Auditory Steady-State Responses in Schizophrenia: An Updated Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Study Selection
2.3. Data Extraction
2.4. Statistical Analysis
3. Results
3.1. Sample
3.2. Differences in ASSRs between Groups
3.2.1. Gamma Oscillations at 40 Hz
3.2.2. Gamma Oscillations at 30 Hz
3.2.3. Beta Oscillations at 20 Hz
3.3. Sub-Analyses
3.4. Meta-Regression Analyses
4. Discussion
4.1. ASSRs in Different Clinical Stages of Schizophrenia
4.2. Sub-Analyses
4.3. Meta-Regression Analysis
4.4. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Waters, F.; Collerton, D.; Ffytche, D.H.; Jardri, R.; Pins, D.; Dudley, R.; Blom, J.D.; Mosimann, U.P.; Eperjesi, F.; Ford, S.; et al. Visual Hallucinations in the Psychosis Spectrum and Comparative Information From Neurodegenerative Disorders and Eye Disease. Schizophr. Bull. 2014, 40 (Suppl. 4), S233–S245. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ouyang, P.; Zheng, Y.; Mi, L.; Zhao, J.; Ning, Y.; Guo, W. A Selective Review of the Excitatory-Inhibitory Imbalance in Schizophrenia: Underlying Biology, Genetics, Microcircuits, and Symptoms. Front. Cell Dev. Biol. 2021, 9, 664535. [Google Scholar] [CrossRef] [PubMed]
- Carlén, M.; Meletis, K.; Siegle, J.H.; Cardin, J.A.; Futai, K.; Vierling-Claassen, D.; Rühlmann, C.; Jones, S.R.; Deisseroth, K.; Sheng, M.; et al. A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Mol. Psychiatry 2012, 17, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Nakao, K.; Nakazawa, K. Brain state-dependent abnormal LFP activity in the auditory cortex of a schizophrenia mouse model. Front. Neurosci. 2014, 8, 168. [Google Scholar] [CrossRef] [PubMed]
- Bora, E.; Yücel, M.; Pantelis, C. Cognitive impairment in schizophrenia and affective psychoses: Implications for DSM-V criteria and beyond. Schizophr. Bull. 2010, 36, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Bosman, C.A.; Lansink, C.S.; Pennartz, C.M. Functions of gamma-band synchronization in cognition: From single circuits to functional diversity across cortical and subcortical systems. Eur. J. Neurosci. 2014, 39, 1982–1999. [Google Scholar] [CrossRef] [PubMed]
- Picton, T.W.; John, M.S.; Dimitrijevic, A.; Purcell, D. Human auditory steady-state responses. Int. J. Audiol. 2003, 42, 177–219. [Google Scholar] [CrossRef]
- Legget, K.T.; Hild, A.K.; Steinmetz, S.E.; Simon, S.T.; Rojas, D.C. MEG and EEG demonstrate similar test-retest reliability of the 40 Hz auditory steady-state response. Int. J. Psychophysiol. 2017, 114, 16–23. [Google Scholar] [CrossRef]
- Gutschalk, A.; Mase, R.; Roth, R.; Ille, N.; Rupp, A.; Hähnel, S.; Picton, T.W.; Scherg, M. Deconvolution of 40 Hz steady-state fields reveals two overlapping source activities of the human auditory cortex. Clin. Neurophysiol. 1999, 110, 856–868. [Google Scholar] [CrossRef]
- Herdman, A.T.; Lins, O.; Van Roon, P.; Stapells, D.R.; Scherg, M.; Picton, T.W. Intracerebral sources of human auditory steady-state responses. Brain Topogr. 2002, 15, 69–86. [Google Scholar] [CrossRef]
