Analysing Deception in Witness Memory through Linguistic Styles in Spontaneous Language
Abstract
:1. Introduction
2. Related Work
3. Method
3.1. Participants and Ethics
3.2. Materials
3.3. Procedure
3.4. Corpus Preparation and Indicators of Variation
3.4.1. Stylometric Properties
3.4.2. Content and Speech Disfluency Properties
4. Results
4.1. Surface-Related Features: Lexical Variations
4.2. Linguistic Style of Testimonies
4.3. Content and Speech Disfluencies Analysis
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
NLP | Natural Language Processing |
T | Truthful testimonies |
SD | Simulation Deceptive testimonies |
CBCA | Criteria-Based Content Analysis |
RM | Reality Monitoring |
LIWC | Linguistic Inquiry and Word Count |
POS | Part-Of-Speech |
Appendix A. Stories Presented to Participants
Appendix A.1. Story A
Appendix A.2. Story B
Appendix B. Linguistic Features
Appendix B.1. Wilcoxon Signed-Rank Test Results
Wilcoxon | ||||
---|---|---|---|---|
Group | Feature | W | p | r |
Raw Text | n_sentences (* ) | 1662.5 | 0.000 | 0.34 |
n_tokens (*) | 3091.5 | 0.000 | 0.31 | |
tokens_per_sent (- ) | 8850.5 | 0.866 | 0.00 | |
char_per_tok (-) | 7726 | 0.059 | 0.14 | |
POS | upos_dist_ADJ (*) | 2588.5 | 0.000 | 0.50 |
upos_dist_ADP (*) | 7344.5 | 0.017 | 0.13 | |
upos_dist_ADV (*) | 7397 | 0.047 | 0.14 | |
upos_dist_AUX (-) | 8330.5 | 0.536 | 0.03 | |
upos_dist_CCONJ (*) | 5835.5 | 0.000 | 0.22 | |
upos_dist_DET (-) | 8477.5 | 0.433 | 0.02 | |
upos_dist_INTJ (*) | 8 | 0.047 | 0.14 | |
upos_dist_NOUN (*) | 6444 | 0.001 | 0.22 | |
upos_dist_NUM (-) | 8040.5 | 0.373 | 0.01 | |
upos_dist_PRON (*) | 7139 | 0.008 | 0.16 | |
upos_dist_PROPN (*) | 3112 | 0.000 | 0.24 | |
upos_dist_SCONJ (-) | 7300.5 | 0.149 | 0.07 | |
upos_dist_VERB (*) | 6910.5 | 0.003 | 0.15 | |
upos_dist_X (-) | 28.5 | 0.132 | 0.11 | |
Verb Inflection | verbs_tense_dist_Fut (-) | 23.5 | 0.398 | 0.07 |
verbs_tense_dist_Imp (-) | 5949.5 | 0.335 | 0.06 | |
verbs_tense_dist_Past (-) | 6180 | 0.226 | 0.06 | |
verbs_tense_dist_Pres (*) | 2783.5 | 0.013 | 0.16 | |
verbs_mood_dist_Cnd (-) | 3 | 0.225 | 0.00 | |
verbs_mood_dist_Ind (-) | 331 | 0.045 | 0.03 | |
verbs_mood_dist_Sub (-) | 9 | 0.207 | 0.11 | |
verbs_form_dist_Fin (-) | 727 | 0.076 | 0.07 | |
verbs_form_dist_Ger (-) | 4.5 | 0.207 | 0.08 | |
verbs_form_dist_Inf (*) | 66.5 | 0.635 | 0.12 | |
verbs_form_dist_Part (-) | 48 | 0.177 | 0.02 | |
verbs_num_pers_dist_+ (-) | 95 | 0.190 | 0.13 | |
verbs_num_pers_dist_Plur+1 (-) | 2303 | 0.445 | 0.00 | |
verbs_num_pers_dist_Plur+3 (-) | 5846 | 0.206 | 0.09 | |
verbs_num_pers_dist_Sing+ (-) | 120 | 0.583 | 0.10 | |
verbs_num_pers_dist_Sing+1 (-) | 1867 | 0.468 | 0.04 | |
verbs_num_pers_dist_Sing+3 (-) | 6162.5 | 0.174 | 0.07 | |
aux_tense_dist_Imp (-) | 3292.5 | 0.303 | 0.07 | |
aux_tense_dist_Past (-) | 1887 | 0.767 | 0.04 | |
aux_tense_dist_Pres (*) | 476.5 | 0.014 | 0.10 | |
aux_mood_dist_Cnd (-) | 513 | 0.441 | 0.03 | |
aux_mood_dist_Ind (*) | 1178.5 | 0.708 | 0.13 | |
aux_mood_dist_Sub (-) | 59.5 | 0.051 | 0.02 | |
aux_form_dist_Fin (-) | 7981.5 | 0.276 | 0.08 | |
aux_form_dist_Ger (-) | 6987 | 0.414 | 0.08 | |
aux_form_dist_Inf (-) | 5613.5 | 0.034 | 0.02 | |
aux_form_dist_Part (-) | 2536 | 0.092 | 0.07 | |
aux_num_pers_dist_Plur+1 (-) | 366.5 | 0.558 | 0.09 | |
aux_num_pers_dist_Plur+3 (-) | 2913 | 0.465 | 0.07 | |
aux_num_pers_dist_Sing+1 (-) | 59.5 | 0.977 | 0.00 | |
aux_num_pers_dist_Sing+3 (-) | 3651 | 0.070 | 0.10 | |
Verb Predicate | verbal_head_per_sent (-) | 7036 | 0.177 | 0.04 |
verbal_root_perc (-) | 1319.5 | 0.149 | 0.13 | |
avg_verb_edges (-) | 7524 | 0.088 | 0.11 | |
verb_edges_dist_0 (-) | 1571.5 | 0.816 | 0.03 | |
verb_edges_dist_1 (-) | 7200.5 | 0.536 | 0.06 | |
verb_edges_dist_2 (-) | 7748 | 0.129 | 0.10 | |
