Machine Learning Enabled P300 Classifier for Autism Spectrum Disorder Using Adaptive Signal Decomposition
Abstract
:1. Introduction
1.1. Motivation
1.2. Novelty and Major Contributions
- It is the first study to evaluate the usefulness of the VMD method for classifying P300 and non-P300 signals in ASD subjects.
- The performance of three popular ML algorithms belonging to three different categories is evaluated, and a better-performing one is recommended for the proposed method.
- Mode-wise comparison is performed for the VMD-ASD application to select the best mode with optimal classification performance.
- Improved classification performance is achieved compared to existing state-of-the-art techniques reported in the literature.
2. Materials and Methods
2.1. BCIAUT-P300 Dataset for ASD
2.1.1. Participants of the Experiment
2.1.2. EEG Data Acquisition Process
2.1.3. Experimental Design and Stimulus Parameters
Calibration Phase
P300 Occurance
Online Phase
2.1.4. Data Pre-Processing
Filtering the EEG Signals
EEG Signal Data Manipulation for Classification
2.2. Proposed VMD-SVM Method
2.2.1. VMD Decomposition
- Initialize the values of {}, {},{}, and keep n = 0;
- Update the and as per (3) and (4);
- Update the dual ascent using:
- Iterate the steps (ii) and (iii) until convergence:
2.2.2. Feature Extraction
2.2.3. SMOTE Data Augmentation to Overcome Class Imbalance
2.2.4. Classification
2.2.5. Machine Learning Classifiers
Ensemble Bagged Tree (EBT) Classifier
- The training dataset D is divided into multiple sub-datasets … using random sampling with replacement.
- Build multiple decision tree classifiers … by training sub-datasets … respectively.
- Combine the resultant classifiers using the majority voting or averaging procedure to arrive at an ensemble classifier.
Support Vector Machine with Fine Gaussian Kernel Classifier
Artificial Neural Network Classifier
3. Results
3.1. Comparison of Classifier Performance over Different Modes
3.2. Comparison of Subject Wise Average Accuracy for Different Classifiers on Mode-5 Signal
3.3. Mode-Wise Comparison of Average of Performance Parameters (%) for the Classifiers on Each Mode
4. Discussion
5. Conclusions
Future Scope
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vahia, V.N. Diagnostic and statistical manual of mental disorders 5: A quick glance. Indian J. Psychiatry 2013, 55, 220–223. [Google Scholar] [CrossRef]
- World Health Organization. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders (accessed on 18 January 2023).
- Maenner, M.J.; Shaw, K.A.; Baio, J.; Wiggins, L.; Christensen, D.L.; Daniels, J.; Downling, N.F.; Warren, Z. Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2016. Mmwr Surveill. Summ. 2020, 69, 1. [Google Scholar] [CrossRef]
- Dawson, G.; Toth, K.; Abbott, R.; Osterling, J.; Munson, J.; Estes, A.; Liaw, J. Early social attention impairments in autism: Social orienting, joint attention, and attention to distress. Dev. Psychol. 2004, 40, 271. [Google Scholar] [CrossRef] [PubMed]
- Charman, T. Specifying the nature and course of the joint attention impairment in autism in the preschool years: Implications for diagnosis and intervention. Autism 1998, 2, 61–79. [Google Scholar] [CrossRef]
- Friedrich, E.V.; Suttie, N.; Sivanathan, A.; Lim, T.; Louchart, S.; Pineda, J.A. Brain–computer interface game applications for combined neurofeedback and biofeedback treatment for children on the autism spectrum. Front. Neuroeng. 2014, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Amaral, C.; Mouga, S.; Simões, M.; Pereira, H.C.; Bernardino, I.; Quental, H.; Playle, R.; McNamara, R.; Oliveira, G.; Castelo-Branco, M. A feasibility clinical trial to improve social attention in autistic spectrum disorder (ASD) using a brain–computer interface. Front. Neurosci. 2018, 12, 477. [Google Scholar] [CrossRef] [PubMed]