- Pantev, C.; Roberts, L.E.; Elbert, T.; Ross, B.; Wienbruch, C. Tonotopic organization of the sources of human auditory steady-state responses. Hear. Res. 1996, 101, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Reyes, S.A.; Lockwood, A.H.; Salvi, R.J.; Coad, M.L.; Wack, D.S.; Burkard, R.F. Mapping the 40-Hz auditory steady-state response using current density reconstructions. Hear. Res. 2005, 204, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Steinmann, I.; Gutschalk, A. Potential fMRI correlates of 40-Hz phase locking in primary auditory cortex, thalamus and midbrain. Neuroimage 2011, 54, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Onitsuka, T.; Tsuchimoto, R.; Oribe, N.; Spencer, K.M.; Hirano, Y. Neuronal imbalance of excitation and inhibition in schizophrenia: A scoping review of gamma-band ASSR findings. Psychiatry Clin. Neurosci. 2022, 76, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Tada, M.; Kirihara, K.; Koshiyama, D.; Fujioka, M.; Usui, K.; Uka, T.; Komatsu, M.; Kunii, N.; Araki, T.; Kasai, K. Gamma-Band Auditory Steady-State Response as a Neurophysiological Marker for Excitation and Inhibition Balance: A Review for Understanding Schizophrenia and Other Neuropsychiatric Disorders. Clin. EEG Neurosci. 2020, 51, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Thuné, H.; Recasens, M.; Uhlhaas, P.J. The 40-Hz Auditory Steady-State Response in Patients With Schizophrenia: A Meta-analysis. JAMA Psychiatry 2016, 73, 1145–1153. [Google Scholar] [CrossRef] [PubMed]
- Cannon, T.D. Brain Biomarkers of Vulnerability and Progression to Psychosis. Schizophr. Bull. 2015, 42 (Suppl. S1), S127–S132. [Google Scholar] [CrossRef]
- McGorry, P.; Keshavan, M.; Goldstone, S.; Amminger, P.; Allott, K.; Berk, M.; Lavoie, S.; Pantelis, C.; Yung, A.; Wood, S.; et al. Biomarkers and clinical staging in psychiatry. World Psychiatry 2014, 13, 211–223. [Google Scholar] [CrossRef]
- Edgar, J.C.; Fisk, C.I.; Chen, Y.H.; Stone-Howell, B.; Hunter, M.A.; Huang, M.; Bustillo, J.R.; Cañive, J.M.; Miller, G.A. By our bootstraps: Comparing methods for measuring auditory 40 Hz steady-state neural activity. Psychophysiology 2017, 54, 1110–1127. [Google Scholar] [CrossRef]
- Hamm, J.P.; Bobilev, A.M.; Hayrynen, L.K.; Hudgens-Haney, M.E.; Oliver, W.T.; Parker, D.A.; McDowell, J.E.; Buckley, P.A.; Clementz, B.A. Stimulus train duration but not attention moderates gamma-band entrainment abnormalities in schizophrenia. Schizophr. Res. 2015, 165, 97–102. [Google Scholar] [CrossRef]
- Javitt, D.C. When doors of perception close: Bottom-up models of disrupted cognition in schizophrenia. Annu. Rev. Clin. Psychol. 2009, 5, 249–275. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Borenstein, M.; Rothstein, H. Comprehensive Meta-Analysis; Biostat: Addison, TX, USA, 1999. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Paulson, J.F.; Bazemore, S.D. Prenatal and postpartum depression in fathers and its association with maternal depression: A meta-analysis. JAMA 2010, 303, 1961–1969. [Google Scholar] [CrossRef] [PubMed]
- Lipsey, M.W.; Wilson, D.B. Practical Meta-Analysis; Sage Publications, Inc.: Thousand Oaks, CA, USA, 2001. [Google Scholar]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef]
- Tada, M.; Nagai, T.; Kirihara, K.; Koike, S.; Suga, M.; Araki, T.; Kobayashi, T.; Kasai, K. Differential Alterations of Auditory Gamma Oscillatory Responses Between Pre-Onset High-Risk Individuals and First-Episode Schizophrenia. Cereb. Cortex 2016, 26, 1027–1035. [Google Scholar] [CrossRef]