verb_edges_dist_3 (-) | 8211.5 | 0.973 | 0.01 | |
verb_edges_dist_4 (-) | 7410.5 | 0.761 | 0.04 | |
verb_edges_dist_5 (-) | 2972 | 0.577 | 0.01 | |
verb_edges_dist_6 (-) | 628 | 0.927 | 0.01 | |
Tree Structure | avg_max_depth (-) | 8069.5 | 0.814 | 0.03 |
avg_token_per_clause (*) | 7397 | 0.021 | 0.10 | |
avg_max_links_len (-) | 8238 | 0.326 | 0.06 | |
avg_links_len (-) | 8027 | 0.136 | 0.07 | |
max_links_len (*) | 6211 | 0.002 | 0.18 | |
avg_prepositional_chain_len (-) | 2060.5 | 0.251 | 0.08 | |
n_prepositional_chains (*) | 3203.5 | 0.000 | 0.16 | |
prep_dist_1 (-) | 2287 | 0.745 | 0.02 | |
prep_dist_2 (-) | 551.5 | 0.146 | 0.10 | |
prep_dist_3 (-) | 11 | 0.172 | 0.08 | |
Order | obj_pre (-) | 6950.5 | 0.112 | 0.09 |
obj_post (-) | 7116.5 | 0.176 | 0.07 | |
subj_pre (-) | 2473 | 0.728 | 0.02 | |
subj_post (-) | 1732 | 0.112 | 0.11 | |
SyntacticDep | dep_dist_acl (-) | 713.5 | 0.636 | 0.01 |
dep_dist_acl:relcl (*) | 5991 | 0.008 | 0.15 | |
dep_dist_advcl (-) | 6645.5 | 0.055 | 0.14 | |
dep_dist_advmod (-) | 7698.5 | 0.141 | 0.09 | |
dep_dist_amod (*) | 2734.5 | 0.000 | 0.46 | |
dep_dist_appos (-) | 1825.5 | 0.125 | 0.07 | |
dep_dist_aux (-) | 6765 | 0.081 | 0.11 | |
dep_dist_aux:pass (-) | 283.5 | 0.207 | 0.14 | |
dep_dist_case (-) | 8570 | 0.368 | 0.06 | |
dep_dist_cc (*) | 5899 | 0.000 | 0.21 | |
dep_dist_ccomp (-) | 1686.5 | 0.259 | 0.13 | |
dep_dist_conj (*) | 5463 | 0.000 | 0.28 | |
dep_dist_cop (-) | 3100.5 | 0.127 | 0.13 | |
dep_dist_csubj (-) | 102 | 0.426 | 0.03 | |
dep_dist_dep (-) | 2 | 0.593 | 0.04 | |
dep_dist_det (-) | 8819 | 0.648 | 0.00 | |
dep_dist_fixed (*) | 3034.5 | 0.004 | 0.21 | |
dep_dist_flat (-) | 2 | 0.593 | 0.07 | |
dep_dist_iobj (*) | 7342.5 | 0.039 | 0.11 | |
dep_dist_mark (-) | 7308 | 0.059 | 0.12 | |
dep_dist_nmod (-) | 7833.5 | 0.950 | 0.01 | |
dep_dist_nsubj (-) | 7731.5 | 0.098 | 0.12 | |
dep_dist_nsubj:pass (*) | 13 | 0.023 | 0.12 | |
dep_dist_nummod (-) | 8272.5 | 0.565 | 0.08 | |
dep_dist_obj (-) | 8052 | 0.219 | 0.05 | |
dep_dist_obl (*) | 6978.5 | 0.004 | 0.22 | |
dep_dist_parataxis (-) | 2660 | 0.386 | 0.04 | |
dep_dist_root (-) | 8689 | 0.702 | 0.02 | |
dep_dist_xcomp (-) | 4239.5 | 0.441 | 0.00 | |
Subord | principal_proposition_dist (*) | 5733 | 0.003 | 0.17 |
subordinate_proposition_dist (*) | 5723.5 | 0.003 | 0.17 | |
subordinate_post (-) | 1818.5 | 0.823 | 0.07 | |
subordinate_pre (-) | 1468.5 | 0.115 | 0.11 | |
avg_subordinate_chain_len (*) | 3157.5 | 0.007 | 0.15 | |
subordinate_dist_1 (-) | 3761 | 0.196 | 0.07 | |
subordinate_dist_2 (*) | 2742.5 | 0.020 | 0.17 | |
subordinate_dist_3 (-) | 243.5 | 0.701 | 0.06 | |
subordinate_dist_4 (-) | 3.5 | 0.581 | 0.07 |
Appendix B.2. Feature Values and Variation Analysis
Mean & Standard Deviation | Variation (%) | |||||||
---|---|---|---|---|---|---|---|---|
Group | Feature | T | Stdev | SD | Stdev | TSD | T = SD | TSD |
Raw Text | n_sentences (*) | 4.23 | 2.10 | 3.30 | 1.67 | 56.25 | 28.13 | 15.63 |
n_tokens (*) | 82.19 | 45.23 | 64.80 | 39.75 | 75.00 | 1.04 | 23.96 | |
tokens_per_sent (-) | 19.88 | 5.93 | 19.91 | 6.31 | 50.00 | 1.56 | 48.44 | |
char_per_tok (-) | 4.19 | 0.24 | 4.14 | 0.28 | 51.56 | 0.52 | 47.92 | |
POS | upos_dist_ADJ (*) | 2.13 | 2.06 | 4.07 | 2.84 | 23.95 | 6.25 | 69.79 |
upos_dist_ADP (*) | 12.64 | 2.99 | 12.03 | 3.44 | 59.37 | 0.52 | 40.10 | |
upos_dist_ADV (*) | 4.38 | 2.37 | 3.90 | 2.68 | 55.21 | 2.08 | 42.71 | |
upos_dist_AUX (-) | 4.20 | 2.49 | 4.04 | 2.68 | 50.52 | 2.60 | 46.88 | |
upos_dist_CCONJ (*) | 5.60 | 2.47 | 6.44 | 2.79 | 35.94 | 2.08 | 61.98 | |
upos_dist_DET (-) | 13.36 | 2.58 | 13.50 | 2.76 | 45.31 | 1.04 | 53.65 | |
upos_dist_INTJ (*) | 0.01 | 0.10 | 0.06 | 0.37 | 1.04 | 94.79 | 4.17 | |
upos_dist_NOUN (*) | 16.96 | 2.80 | 17.90 | 3.23 | 39.58 | 1.56 | 58.85 | |