- Wolpaw, J.R.; Wolpaw, E.W. Brain–computer interfaces: Something new under the sun. Brain-Comput. Interfaces Princ. Pract. 2012, 14, 3–12. [Google Scholar]
- Li, Y.; Pan, J.; Wang, F.; Yu, Z. A hybrid BCI system combining P300 and SSVEP and its application to wheelchair control. IEEE Trans. Biomed. Eng. 2013, 60, 3156–3166. [Google Scholar] [PubMed]
- Liao, L.D.; Chen, C.Y.; Wang, I.J.; Chen, S.F.; Li, S.Y.; Chen, B.W.; Chang, J.Y.; Lin, C.T. Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors. J. Neuroeng. Rehabil. 2012, 9, 1–12. [Google Scholar] [CrossRef]
- Khan, M.A.; Das, R.; Iversen, H.K.; Puthusserypady, S. Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application. Comput. Biol. Med. 2020, 123, 103843. [Google Scholar] [CrossRef]
- Lee, M.H.; Williamson, J.; Won, D.O.; Fazli, S.; Lee, S.W. A high performance spelling system based on EEG-EOG signals with visual feedback. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1443–1459. [Google Scholar] [CrossRef] [PubMed]
- Pawuś, D.; Paszkiel, S. The application of integration of EEG signals for authorial classification algorithms in implementation for a mobile robot control using movement imagery—Pilot study. Appl. Sci. 2022, 12, 2161. [Google Scholar] [CrossRef]
- Hayta, Ü.; Irimia, D.C.; Guger, C.; Erkutlu, İ.; Güzelbey, İ.H. Optimizing Motor Imagery Parameters for Robotic Arm Control by Brain–Computer Interface. Brain Sci. 2022, 12, 833. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Zhang, Y.; Zheng, K. Motor imagery classification via kernel-based domain adaptation on an SPD manifold. Brain Sci. 2022, 12, 659. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Park, S.J. HealthSOS: Real-time health monitoring system for stroke prognostics. IEEE Access 2020, 8, 213574–213586. [Google Scholar] [CrossRef]
- Hussain, I.; Park, S.J. Quantitative evaluation of task-induced neurological outcome after stroke. Brain Sci. 2021, 11, 900. [Google Scholar] [CrossRef]
- Aydın, S.; Akın, B. Machine learning classification of maladaptive rumination and cognitive distraction in terms of frequency specific complexity. Biomed. Signal Process. Control. 2022, 77, 103740. [Google Scholar] [CrossRef]
- Kılıç, B.; Aydın, S. Classification of Contrasting Discrete Emotional States Indicated by EEG Based Graph Theoretical Network Measures. Neuroinformatics 2022, 20, 863–877. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Shang, J.; Liu, J.; Dai, L.; Yuan, S. Epileptic Seizure Detection Based on Variational Mode Decomposition and Deep Forest Using EEG Signals. Brain Sci. 2022, 12, 1275. [Google Scholar] [CrossRef]
- Polich, J.; Ellerson, P.C.; Cohen, J. P300, stimulus intensity, modality, and probability. Int. J. Psychophysiol. 1996, 23, 55–62. [Google Scholar] [CrossRef]
- Farwell, L.A.; Donchin, E. Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 1988, 70, 510–523. [Google Scholar] [CrossRef]
- Fazel-Rezai, R.; Allison, B.Z.; Guger, C.; Sellers, E.W.; Kleih, S.C.; Kübler, A. P300 brain computer interface: Current challenges and emerging trends. Front. Neuroeng. 2012, 5, 14. [Google Scholar] [CrossRef]
- Bostanov, V.; Kotchoubey, B. The t-CWT: A new ERP detection and quantification method based on the continuous wavelet transform and Student’s t-statistics. Clin. Neurophysiol. 2006, 117, 2627–2644. [Google Scholar] [CrossRef]