- Koshiyama, D.; Kirihara, K.; Tada, M.; Nagai, T.; Fujioka, M.; Ichikawa, E.; Ohta, K.; Tani, M.; Tsuchiya, M.; Kanehara, A.; et al. Auditory gamma oscillations predict global symptomatic outcome in the early stages of psychosis: A longitudinal investigation. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2018, 129, 2268–2275. [Google Scholar] [CrossRef]
- Kwon, J.S.; O’Donnell, B.F.; Wallenstein, G.V.; Greene, R.W.; Hirayasu, Y.; Nestor, P.G.; Hasselmo, M.E.; Potts, G.F.; Shenton, M.E.; McCarley, R.W. Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. Arch. Gen. Psychiatry 1999, 56, 1001–1005. [Google Scholar] [CrossRef]
- Hong, L.E.; Summerfelt, A.; McMahon, R.; Adami, H.; Francis, G.; Elliott, A.; Buchanan, R.W.; Thaker, G.K. Evoked gamma band synchronization and the liability for schizophrenia. Schizophr. Res. 2004, 70, 293–302. [Google Scholar] [CrossRef]
- Spencer, K.M.; Salisbury, D.F.; Shenton, M.E.; McCarley, R.W. gamma-band auditory steady-state responses are impaired in first episode psychosis. Biol. Psychiatry 2008, 64, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Vierling-Claassen, D.; Siekmeier, P.; Stufflebeam, S.; Kopell, N. Modeling GABA alterations in schizophrenia: A link between impaired inhibition and altered gamma and beta range auditory entrainment. J. Neurophysiol. 2008, 99, 2656–2671. [Google Scholar] [CrossRef] [PubMed]
- Teale, P.; Collins, D.; Maharajh, K.; Rojas, D.C.; Kronberg, E.; Reite, M. Cortical source estimates of gamma band amplitude and phase are different in schizophrenia. Neuroimage 2008, 42, 1481–1489. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.W.; Hernandez, O.O.; Asherin, R.M.; Teale, P.D.; Reite, M.L.; Rojas, D.C. Cortical gamma generators suggest abnormal auditory circuitry in early-onset psychosis. Cereb. Cortex 2008, 18, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Spencer, K.M.; Niznikiewicz, M.A.; Nestor, P.G.; Shenton, M.E.; McCarley, R.W. Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia. BMC Neurosci. 2009, 10, 85. [Google Scholar] [CrossRef]
- Hamm, J.P.; Gilmore, C.S.; Picchetti, N.A.M.; Sponheim, S.R.; Clementz, B.A. Abnormalities of Neuronal Oscillations and Temporal Integration to Low- and High-Frequency Auditory Stimulation in Schizophrenia. Biol. Psychiatry 2011, 69, 989–996. [Google Scholar] [CrossRef]
- Tsuchimoto, R.; Kanba, S.; Hirano, S.; Oribe, N.; Ueno, T.; Hirano, Y.; Nakamura, I.; Oda, Y.; Miura, T.; Onitsuka, T. Reduced high and low frequency gamma synchronization in patients with chronic schizophrenia. Schizophr. Res. 2011, 133, 99–105. [Google Scholar] [CrossRef]
- Hamm, J.P.; Gilmore, C.S.; Clementz, B.A. Augmented gamma band auditory steady-state responses: Support for NMDA hypofunction in schizophrenia. Schizophr. Res. 2012, 138, 1–7. [Google Scholar] [CrossRef]
- Komek, K.; Ermentrout, G.B.; Walker, C.P.; Cho, R.Y. Dopamine and gamma band synchrony in schizophrenia—Insights from computational and empirical studies. Eur. J. Neurosci. 2012, 36, 2146–2155. [Google Scholar] [CrossRef]
- Rass, O.; Forsyth, J.K.; Krishnan, G.P.; Hetrick, W.P.; Klaunig, M.J.; Breier, A.; O’Donnell, B.F.; Brenner, C.A. Auditory steady state response in the schizophrenia, first-degree relatives, and schizotypal personality disorder. Schizophr. Res. 2012, 136, 143–149. [Google Scholar] [CrossRef]