upos_dist_NUM (-) | 1.90 | 1.08 | 1.97 | 1.59 | 44.27 | 3.13 | 52.60 | |
upos_dist_PRON (*) | 7.84 | 2.86 | 7.22 | 2.97 | 57.81 | 0.52 | 41.67 | |
upos_dist_PROPN (*) | 1.92 | 1.62 | 1.35 | 1.50 | 51.56 | 22.92 | 25.52 | |
upos_dist_SCONJ (-) | 3.70 | 2.44 | 3.42 | 2.42 | 52.08 | 5.21 | 42.71 | |
upos_dist_VERB (*) | 14.74 | 3.17 | 14.05 | 3.54 | 58.85 | 0.52 | 40.63 | |
upos_dist_X (-) | 0.07 | 0.31 | 0.03 | 0.18 | 5.73 | 92.71 | 1.56 | |
Verb Inflection | verbs_tense_dist_Fut (-) | 0.51 | 3.16 | 0.23 | 1.67 | 3.65 | 94.27 | 2.08 |
verbs_tense_dist_Imp (-) | 25.14 | 18.38 | 26.78 | 21.31 | 37.50 | 16.15 | 46.35 | |
verbs_tense_dist_Past (-) | 55.01 | 26.00 | 57.31 | 26.56 | 39.58 | 13.54 | 46.88 | |
verbs_tense_dist_Pres (*) | 19.35 | 24.89 | 15.67 | 23.80 | 39.58 | 36.46 | 23.96 | |
verbs_mood_dist_Cnd (-) | 2.59 | 7.92 | 3.61 | 11.88 | 11.46 | 75.00 | 13.54 | |
verbs_mood_dist_Ind (-) | 95.59 | 11.37 | 95.42 | 13.85 | 17.71 | 63.54 | 18.75 | |
verbs_mood_dist_Sub (-) | 1.22 | 4.85 | 0.45 | 2.48 | 7.29 | 89.06 | 3.65 | |
verbs_form_dist_Fin (-) | 56.92 | 17.75 | 58.66 | 18.10 | 45.83 | 2.60 | 51.56 | |
verbs_form_dist_Ger (-) | 18.52 | 10.76 | 17.47 | 13.27 | 44.79 | 9.90 | 45.31 | |
verbs_form_dist_Inf (*) | 15.15 | 10.70 | 13.18 | 11.36 | 48.44 | 13.54 | 38.02 | |
verbs_form_dist_Part (-) | 9.41 | 13.46 | 10.69 | 14.20 | 25.00 | 42.19 | 32.81 | |
verbs_num_pers_dist_+ (-) | 1.51 | 5.63 | 0.84 | 4.90 | 8.33 | 88.02 | 3.65 | |
verbs_num_pers_dist_Plur+1 (-) | 13.55 | 19.68 | 13.98 | 19.89 | 23.44 | 47.92 | 28.65 | |
verbs_num_pers_dist_Plur+3 (-) | 24.08 | 20.48 | 23.55 | 26.25 | 45.83 | 15.63 | 38.54 | |
verbs_num_pers_dist_Sing+ (-) | 1.04 | 4.13 | 0.77 | 4.47 | 7.81 | 88.02 | 4.17 | |
verbs_num_pers_dist_Sing+1 (-) | 8.47 | 13.55 | 7.99 | 15.70 | 26.04 | 53.13 | 20.83 | |
verbs_num_pers_dist_Sing+3 (-) | 50.75 | 22.16 | 52.86 | 27.07 | 39.58 | 13.02 | 47.40 | |
aux_tense_dist_Imp (-) | 62.58 | 38.07 | 58.70 | 40.65 | 33.85 | 36.98 | 29.17 | |
aux_tense_dist_Past (-) | 15.53 | 26.39 | 16.85 | 29.45 | 22.92 | 54.17 | 22.92 | |
aux_tense_dist_Pres (*) | 14.08 | 28.83 | 9.87 | 23.66 | 19.27 | 71.35 | 9.38 | |
aux_mood_dist_Cnd (-) | 0.39 | 3.22 | 0.14 | 1.37 | 1.56 | 97.40 | 1.04 | |
aux_mood_dist_Ind (*) | 91.07 | 27.09 | 84.83 | 35.31 | 14.06 | 77.08 | 8.85 | |
aux_mood_dist_Sub (-) | 0.72 | 4.17 | 0.45 | 3.14 | 2.60 | 95.83 | 1.56 | |
aux_form_dist_Fin (-) | 89.97 | 27.15 | 83.83 | 35.29 | 19.27 | 67.71 | 13.02 | |
aux_form_dist_Ger (-) | 0.92 | 7.71 | 0.19 | 1.87 | 2.08 | 96.88 | 1.04 | |
aux_form_dist_Inf (-) | 0.76 | 3.66 | 1.29 | 8.02 | 4.17 | 91.15 | 4.69 | |
aux_form_dist_Part (-) | 1.06 | 5.19 | 0.62 | 4.21 | 5.21 | 91.15 | 3.65 | |
aux_num_pers_dist_Plur+1 (-) | 4.46 | 12.74 | 4.55 | 17.55 | 12.50 | 79.17 | 8.33 | |
aux_num_pers_dist_Plur+3 (-) | 17.63 | 26.50 | 16.64 | 28.47 | 31.77 | 41.67 | 26.56 | |
aux_num_pers_dist_Sing+1 (-) | 1.45 | 6.95 | 1.28 | 6.63 | 3.13 | 92.19 | 4.69 | |
aux_num_pers_dist_Sing+3 (-) | 68.59 | 34.30 | 62.80 | 39.63 | 38.54 | 30.73 | 30.73 | |
Verb Predicate | verbal_head_per_sent (-) | 3.07 | 1.03 | 2.98 | 1.12 | 52.60 | 7.29 | 40.10 |
verbal_root_perc (-) | 91.84 | 14.25 | 93.61 | 13.47 | 17.71 | 58.33 | 23.96 | |
avg_verb_edges (-) | 2.61 | 0.37 | 2.68 | 0.42 | 44.79 | 2.60 | 52.60 | |
verb_edges_dist_0 (-) | 2.65 | 4.54 | 3.09 | 6.46 | 21.88 | 58.33 | 19.79 | |
verb_edges_dist_1 (-) | 14.45 | 11.37 | 13.78 | 12.38 | 47.40 | 9.38 | 43.23 | |
verb_edges_dist_2 (-) | 29.96 | 14.42 | 27.64 | 16.63 | 52.08 | 2.08 | 45.83 | |
verb_edges_dist_3 (-) | 30.54 | 14.43 | 31.08 | 18.03 | 46.88 | 5.73 | 47.40 | |
verb_edges_dist_4 (-) | 16.65 | 12.57 | 17.91 | 15.79 | 42.71 | 9.38 | 47.92 | |
verb_edges_dist_5 (-) | 4.44 | 6.44 | 5.11 | 8.62 | 30.21 | 41.67 | 28.13 | |