- Sorout, J.; Kacker, S.; Saboo, N.; Soni, H.; Buttar, K.K.; Reddy, S. P300 Wave Latency and Amplitude in Healthy Young Adults: A Normative Data. Neurol. India 2022, 70, 660. [Google Scholar]
- Cui, T.; Wang, P.P.; Liu, S.; Zhang, X. P300 amplitude and latency in autism spectrum disorder: A meta-analysis. Eur. Child Adolesc. Psychiatry 2017, 26, 177–190. [Google Scholar] [CrossRef]
- Tanu; Kakkar, D. Automatic detection of autism spectrum disorder by tracing the disorder co-morbidities. In Proceedings of the 2019 9th Annual Information Technology, Electromechanical Engineering and Microelectronics Conference (IEMECON), Jaipur, India, 13–15 March 2019; pp. 132–136. [Google Scholar]
- Zhao, H.; Yu, S.; Prinable, J.; McEwan, A.; Karlsson, P. A feasible classification algorithm for event-related potential (ERP) based brain-computer-interface (BCI) from IFMBE scientific challenge dataset. In Proceedings of the Mediterranean Conference on Medical and Biological Engineering and Computing, Coimbra, Portugal, 26–28 September 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1861–1868. [Google Scholar]
- Adama, V.S.; Schindler, B.; Schmid, T. Using time domain and pearson’s correlation to predict attention focus in autistic spectrum disorder from EEG P300 components. In Proceedings of the Mediterranean Conference on Medical and Biological Engineering and Computing, Coimbra, Portugal, 26–28 September 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1890–1893. [Google Scholar]
- Chatterjee, B.; Palaniappan, R.; Gupta, C.N. Performance evaluation of manifold algorithms on a P300 paradigm based online BCI dataset. In Proceedings of the Mediterranean Conference on Medical and Biological Engineering and Computing, Coimbra, Portugal, 26–28 September 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1894–1898. [Google Scholar]
- Miladinović, A.; Ajčević, M.; Battaglini, P.P.; Silveri, G.; Ciacchi, G.; Morra, G.; Jarmolowska, J.; Accardo, A. Slow cortical potential BCI classification using sparse variational bayesian logistic regression with automatic relevance determination. In Proceedings of the Mediterranean Conference on Medical and Biological Engineering and Computing, Coimbra, Portugal, 26–28 September 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1853–1860. [Google Scholar]
- Bittencourt-Villalpando, M.; Maurits, N.M. Linear SVM algorithm optimization for an EEG-based brain-computer interface used by high functioning autism spectrum disorder participants. In Proceedings of the Mediterranean Conference on Medical and Biological Engineering and Computing, Coimbra, Portugal, 26–28 September 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1875–1884. [Google Scholar]
- Arancibia, L.d.; Sánchez-González, P.; Gómez, E.J.; Hernando, M.E.; Oropesa, I. Linear vs nonlinear classification of social joint attention in autism using VR P300-based brain computer interfaces. In Proceedings of the Mediterranean Conference on Medical and Biological Engineering and Computing, Coimbra, Portugal, 26–28 September 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1869–1874. [Google Scholar]
- Santamaría-Vázquez, E.; Martínez-Cagigal, V.; Gomez-Pilar, J.; Hornero, R. Deep learning architecture based on the combination of convolutional and recurrent layers for ERP-based brain-computer interfaces. In Proceedings of the Mediterranean Conference on Medical and Biological Engineering and Computing, Coimbra, Portugal, 26–28 September 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1844–1852. [Google Scholar]