- Kirihara, K.; Rissling, A.J.; Swerdlow, N.R.; Braff, D.L.; Light, G.A. Hierarchical Organization of Gamma and Theta Oscillatory Dynamics in Schizophrenia. Biol. Psychiatry 2012, 71, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Roach, B.J.; Ford, J.M.; Hoffman, R.E.; Mathalon, D.H. Converging evidence for gamma synchrony deficits in schizophrenia. Suppl. Clin. Neurophysiol. 2013, 62, 163–180. [Google Scholar] [PubMed]
- Edgar, J.C.; Chen, Y.H.; Lanza, M.; Howell, B.; Chow, V.Y.; Heiken, K.; Liu, S.; Wootton, C.; Hunter, M.A.; Huang, M.X.; et al. Cortical thickness as a contributor to abnormal oscillations in schizophrenia? NeuroImage-Clin. 2014, 4, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Hirano, Y. Spontaneous Gamma Activity in Schizophrenia. JAMA Psychiatry 2015, 72, 297. [Google Scholar] [CrossRef] [PubMed]
- Griskova-Bulanova, I.; Hubl, D.; van Swam, C.; Dierks, T.; Koenig, T. Early- and late-latency gamma auditory steady-state response in schizophrenia during closed eyes: Does hallucination status matter? Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2016, 127, 2214–2221. [Google Scholar] [CrossRef]
- Alegre, M.; Molero, P.; Valencia, M.; Mayner, G.; Ortuño, F.; Artieda, J. Atypical antipsychotics normalize low-gamma evoked oscillations in patients with schizophrenia. Psychiatry Res. 2017, 247, 214–221. [Google Scholar] [CrossRef]
- Light, G.A.; Zhang, W.; Joshi, Y.B.; Bhakta, S.; Talledo, J.A.; Swerdlow, N.R. Single-Dose Memantine Improves Cortical Oscillatory Response Dynamics in Patients with Schizophrenia. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2017, 42, 2633–2639. [Google Scholar] [CrossRef]
- Edgar, J.C.; Fisk, C.L.; Chen, Y.H.; Stone-Howell, B.; Liu, S.; Hunter, M.A.; Huang, M.; Bustillo, J.; Canive, J.M.; Miller, G.A. Identifying auditory cortex encoding abnormalities in schizophrenia: The utility of low-frequency versus 40 Hz steady-state measures. Psychophysiology 2018, 55, e13074. [Google Scholar] [CrossRef]
- Griskova-Bulanova, I.; Dapsys, K.; Melynyte, S.; Voicikas, A.; Maciulis, V.; Andruskevicius, S.; Korostenskaja, M. 40 Hz auditory steady-state response in schizophrenia: Sensitivity to stimulation type (clicks versus flutter amplitude-modulated tones). Neurosci. Lett. 2018, 662, 152–157. [Google Scholar] [CrossRef]
- Puvvada, K.C.; Summerfelt, A.; Du, X.; Krishna, N.; Kochunov, P.; Rowland, L.M.; Simon, J.Z.; Hong, L.E. Delta vs. Gamma Auditory Steady State Synchrony in Schizophrenia. Schizophr. Bull. 2018, 44, 378–387. [Google Scholar] [CrossRef]
- Sun, C.; Zhou, P.; Wang, C.; Fan, Y.; Tian, Q.; Dong, F.; Zhou, F.; Wang, C. Defects of Gamma Oscillations in Auditory Steady-State Evoked Potential of Schizophrenia. Shanghai Arch. Psychiatry 2018, 30, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tang, Y.; Curtin, A.; Chan, R.C.K.; Wang, Y.; Li, H.; Zhang, T.; Qian, Z.; Guo, Q.; Li, Y.; et al. Abnormal auditory-evoked gamma band oscillations in first-episode schizophrenia during both eye open and eye close states. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 86, 279–286. [Google Scholar] [CrossRef]