verb_edges_dist_6 (-) | 1.31 | 3.20 | 1.39 | 4.06 | 13.02 | 73.96 | 13.02 | |
Tree Structure | avg_max_depth (-) | 4.36 | 1.11 | 4.40 | 1.23 | 50.52 | 5.73 | 43.75 |
avg_token_per_clause (*) | 6.71 | 1.40 | 7.01 | 1.73 | 41.67 | 0.52 | 57.81 | |
avg_max_links_len (-) | 9.23 | 3.71 | 8.93 | 4.09 | 54.17 | 1.56 | 44.27 | |
avg_links_len (-) | 2.49 | 0.35 | 2.45 | 0.40 | 55.73 | 0.52 | 43.75 | |
max_links_len (*) | 15.11 | 7.71 | 13.24 | 7.18 | 58.33 | 4.69 | 36.98 | |
avg_prepositional_chain_len (-) | 0.93 | 0.47 | 0.88 | 0.46 | 28.65 | 49.48 | 21.88 | |
n_prepositional_chains (*) | 2.59 | 2.45 | 1.94 | 1.84 | 45.31 | 25.52 | 29.17 | |
prep_dist_1 (-) | 73.72 | 39.07 | 74.69 | 39.94 | 23.44 | 49.48 | 27.08 | |
prep_dist_2 (-) | 8.32 | 19.88 | 6.05 | 17.30 | 17.71 | 72.40 | 9.90 | |
prep_dist_3 (-) | 0.77 | 3.61 | 0.51 | 3.41 | 2.60 | 95.31 | 2.08 | |
Order | obj_pre (-) | 34.72 | 18.64 | 31.83 | 18.86 | 52.60 | 6.77 | 40.63 |
obj_post (-) | 65.28 | 18.64 | 67.65 | 19.35 | 41.15 | 6.77 | 52.08 | |
subj_pre (-) | 82.32 | 28.64 | 82.74 | 29.98 | 23.44 | 47.40 | 29.17 | |
subj_post (-) | 14.03 | 23.88 | 9.97 | 19.11 | 28.65 | 52.08 | 19.27 | |
SyntacticDep | dep_dist_acl (-) | 0.26 | 0.65 | 0.30 | 0.73 | 13.54 | 71.35 | 15.10 |
dep_dist_acl:relcl (*) | 2.32 | 2.03 | 1.84 | 1.85 | 55.21 | 8.33 | 36.46 | |
dep_dist_advcl (-) | 3.14 | 1.97 | 2.85 | 2.19 | 53.13 | 7.29 | 39.58 | |
dep_dist_advmod (-) | 3.76 | 2.19 | 3.46 | 2.43 | 51.56 | 2.60 | 45.83 | |
dep_dist_amod (*) | 1.60 | 1.62 | 2.93 | 2.22 | 22.92 | 9.90 | 67.19 | |
dep_dist_appos (-) | 0.78 | 1.07 | 0.68 | 1.11 | 28.65 | 51.04 | 20.31 | |
dep_dist_aux (-) | 3.12 | 2.34 | 2.74 | 2.24 | 50.52 | 7.29 | 42.19 | |
dep_dist_aux:pass (-) | 0.19 | 0.52 | 0.12 | 0.47 | 11.98 | 80.21 | 7.81 | |
dep_dist_case (-) | 11.40 | 3.02 | 11.21 | 3.42 | 53.13 | 0.00 | 46.88 | |
dep_dist_cc (*) | 5.51 | 2.43 | 6.32 | 2.78 | 35.94 | 2.08 | 61.98 | |
dep_dist_ccomp (-) | 0.50 | 0.82 | 0.41 | 0.85 | 26.56 | 54.17 | 19.27 | |
dep_dist_conj (*) | 4.16 | 2.39 | 5.33 | 3.11 | 34.90 | 2.60 | 62.50 | |
dep_dist_cop (-) | 0.84 | 1.12 | 1.04 | 1.35 | 31.25 | 36.98 | 31.77 | |
dep_dist_csubj (-) | 0.07 | 0.29 | 0.09 | 0.38 | 5.21 | 88.54 | 6.25 | |
dep_dist_dep (-) | 0.01 | 0.09 | 0.00 | 0.06 | 1.04 | 98.44 | 0.52 | |
dep_dist_det (-) | 13.39 | 2.59 | 13.45 | 2.76 | 45.83 | 0.52 | 53.65 | |
dep_dist_fixed (*) | 1.01 | 1.27 | 0.69 | 1.12 | 39.58 | 32.29 | 28.13 | |
dep_dist_flat (-) | 0.02 | 0.17 | 0.01 | 0.09 | 1.04 | 98.44 | 0.52 | |
dep_dist_iobj (*) | 3.35 | 2.04 | 3.76 | 2.61 | 43.75 | 2.08 | 54.17 | |
dep_dist_mark (-) | 4.66 | 2.73 | 4.15 | 2.53 | 55.73 | 3.13 | 41.15 | |
dep_dist_nmod (-) | 3.31 | 2.36 | 3.29 | 2.31 | 46.88 | 7.81 | 45.31 | |
dep_dist_nsubj (-) | 3.96 | 2.05 | 4.34 | 2.50 | 46.88 | 1.56 | 51.56 | |
dep_dist_nsubj:pass (*) | 0.08 | 0.37 | 0.02 | 0.14 | 4.69 | 93.23 | 2.08 | |
dep_dist_nummod (-) | 1.84 | 1.09 | 1.77 | 1.57 | 47.92 | 3.13 | 48.96 | |
dep_dist_obj (-) | 6.77 | 2.26 | 6.56 | 2.69 | 53.65 | 1.56 | 44.79 | |
dep_dist_obl (*) | 6.22 | 2.60 | 5.41 | 2.71 | 57.81 | 0.52 | 41.67 | |
dep_dist_parataxis (-) | 0.62 | 1.02 | 0.67 | 1.04 | 26.04 | 43.75 | 30.21 | |
dep_dist_root (-) | 5.46 | 1.53 | 5.49 | 1.62 | 48.44 | 1.56 | 50.00 | |
dep_dist_xcomp (-) | 1.10 | 1.38 | 1.03 | 1.32 | 38.54 | 29.69 | 31.77 | |
Subord | principal_proposition_dist (*) | 42.13 | 15.03 | 46.30 | 16.84 | 38.02 | 8.85 | 53.13 |
subordinate_proposition_dist (*) | 57.87 | 15.03 | 53.70 | 16.84 | 53.13 | 8.85 | 38.02 | |
subordinate_post (-) | 90.15 | 20.70 | 89.96 | 23.97 | 20.83 | 55.21 | 23.96 | |
subordinate_pre (-) | 9.33 | 19.66 | 6.91 | 17.71 | 26.04 | 55.73 | 18.23 | |
avg_subordinate_chain_len (*) | 1.22 | 0.27 | 1.16 | 0.36 | 41.67 | 31.77 | 26.56 | |