- Borra, D.; Fantozzi, S.; Magosso, E. Convolutional neural network for a P300 brain-computer interface to improve social attention in autistic spectrum disorder. In Proceedings of the Mediterranean Conference on Medical and Biological Engineering and Computing, Coimbra, Portugal, 26–28 September 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1837–1843. [Google Scholar]
- Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A compact convolutional neural network for EEG-based brain–computer interfaces. J. Neural Eng. 2018, 15, 056013. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Gilles, J. Empirical wavelet transform. IEEE Trans. Signal Process. 2013, 61, 3999–4010. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2013, 62, 531–544. [Google Scholar] [CrossRef]
- Kamble, A.; Ghare, P.; Kumar, V. Machine-learning-enabled adaptive signal decomposition for a brain-computer interface using EEG. Biomed. Signal Process. Control. 2022, 74, 103526. [Google Scholar] [CrossRef]
- Khare, S.K.; Bajaj, V. An evolutionary optimized variational mode decomposition for emotion recognition. IEEE Sens. J. 2020, 21, 2035–2042. [Google Scholar] [CrossRef]
- Simões, M.; Borra, D.; Santamaría-Vázquez, E.; GBT-UPM; Bittencourt-Villalpando, M.; Krzemiński, D.; Miladinović, A.; Neural_Engineering_Group; Schmid, T.; Zhao, H.; et al. BCIAUT-P300: A multi-session and multi-subject benchmark dataset on autism for P300-based brain-computer-interfaces. Front. Neurosci. 2020, 14, 568104. [Google Scholar] [CrossRef] [PubMed]
- Şen, B.; Peker, M.; Çavuşoğlu, A.; Çelebi, F.V. A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms. J. Med. Syst. 2014, 38, 1–21. [Google Scholar] [CrossRef]
- Jenke, R.; Peer, A.; Buss, M. Feature extraction and selection for emotion recognition from EEG. IEEE Trans. Affect. Comput. 2014, 5, 327–339. [Google Scholar] [CrossRef]
- Memar, P.; Faradji, F. A novel multi-class EEG-based sleep stage classification system. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 26, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Pannu, H.S.; Malhi, A.K. A systematic review on imbalanced data challenges in machine learning: Applications and solutions. ACM Comput. Surv. (CSUR) 2019, 52, 1–36. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Costa, V.G.; Pedreira, C.E. Recent advances in decision trees: An updated survey. Artif. Intell. Rev. 2022, 1–36. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Bühlmann, P. Bagging, boosting and ensemble methods. In Handbook of Computational Statistics; Springer: Berlin/Heidelberg, Germany, 2012; pp. 985–1022. [Google Scholar]
- Bishop, C.M.; Nasrabadi, N.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4. [Google Scholar]
- Svozil, D.; Kvasnicka, V.; Pospichal, J. Introduction to multi-layer feed-forward neural networks. Chemom. Intell. Lab. Syst. 1997, 39, 43–62. [Google Scholar] [CrossRef]
- Nwankpa, C.; Ijomah, W.; Gachagan, A.; Marshall, S. Activation functions: Comparison of trends in practice and research for deep learning. arXiv 2018, arXiv:1811.03378. [Google Scholar]
- Demiralp, T.; Ademoglu, A.; Schürmann, M.; Basar-Eroglu, C.; Basar, E. Detection of P300 waves in single trials by the wavelet transform (WT). Brain Lang. 1999, 66, 108–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
ML Classifier | Hyper-Parameters | Description |
---|---|---|
EBT | Preset | Bagged Trees |
Ensemble method | Bag | |
Learner type | Decision Tree | |
Maximum number of splits | 54,879 | |
Number of learners | 30 | |
Number of predictors to sample | Select All | |
SVM (FG) | Preset | Gaussian SVM |
Kernel function | Gaussian | |
Kernel scale | 1.4 | |
Box constraint level | 1 | |
Multiclass method | One-vs-one | |