- Zhou, T.-H.; Mueller, N.E.; Spencer, K.M.; Mallya, S.G.; Lewandowski, K.E.; Norris, L.A.; Levy, D.L.; Cohen, B.M.; Öngür, D.; Hall, M.-H. Auditory steady state response deficits are associated with symptom severity and poor functioning in patients with psychotic disorder. Schizophr. Res. 2018, 201, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Bartolomeo, L.A.; Wright, A.M.; Ma, R.E.; Hummer, T.A.; Francis, M.M.; Visco, A.C.; Mehdiyoun, N.F.; Bolbecker, A.R.; Hetrick, W.P.; Dydak, U.; et al. Relationship of auditory electrophysiological responses to magnetic resonance spectroscopy metabolites in Early Phase Psychosis. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 2019, 145, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Jang, S.-K.; Kim, D.-W.; Shim, M.; Kim, Y.-W.; Im, C.-H.; Lee, S.-H. Cortical volume and 40-Hz auditory-steady-state responses in patients with schizophrenia and healthy controls. NeuroImage Clin. 2019, 22, 101732. [Google Scholar] [CrossRef] [PubMed]
- Parker, D.A.; Hamm, J.P.; McDowell, J.E.; Keedy, S.K.; Gershon, E.S.; Ivleva, E.I.; Pearlson, G.D.; Keshavan, M.S.; Tamminga, C.A.; Sweeney, J.A.; et al. Auditory steady-state EEG response across the schizo-bipolar spectrum. Schizophr. Res. 2019, 209, 218–226. [Google Scholar] [CrossRef]
- Lepock, J.R.; Ahmed, S.; Mizrahi, R.; Gerritsen, C.J.; Maheandiran, M.; Drvaric, L.; Bagby, R.M.; Korostil, M.; Light, G.A.; Kiang, M. Relationships between cognitive event-related brain potential measures in patients at clinical high risk for psychosis. Schizophr. Res. 2020, 226, 84–94. [Google Scholar] [CrossRef]
- Murphy, N.; Ramakrishnan, N.; Walker, C.P.; Polizzotto, N.R.; Cho, R. Intact Auditory Cortical Cross-Frequency Coupling in Early and Chronic Schizophrenia. Biol. Psychiatry 2020, 87 (Suppl. S9), S188. [Google Scholar] [CrossRef]
- Grent-’t-Jong, T.; Gajwani, R.; Gross, J.; Gumley, A.I.; Krishnadas, R.; Lawrie, S.M.; Schwannauer, M.; Schultze-Lutter, F.; Uhlhaas, P.J. 40-Hz Auditory Steady-State Responses Characterize Circuit Dysfunctions and Predict Clinical Outcomes in Clinical High-Risk for Psychosis Participants: A Magnetoencephalography Study. Biol. Psychiatry 2021, 90, 419–429. [Google Scholar] [CrossRef]
- Koshiyama, D.; Thomas, M.L.; Miyakoshi, M.; Joshi, Y.B.; Molina, J.L.; Tanaka-Koshiyama, K.; Sprock, J.; Braff, D.L.; Swerdlow, N.R.; Light, G.A. Hierarchical Pathways from Sensory Processing to Cognitive, Clinical, and Functional Impairments in Schizophrenia. Schizophr. Bull. 2020, 28, 373–385. [Google Scholar] [CrossRef]
- Coffman, B.A.; Ren, X.; Longenecker, J.; Torrence, N.; Fishel, V.; Seebold, D.; Wang, Y.; Curtis, M.; Salisbury, D.F. Aberrant attentional modulation of the auditory steady state response (ASSR) is related to auditory hallucination severity in the first-episode schizophrenia-spectrum. J. Psychiatr. Res. 2022, 151, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Hare, S.; Summerfelt, A.; Adhikari, B.M.; Garcia, L.; Marshall, W.; Zan, P.; Kvarta, M.; Goldwaser, E.; Bruce, H.; et al. Cortical connectomic mediations on gamma band synchronization in schizophrenia. Transl. Psychiatry 2023, 13, 13. [Google Scholar] [CrossRef] [PubMed]
