, 797–812. [Google Scholar] [CrossRef]
- Tritsch, N.X.; Ding, J.B.; Sabatini, B.L. Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature 2012, 490, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Tritsch, N.X.; Oh, W.J.; Gu, C.; Sabatini, B.L. Midbrain dopamine neurons sustain inhibitory transmission using plasma membrane uptake of GABA, not synthesis. Elife 2014, 3, e01936. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.Y.; Nam, M.H.; Yoon, H.H.; Kim, J.; Hwang, Y.J.; Won, W.; Woo, D.H.; Lee, J.A.; Park, H.J.; Jo, S.; et al. Aberrant Tonic Inhibition of Dopaminergic Neuronal Activity Causes Motor Symptoms in Animal Models of Parkinson’s Disease. Curr. Biol. 2020, 30, 276–291.e279. [Google Scholar] [CrossRef] [PubMed]
- Ihara, M.; Tomimoto, H.; Ishizu, K.; Yoshida, H.; Sawamoto, N.; Hashikawa, K.; Fukuyama, H. Association of vascular parkinsonism with impaired neuronal integrity in the striatum. J. Neural Transm. 2007, 114, 577–584. [Google Scholar] [CrossRef]
- Gerschlager, W.; Bencsits, G.; Pirker, W.; Bloem, B.R.; Asenbaum, S.; Prayer, D.; Zijlmans, J.C.; Hoffmann, M.; Brucke, T. [123I]beta-CIT SPECT distinguishes vascular parkinsonism from Parkinson’s disease. Mov. Disord. 2002, 17, 518–523. [Google Scholar] [CrossRef]
- Zampogna, A.; Cavallieri, F.; Bove, F.; Suppa, A.; Castrioto, A.; Meoni, S.; Pélissier, P.; Schmitt, E.; Bichon, A.; Lhommée, E.; et al. Axial impairment and falls in Parkinson’s disease: 15 years of subthalamic deep brain stimulation. NPJ Park. Dis. 2022, 8, 121. [Google Scholar] [CrossRef]
- Haefely, W.; Hunkeler, W. The story of flumazenil. Eur. J. Anaesthesiol. Suppl. 1988, 2, 3–13. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bohnen, N.I.; Barr, J.; Vangel, R.; Roytman, S.; Paalanen, R.; Frey, K.A.; Scott, P.J.H.; Kanel, P. GABAA Receptor Benzodiazepine Binding Sites and Motor Impairments in Parkinson’s Disease. Brain Sci. 2023, 13, 1711. https://doi.org/10.3390/brainsci13121711
Bohnen NI, Barr J, Vangel R, Roytman S, Paalanen R, Frey KA, Scott PJH, Kanel P. GABAA Receptor Benzodiazepine Binding Sites and Motor Impairments in Parkinson’s Disease. Brain Sciences. 2023; 13(12):1711. https://doi.org/10.3390/brainsci13121711
Chicago/Turabian StyleBohnen, Nicolaas I., Jaimie Barr, Robert Vangel, Stiven Roytman, Rebecca Paalanen, Kirk A. Frey, Peter J. H. Scott, and Prabesh Kanel. 2023. "GABAA Receptor Benzodiazepine Binding Sites and Motor Impairments in Parkinson’s Disease" Brain Sciences 13, no. 12: 1711. https://doi.org/10.3390/brainsci13121711
APA StyleBohnen, N. I., Barr, J., Vangel, R., Roytman, S., Paalanen, R., Frey, K. A., Scott, P. J. H., & Kanel, P. (2023). GABAA Receptor Benzodiazepine Binding Sites and Motor Impairments in Parkinson’s Disease. Brain Sciences, 13(12), 1711. https://doi.org/10.3390/brainsci13121711