subordinate_dist_1 (-) | 79.84 | 21.64 | 80.37 | 27.79 | 31.25 | 31.77 | 36.98 | |
subordinate_dist_2 (*) | 17.05 | 19.71 | 13.96 | 22.15 | 36.98 | 37.50 | 25.52 | |
subordinate_dist_3 (-) | 2.42 | 7.76 | 2.45 | 10.28 | 9.90 | 83.33 | 6.77 | |
subordinate_dist_4 (-) | 0.17 | 1.47 | 0.09 | 1.20 | 1.56 | 97.92 | 0.52 |
References
- Miller, G. Human memory and the storage of information. IRE Trans. Inf. Theory 1956, 2, 129–137. [Google Scholar] [CrossRef]
- Neisser, U. Cognitive Psychology; Appleton-Century-Crofts: New York, NY, USA, 1967; pp. 200–207. [Google Scholar]
- Mazzoni, G. Psicología del Testimonio; Trotta: Roma, Italy, 2019; pp. 98–100. [Google Scholar]
- Köhnken, G. Glaubwürdigkeit. Untersuchungen Zu Einem Psychologischen Konstrukt; Psychologie Verlags Union: Munich, Germany, 1990. [Google Scholar]
- Almela, Á. A Corpus-Based Study of Linguistic Deception in Spanish. Appl. Sci. 2021, 11, 8817. [Google Scholar] [CrossRef]
- Manzanero, A. Memoria de Testigos. Obtención y Valoración de la Prueba Testifical; Pirámide: Madrid, Spain, 2010. [Google Scholar]
- Arce, R.; Fariña, F. Psicología del testimonio y evaluación cognitiva de la veracidad de testimonios y declaraciones. In Psicología Forense: Manual de téCnicas y Aplicaciones; Sierra, J., Jiménez, E., Buela-Casal, G., Eds.; Biblioteca Nueva: Madrid, Spain, 2010; pp. 563–601. [Google Scholar]
- Vrij, A. Detecting Lies and Deceit: Pitfalls and Opportunities; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Steller, M.; Koehnken, G. Criteria-Based Statement Analysis. In Psychological Methods in Criminal Investigation and Evidence; Raskin, D.C., Ed.; Springer Publishing Company: New York, NY, USA, 1989; pp. 217–245. [Google Scholar]
- Porter, S.; ten Brike, L. The truth about lies: What works in detecting high-stakes deception? Leg. Criminol. Psychol. 2010, 15, 57–75. [Google Scholar] [CrossRef]
- Esplin, P.; Boychuk, T.; Raskin, D. A Field Validity Study of Criteria Based Content Analysis of Children’s Statements in Sexual Abuse Cases; NATO Advances Study Institute on Credibility Assessment: Maratea, Italy, 1988. [Google Scholar]
- Presentación, J.A.; Medina, J.; Soriano, L.; Negre, M. Sistema de análisis de validez de las declaraciones (protocolo SVA) en un caso de abusos sexuales entre menores. Descripción de criterios y su aplicación. Gac. Int. De Cienc. Forenses 2014, 12, 69–79. [Google Scholar]
- Vogler, N.; Pearl, L. Using linguistically defined specific details to detect deception across domains. Nat. Lang. Eng. 2019, 26, 349–373. [Google Scholar] [CrossRef]
- Volbert, R.; Steller, M. Is this testimony truthful, fabricated, or based on false memory? Credibility assessment 25 years after Steller and Köhnken (1989). Eur. Psychol. 2014, 19, 207–220. [Google Scholar] [CrossRef]
- Maier, B.; Niehaus, S.; Wacholz, S.; Volbert, R. The Strategic Meaning of CBCA Criteria From the Perspective of Deceivers. Front. Psychol. 2018, 9, 855. [Google Scholar] [CrossRef]
- Stone, P.; Bales, R.; Namenwirth, J.; Ogilvie, D. The general inquirer: A computer system for content analysis and retrieval based on the sentence as a unit of information. Behav. Sci. 1962, 7, 484–494. [Google Scholar] [CrossRef]
- Graesser, A.; McNamara, D.; Louwerse, M.; Cai, Z. Analysis of text on cohesion and language. Behav. Res. Methods Instrum. Comput. 2004, 36, 193–202. [Google Scholar] [CrossRef]
- Pennebaker, J.W.; Francis, M.E.; Booth, R.J. Linguistic inquiry and word count: LIWC 2001. Mahway Lawrence Erlbaum Assoc. 2001, 71, 2001. [Google Scholar]