- Ogyu, K.; Matsushita, K.; Honda, S.; Wada, M.; Tamura, S.; Takenouchi, K.; Tobari, Y.; Kusudo, K.; Kato, H.; Koizumi, T.; et al. Decrease in gamma-band auditory steady-state response in patients with treatment-resistant schizophrenia. Schizophr. Res. 2023, 252, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Nakahara, T.; Tsugawa, S.; Noda, Y.; Ueno, F.; Honda, S.; Kinjo, M.; Segawa, H.; Hondo, N.; Mori, Y.; Watanabe, H.; et al. Glutamatergic and GABAergic metabolite levels in schizophrenia-spectrum disorders: A meta-analysis of 1H-magnetic resonance spectroscopy studies. Mol. Psychiatry 2022, 27, 744–757. [Google Scholar] [CrossRef] [PubMed]
- Anticevic, A.; Corlett, P.R.; Cole, M.W.; Savic, A.; Gancsos, M.; Tang, Y.; Repovs, G.; Murray, J.D.; Driesen, N.R.; Morgan, P.T.; et al. N-Methyl-D-Aspartate Receptor Antagonist Effects on Prefrontal Cortical Connectivity Better Model Early Than Chronic Schizophrenia. Biol. Psychiatry 2015, 77, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Grent-’t-Jong, T.; Gross, J.; Goense, J.; Wibral, M.; Gajwani, R.; Gumley, A.I.; Lawrie, S.M.; Schwannauer, M.; Schultze-Lutter, F.; Navarro Schröder, T.; et al. Resting-state gamma-band power alterations in schizophrenia reveal E/I-balance abnormalities across illness-stages. eLife 2018, 7, e37799. [Google Scholar] [CrossRef] [PubMed]
- Farahani, E.D.; Goossens, T.; Wouters, J.; van Wieringen, A. Spatiotemporal reconstruction of auditory steady-state responses to acoustic amplitude modulations: Potential sources beyond the auditory pathway. NeuroImage 2017, 148, 240–253. [Google Scholar] [CrossRef]
- Tada, M.; Kirihara, K.; Ishishita, Y.; Takasago, M.; Kunii, N.; Uka, T.; Shimada, S.; Ibayashi, K.; Kawai, K.; Saito, N.; et al. Global and Parallel Cortical Processing Based on Auditory Gamma Oscillatory Responses in Humans. Cereb. Cortex 2021, 31, 4518–4532. [Google Scholar] [CrossRef]
- O’Donnell, B.F.; Vohs, J.L.; Krishnan, G.P.; Rass, O.; Hetrick, W.P.; Morzorati, S.L. The auditory steady-state response (ASSR): A translational biomarker for schizophrenia. Suppl. Clin. Neurophysiol. 2013, 62, 101–112. [Google Scholar] [CrossRef]
- Harvey, P.D.; Rosenthal, J.B. Cognitive and functional deficits in people with schizophrenia: Evidence for accelerated or exaggerated aging? Schizophr. Res. 2018, 196, 14–21. [Google Scholar] [CrossRef]
Authors | Image Analysis Level | Stimulus Type | Stimulus Duration * | Attention Load | Analyzed Frequencies (in Hz) | Power Results | Phase Results |
---|---|---|---|---|---|---|---|
Kwon et al., 1999 [32] | Sensor | Click | Brief | Passive | 20, 30, 40 | Yes | Yes |
Hong et al., 2004 [33] | Sensor | Click | Brief | Passive | 20, 30, 40 | Yes | |
Spencer et al., 2008 [34] | Sensor | Click | Brief | Passive | 20, 30, 40 | Yes | Yes |
Vierling-claasen et al., 2008 [35] | Source | Click | Brief | 20, 30, 40 | Yes | ||
Teale et al., 2008 [36] | Source | Amplitude | Brief | Distraction | 40 | Yes | |
Wilson et al., 2008 [37] | Source | Click | Brief | Distraction | 20, 30, 40 | Yes | |
Spencer et al., 2009 [38] | Source and Sensor | Click | Brief | Passive | 40 | Yes | Yes |
Hamm et al., 2011 [39] | Source | Amplitude | Long | Active | 5, 20, 40, 80, 160 | Yes | |
Tsuchimoto et al., 2011 [40] | Sensor | Click | Brief | Passive | 20, 30, 40, 80 | Yes | Yes |
Hamm et al., 2012 [41] | Sensor | Amplitude | Long | Passive | 16 to 44 | Yes | Yes |
Kömek et al., 2012 [42] | Sensor | Click | Brief | Active | 20, 30, 40 | Yes | |
Rass et al., 2012 [43] | Sensor | Click | Brief | Passive | 20, 30, 40, 50 | Yes | Yes |