Standardize data | Yes | |
ANN | Preset | Wide neural network |
Number of fully connected layers | 1 | |
First layer size | 100 | |
Activation | Rectified linear unit(ReLU) | |
Iteration limit | 1000 | |
Regularization strength | 0 | |
Standardize data | Yes |
Mode No. | Classifier | Sensitivity (%) | Specificity (%) | Precision (%) | F1-Score (%) | AUC (%) | NPV (%) |
---|---|---|---|---|---|---|---|
1 | EBT | 85.41 | 82.09 | 82.67 | 84.02 | 91.46 | 84.92 |
SVM (FG) | 89.78 | 86.22 | 86.70 | 88.21 | 94.60 | 89.40 | |
ANN | 80.24 | 82.72 | 82.28 | 81.25 | 90.00 | 80.73 | |
2 | EBT | 86.38 | 83.41 | 83.90 | 85.12 | 92.53 | 85.96 |
SVM (FG) | 89.65 | 83.73 | 84.65 | 87.08 | 93.53 | 88.95 | |
ANN | 80.78 | 83.68 | 83.19 | 81.96 | 90.80 | 81.34 | |
3 | EBT | 86.90 | 83.60 | 84.13 | 85.49 | 92.73 | 86.44 |
SVM (FG) | 91.09 | 85.13 | 85.98 | 88.47 | 94.66 | 90.48 | |
ANN | 80.15 | 80.59 | 80.52 | 80.33 | 88.93 | 80.24 | |
4 | EBT | 86.51 | 85.35 | 85.52 | 86.01 | 93.20 | 86.35 |
SVM (FG) | 90.23 | 86.38 | 86.89 | 88.53 | 94.93 | 89.84 | |
ANN | 81.47 | 83.07 | 82.81 | 82.13 | 90.60 | 81.69 | |
5 | EBT | 87.27 | 84.47 | 84.90 | 86.12 | 93.33 | 86.90 |
SVM (FG) | 91.79 | 90.41 | 90.54 | 91.18 | 96.60 | 91.70 | |
ANN | 83.97 | 85.16 | 84.97 | 84.47 | 92.53 | 84.16 |
Author | Method | Accuracy (%) |
---|---|---|
Borra et al. [35] | CNN Based on EEG-NET | |
Santamaría-Vázquez et al. [34] | CNN-BLSTM | |
Lucia de Arancibia et al. [33] | LDA with time and CWT features | |
Bittencourt-Villalpando et al. [32] | Linear LDA with pseudo-random averaging | |
Miladinovic et al. [31] | Logistic regression based on variational Bayesian inference | |
Bipra Chatterjee et al. [30] | Temporal features with Bayes LDA | |
Adama et al. [29] | Time domain features and Pearson correlation coefficient | |
Proposed | VMD-SVM |
Advantages | · Accuracy of the proposed VMD-SVM method is 91.12%. It outperforms other cutting-edge techniques using similar hardware. · Accuracy is comparable to the deep learning (DL) methods using superior hardware. · Execution time of around 0.37 ms on average over a PC with 16 GB RAM and Intel(R) Core(TM) i5-8500 CPU. · Training time of around 50 min on average using the same hardware mentioned above. · Execution and training times are much smaller than other state-of-the-art methods using comparable hardware specifications. · Computation complexity for training the proposed VMD-SVM method is lower than that of other machine learning methods. |
Drawbacks | · Automatic feature extraction from the raw EEG
data may be performed the same as other state-of-the-art DL architectures. · Automatic identification of the optimal number of VMD modes can be performed. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peketi, S.; Dhok, S.B. Machine Learning Enabled P300 Classifier for Autism Spectrum Disorder Using Adaptive Signal Decomposition. Brain Sci. 2023, 13, 315. https://doi.org/10.3390/brainsci13020315
Peketi S, Dhok SB. Machine Learning Enabled P300 Classifier for Autism Spectrum Disorder Using Adaptive Signal Decomposition. Brain Sciences. 2023; 13(2):315. https://doi.org/10.3390/brainsci13020315
Chicago/Turabian StylePeketi, Santhosh, and Sanjay B. Dhok. 2023. "Machine Learning Enabled P300 Classifier for Autism Spectrum Disorder Using Adaptive Signal Decomposition" Brain Sciences 13, no. 2: 315. https://doi.org/10.3390/brainsci13020315
APA StylePeketi, S., & Dhok, S. B. (2023). Machine Learning Enabled P300 Classifier for Autism Spectrum Disorder Using Adaptive Signal Decomposition. Brain Sciences, 13(2), 315. https://doi.org/10.3390/brainsci13020315