- Newman, M.L.; Pennebaker, J.W.; Berry, D.S.; Richards, J.M. Lying words: Predicting deception from linguistic styles. Personal. Soc. Psychol. Bull. 2003, 29, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Burgoon, J.; Nunamaker, J.; Twitchell, D. Automating linguistics-based cues for detecting deception in text-based asynchronous computer-mediated comunication. Group Decis. Negot. 2004, 13, 81–106. [Google Scholar] [CrossRef]
- DePaulo, B.M.; Lindsay, J.J.; Malone, B.E.; Muhlenbruck, L.; Charlton, K.; Cooper, H. Cues to deception. Psychol. Bull. 2003, 129, 74. [Google Scholar] [CrossRef]
- Hauch, V.; Blandón-Gitlin, I.; Masip, J.; Sporer, S.L. Are computers effective lie detectors? A meta-analysis of linguistic cues to deception. Personal. Soc. Psychol. Rev. 2015, 19, 307–342. [Google Scholar] [CrossRef] [PubMed]
- Fornaciari, T.; Poesio, M. Automatic deception detection in Italian court cases. Artif. Intell. Law 2013, 21, 303–340. [Google Scholar] [CrossRef]
- Quijano-Sánchez, L.; Liberatore, F.; Camacho-Collados, J.; Camacho-Collados, M. Applying automatic text-based detection of deceptive language to police reports: Extracting behavioral patterns from a multi-step classification model to understand how we lie to the police. Knowl.-Based Syst. 2018, 149, 155–168. [Google Scholar] [CrossRef]
- Tucker, T.A. Implicit Bias and the Corresponding Effects on False Memories. Ph.D. Thesis, Middle Tennessee State University, Murfreesboro, TN, USA, 2019. [Google Scholar]
- Helm, R.K.; Ceci, S.J.; Burd, K.A. Can implicit associations distinguish true and false eyewitness memory? Development and preliminary testing of the IATe. Behav. Sci. Law 2016, 34, 803–819. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.P.; Geiselman, R.E. Memory Enhancing Techniques for Investigative Interviewing: The Cognitive Interview; Charles C Thomas Publisher: Springfield, IL, USA, 1992. [Google Scholar]
- Tulving, E.; Thomson, D.M. Encoding specificity and retrieval processes in episodic memory. Psychol. Rev. 1973, 80, 352. [Google Scholar] [CrossRef]
- Powers, W.R. Transcription Techniques for the Spoken Word; Rowman Altamira: Lanham, MD, USA, 2005. [Google Scholar]
- Schler, J.; Koppel, M.; Argamon, S.; Pennebaker, J.W. Effects of age and gender on blogging. In Proceedings of the AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs, Stanford, CA, USA, 27–29 March 2006; Volume 6, pp. 199–205. [Google Scholar]
- Halteren, H.V. Linguistic profiling for author recognition and verification. In Proceedings of the Association for Computational Linguistics, Barcelona, Spain, 21–26 July 2004; pp. 200–207. [Google Scholar]
- Argamon, S.; Koppel, M.; Fine, J.; Shimoni, A.R. Gender, Genre, and Writing Style in Formal Written Texts. Text 2003, 23, 321–346. [Google Scholar] [CrossRef]
- Nguyen, D.; Doğruöz, A.S.; Rosé, C.P.; de Jong, F. Survey: Computational Sociolinguistics: A Survey. Computational Linguistics 2016, 42, 537–593. [Google Scholar] [CrossRef]
- Brunato, D.; Cimino, A.; Dell’Orletta, F.; Venturi, G.; Montemagni, S. Profiling-UD: A Tool for Linguistic Profiling of Texts. In Proceedings of the 12th Language Resources and Evaluation Conference, Marseille, France, 11–16 May 2020; European Language Resources Association: Marseille, France, 2020; pp. 7147–7153. [Google Scholar]
- de Marneffe, M.C.; Manning, C.D.; Nivre, J.; Zeman, D. Universal Dependencies. Comput. Linguist. 2021, 47, 255–308. [Google Scholar] [CrossRef]
- Feng, S.; Banerjee, R.; Choi, Y. Syntactic stylometry for deception detection. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers); Association for Computational Linguistics: Jeju Island, Republic of Korea, 2012; pp. 171–175. [Google Scholar]
- Juola, P. Detecting stylistic deception. In Proceedings of the Workshop on Computational Approaches to Deception Detection; Association for Computational Linguistics: Avignon, France, 2012; pp. 91–96. [Google Scholar]