Kirihara et al., 2012 [44] | Sensor | Click | Brief | Passive | 20, 30, 40 | Yes | |
Roach et al., 2013 [45] | Sensor | Click | Brief | Passive | 20, 30, 40 | Yes | |
Edgar et al., 2014 [46] | Source | Amplitude | Long | 4–12, 40 | Yes | ||
Hirano et al., 2015 [47] | Source | Click | Brief | Passive | 20, 30, 40 | Yes | Yes |
Hamm et al., 2015 [20] | Sensor | Amplitude | Brief and long | Active and passive | 40 | Yes | |
Griskova-Bulanova, 2016 [48] | Sensor | Click | Brief | Passive | 40 | Yes | |
Alegre, 2017 [49] | Sensor | Chirps | Long | Passive | 40, 100 | Yes | Yes |
Light, 2017 [50] | Sensor | Click | Brief | Passive | 40 | Yes | Yes |
Edgar, 2018 [51] | Source and sensor | Amplitude | Long | 4–16, 40 | Yes | Yes | |
Griskova-Bulanova, 2018 [52] | Sensor | Click and amplitude | Brief | Distraction | 40 | Yes | Yes |
Koshiyama, 2018 [31] | Sensor | Click | Brief | Passive | 40 | Yes | Yes |
Puvvada, 2018 [53] | Sensor | Click | Passive | 2.5, 5, 10, 20, 40, 80 | Yes | Yes | |
Sun, 2018 [54] | Sensor | Click | Brief | Passive | 20, 40 | Yes | Yes |
Wang, 2018 [55] | Sensor | Click | Brief | Passive | 40 | Yes | Yes |
Zhou, 2018 [56] | Sensor | Click | Brief | Passive | 20, 30, 40 | Yes | Yes |
Bartolomeo, 2019 [57] | Sensor | Click | Brief | Passive | 40 | Yes | |
Kim, 2019 [58] | Source and sensor | Click | Brief | Passive | 40 | Yes | Yes |
Parker, 2019 [59] | Sensor | Amplitude | Long | Active | 20, 40, 80 | Yes | Yes |
Lepock, 2020 [60] | Sensor | Click | Brief | Passive | 40 | Yes | Yes |
Murphy, 2020 [61] | Source | Click | Long | Active | 20, 30, 40 | Yes | Yes |
Grent-’t-Jong, 2021 [62] | Source | Amplitude | Long | Active | 40 | Yes | Yes |
Koshiyama, 2021 [63] | Sensor | Click | Brief | 40 | Yes | Yes | |
Coffman, 2022 [64] | Sensor | Click | Brief | Active and Distraction | 40 | Yes | Yes |
Du, 2023 [65] | Source | Click | Brief | Passive | 40 | Yes | |
Ogyu, 2023 [66] | Sensor | Click | 600 ms | Passive | 40 | Yes | Yes |
Study Arms | Cohen’s d | p-Value | 95% Confidence Interval | Q-Test | I2 | ||
---|---|---|---|---|---|---|---|
40 Hz | |||||||
Schizophrenia | Power | 28 | 0.538 | 0.0001 | (0.391 to 0.684) | Q = 66.6; p = 0.0001 | 59.5% |
Schizophrenia | Phase | 23 | 0.581 | 0.0001 | (0.432 to 0.730) | Q = 55.7; p = 0.0001 | 60.5% |
First episode | Power | 8 | 0.705 | 0.0001 | (0.387 to 1.023) | Q = 14.6; p = 0.041 | 52.2% |
First episode | Phase | 4 | 0.919 | 0.0001 | (0.584 to 1.253) | Q = 3.7; p = 0.300 | 18.2% |
At risk | Power | 6 | 0.243 | 0.123 | (−0.066 to 0.552) | Q = 13.9; p = 0.016 | 64.0% |
At risk | Phase | 4 | 0.360 | 0.003 | (0.124 to 0.596) | Q = 4.0; p = 0.262 | 24.9% |
40 Hz with imputed non-significant results | |||||||
Schizophrenia | Power | 30 | 0.515 | 0.0001 | (0.378 to 0.652) | Q = 67.8; p = 0.0001 | 57.2% |
Schizophrenia | Phase | 30 | 0.503 | 0.0001 | (0.383 to 0.504) | Q = 58.6; p = 0.001 | 50.5% |
30 Hz | |||||||
Schizophrenia | Power | 7 | 0.295 | 0.018 | (0.051 to 0.538) | Q = 6.8; p = 0.341 | 11.6% |
Schizophrenia | Phase | 5 | 0.372 | 0.001 | (0.145 to 0.598) | Q = 1.5; p = 0.833 | 0% |
20 Hz | |||||||
Schizophrenia | Power | 11 | 0.085 | 0.380 | (−0.104 to 0.274) | Q = 16.1; p = 0.098 | 37.8% |
Schizophrenia | Phase | 9 | 0.083 | 0.221 | (−0.050 to 0.216) | Q = 6.7; p = 0.568 | 0% |
Variable | Study Arms | Cohen’s d | p-Value | 95% Confidence Interval | Q-Test | I2 | |
---|---|---|---|---|---|---|---|
Power | |||||||
Analysis | Sensor | 21 | 0.488 | 0.0001 | (0.319 to 0.658) | Q = 55.8; p = 0.0001 | 64.2% |
Source | 6 | 0.712 | 0.0001 | (0.393 to 1.031) | Q = 8.1; p = 0.151 | 38.2% | |
Stimuli | Amplitude | 4 | 0.319 | 0.202 | (−0.172 to 0.810) | Q = 12.3; p = 0.006 | 75.7% |
Click | 22 | 0.550 | 0.0001 | (0.388 to 0.713) | Q = 49.8; p = 0.0001 | 57.9% | |
Duration | Brief | 20 | 0.542 | 0.0001 | (0.340 to 0.744) | Q = 59.1; p = 0.0001 | 67.8% |
Long | 6 | 0.394 | 0.030 | (0.037 to 0.752) | Q = 12.0; p = 0.034 | 58.4% | |
Attention | Active | 5 | 0.483 | 0.0001 | (0.285 to 0.680) | Q = 3.2; p = 0.522 | 0% |
Distraction | 2 | 1.097 | 0.0001 | (0.576 to 1.618) | Q = 0.5; p = 0.492 | 0% | |
Passive | 18 | 0.451 | 0.0001 | (0.248 to 0.655) | Q = 48.1; p = 0.0001 | 64.6% | |
Phase | |||||||
Analysis | Sensor | 19 | 0.553 | 0.0001 | (0.389 to 0.716) | Q = 51.1; p = 0.0001 | 64.8% |
Source | 3 | 0.746 | 0.0001 | (0.409 to 1.083) | Q = 0.4; p = 0.808 | 0% | |
Stimuli | Amplitude | 3 | 0.518 | 0.0001 | (0.235 to 0.800) | Q = 2.6; p = 0.271 | 23.4% |
Click | 18 | 0.564 | 0.0001 | (0.389 to 0.740) | Q = 49.3; p = 0.0001 | 65.5% | |
Duration | Brief | 18 | 0.655 | 0.0001 | (0.463 to 0.847) | Q = 51.0; p = 0.0001 | 66.7% |
Long | 3 | 0.459 | 0.0001 | (0.243 to 0.676) | Q = 1.8; p = 0.398 | 0% | |
Attention | Active | 1 | 0.375 | 0.003 | (0.124 to 0.626) | --- | --- |
Distraction | 2 | 0.969 | 0.0001 | (0.491 to 1.446) | Q = 0.004; p = 0.949 | 0% | |
Passive | 18 | 0.606 | 0.0001 | (0.407 to 0.805) | Q = 48.5; p = 0.0001 | 65.0% |
Predictor | Study Arms | Slope | 95% CI | p-Value |
---|---|---|---|---|
Power component of ASSRs | ||||
Age | 28 | −0.016 | (−0.035 to 0.004) | 0.114 |
Sex ratio | 27 | 0.005 | (−0.003 to 0.012) | 0.200 |
Positive symptoms | 18 | 0.010 | (−0.055 to 0.076) | 0.760 |
Negative symptoms | 18 | 0.019 | (−0.026 to 0.065) | 0.409 |
Chlorpromazine equivalents | 19 | 0.0004 | (−0.0008 to 0.002) | 0.485 |
Phase component of ASSRs | ||||
Age | 23 | −0.031 | (−0.052 to −0.008) | 0.008 |
Sex ratio | 22 | −0.023 | (−0.048 to 0.003) | 0.082 |
Positive symptoms | 18 | 0.049 | (−0.011 to 0.110) | 0.108 |
Negative symptoms | 18 | 0.036 | (−0.015 to 0.086) | 0.170 |
Chlorpromazine equivalents | 18 | −0.0003 | (−0.002 to 0.001) | 0.635 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zouaoui, I.; Dumais, A.; Lavoie, M.E.; Potvin, S. Auditory Steady-State Responses in Schizophrenia: An Updated Meta-Analysis. Brain Sci. 2023, 13, 1722. https://doi.org/10.3390/brainsci13121722
Zouaoui I, Dumais A, Lavoie ME, Potvin S. Auditory Steady-State Responses in Schizophrenia: An Updated Meta-Analysis. Brain Sciences. 2023; 13(12):1722. https://doi.org/10.3390/brainsci13121722
Chicago/Turabian StyleZouaoui, Inès, Alexandre Dumais, Marc E. Lavoie, and Stéphane Potvin. 2023. "Auditory Steady-State Responses in Schizophrenia: An Updated Meta-Analysis" Brain Sciences 13, no. 12: 1722. https://doi.org/10.3390/brainsci13121722
APA StyleZouaoui, I., Dumais, A., Lavoie, M. E., & Potvin, S. (2023). Auditory Steady-State Responses in Schizophrenia: An Updated Meta-Analysis. Brain Sciences, 13(12), 1722. https://doi.org/10.3390/brainsci13121722