- Arce, R.; Fariña, F.; Freire, M. Contrastando la generalización de los métodos empíricos de detección del engaño. Psicol. Teor. Investig. PráTica 2002, 7, 71–86. [Google Scholar]
- Hauch, V.; Sporer, S.; Michael, S.; Meissner, C. Does training improve the detection of deception? A meta-analysis. Commun. Res. 2016, 43, 283–343. [Google Scholar] [CrossRef]
- Vrij, A.; Hartwig, M.; Granhag, P. Reading Lies: Nonverbal Communication and Deception. Annu. Rev. Psychol. 2019, 70, 295–317. [Google Scholar] [CrossRef] [PubMed]
- Brunato, D.; Dell’Orletta, F. ISACCO: A corpus for investigating spoken and written language development in Italian school–age children. Ital. J. Comput. Linguist. 2016, 2, 63–76. [Google Scholar] [CrossRef]
- Van Halteren, H.; Baayen, H.; Tweedie, F.; Haverkort, M.; Neijt, A. New machine learning methods demonstrate the existence of a human stylome. J. Quant. Linguist. 2005, 12, 65–77. [Google Scholar] [CrossRef]
- Chung, C.; Pennebaker, J.W. The psychological functions of function words. Soc. Commun. 2007, 1, 343–359. [Google Scholar]
- Argamon, S.; Levitan, S. Measuring the usefulness of function words for authorship attribution. In Proceedings of the Joint Conference of the Association for Computers and the Humanities and the Association for Literary and Linguistic Computing, Victoria, BC, Canada, 15–18 June 2005; pp. 1–3. [Google Scholar]
- Burgoon, J.; Mayew, W.J.; Giboney, J.S.; Elkins, A.C.; Moffitt, K.; Dorn, B.; Byrd, M.; Spitzley, L. Which spoken language markers identify deception in high-stakes settings? Evidence from earnings conference calls. J. Lang. Soc. Psychol. 2016, 35, 123–157. [Google Scholar] [CrossRef]
- Burgoon, J.K.; Qin, T. The dynamic nature of deceptive verbal communication. J. Lang. Soc. Psychol. 2006, 25, 76–96. [Google Scholar] [CrossRef]
- Tomczak, M.; Tomczak, E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 2014, 21, 19–25. [Google Scholar]
- Rosenthal, R.; Cooper, H.; Hedges, L. Parametric measures of effect size. Handb. Res. Synth. 1994, 621, 231–244. [Google Scholar]
- Fitzpatrick, E.; Bachenko, J. Building a forensic corpus to test language-based indicators of deception. In Corpus-Linguistic Applications; Brill Rodopi: Paderborn, Germany, 2010; pp. 183–196. [Google Scholar]
- Loftus, E.F.; Doyle, J.M. Eyewitness Testimony: Civil and Criminal; Kluwer Law International: New York, NY, USA, 1987. [Google Scholar]
- MacRae, C.; Schloerscheidt, A.; Bodenhausen, G.; Milne, A. Creating memory illusions: Expectancy-based processing and the generation of false memories. Memory 2002, 10, 63–80. [Google Scholar] [CrossRef] [PubMed]
- Meissner, C.; Brigham, J. Thirty years of investigating the own-race bias in memory for faces. A Meta-Analytic Review. Psychol. Public Policy Law 2001, 7, 3–355. [Google Scholar] [CrossRef]
- Wilson, J.; Hugenberg, K.; Bernstein, M. The Cross-Race Effect and Eyewitness Identification: How to Improve Recognition and Reduce Decision Errors in Eyewitness Situations. Soc. Issues Policy Rev. 2013, 7, 83–113. [Google Scholar] [CrossRef]
- Sporer, S. Deception and cognitive load: Expanding our horizon with a working memory model. Front. Psychol. 2016, 7, 420. [Google Scholar] [CrossRef]
- Walczyk, J.; Sewell, N.; DiBenedetto, M. A Review of Approaches to Detecting Malingering in Forensic Contexts and Promising Cognitive Load-Inducing Lie Detection Techniques. Front. Psychiatry 2018, 9, 700. [Google Scholar] [CrossRef] [Green Version]
- Driskell, T.; Driskell, J. Got Theory? Multitasking, Cognitive Load, and Deception. In The Palgrave Handbook of Deceptive Communication; Docan-Morgan, T., Ed.; Palgrave Macmillan: Cham, Switzerland, 2019; pp. 145–165. [Google Scholar]
- Wickens, C. Multiple resources and mental workload. Hum. Factors 2008, 50, 449–455. [Google Scholar] [CrossRef]
- Amado, B.; Arce, R.; Fariña, F. Undeutsch hypothesis and criteria based content analysis: A meta-analytic review. Eur. J. Psychol. Appl. Leg. Context 2015, 7, 3–12. [Google Scholar] [CrossRef]
- Leal, S.; Vrij, A.; Vernham, Z.; Dalton, G.; Jupe, L.; Harvey, A.; Nahari, G. Cross-cultural verbal deception. Leg. Criminol. Psychol. 2018, 23, 192–213. [Google Scholar] [CrossRef]
- Nahari, G.; Vrij, A.; Fisher, R. Exploiting liars’ verbal strategies by examining the verifiability of details. Leg. Criminol. Psychol. 2014, 19, 227–239. [Google Scholar] [CrossRef]
- Nahari, G. The applicability of the verifiability approach to the real world. In Detecting Concealed Information and Deception: Verbal, Behavioral, and Biological Methods; Rosenfeld, J.P., Ed.; Academic Press: Amsterdam, The Netherlands, 2018; pp. 329–349. [Google Scholar]
- Johnson, M.; Raye, C. Reality monitoring. Psychol. Rev. 1981, 88, 67–85. [Google Scholar] [CrossRef]
- Vrij, A.; Palena, N.; Leal, S.; Caso, L. The Relationship between Complications, Common Knowledge Details and Self-handicapping Strategies and Veracity: A Meta-analysis. Eur. J. Psychol. Appl. Leg. Context 2021, 13, 55–77. [Google Scholar] [CrossRef]
- Smith, V.L.; Clark, H.H. On the course of answering questions. J. Mem. Lang. 1993, 32, 25–38. [Google Scholar] [CrossRef]
- Brennan, S.E.; Williams, M. The feeling of another’s knowing: Prosody and filled pauses as cues to listeners about the metacognitive states of speakers. J. Mem. Lang. 1995, 34, 383–398. [Google Scholar] [CrossRef]
- Dinkar, T.; Vasilescu, I.; Pelachaud, C.; Clavel, C. How confident are you? Exploring the role of fillers in the automatic prediction of a speaker’s confidence. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 8104–8108. [Google Scholar]
- Kulkofsky, S.; Klemfuss, J. What the stories children tell can tell about their memory: Narrative skill and young children’s suggestibility. Dev. Psychol. 2008, 44, 1442–1456. [Google Scholar] [CrossRef]
- Gudjonsson, G.H. The Psychology of False Confessions: Forty Years of Science and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Vagni, T.M.; Giostra, V. The Relationship between Suggestibility, Fabrication, Distortion, and Trauma in Suspected Sexually Abused Children. Soc. Sci. 2021, 10, 37. [Google Scholar] [CrossRef]
Linguistic Feature | Label |
---|---|
Raw Text properties (RawText) | |
Average document length in tokens | n_tokens |
Average sentence length | sent_length |
Average word length | char_per_tok |
Morphosyntactic information (POSs) | |
Distribution of UD POSs | upos_dist_* |
Inflectional morphology (VerbInflection) | |
Inflectional morphology of lexical verbs and auxiliaries | verbs_*, aux_* |
Verbal Predicate Structure (VerbPredicate) | |
Distribution of verbal heads and verbal roots | verbal_head_dist, verbal_root_perc |
Verb arity and distribution of verbs by arity | avg_verb_edges, verbal_arity_* |
Global and local parsed Tree Structures (TreeStructure) | |
Average depth of the whole syntactic tree | tree_depth |
Average length of dependency links and of the longest link | avg_links_len, max_links_len |
Average length of prepositional chains and distribution by depth | avg_prep_chain_len, prep_dist_1 |
Average clause length | avg_token_per_clause |
Order of elements (Order) | |
Relative order of subject and object | subj_pre, subj_post, obj_post |
Syntactic relations (SyntacticDep) | |
Distribution of dependency relations | dep_dist_* |
Use of Subordination (Subord) | |
Distribution of subordinate clauses | subordinate_prop_dist |
Average length of subordination chains and distribution by depth | avg_subord_chain_len, subordinate_dist_1 |
Relative order of subordinate clauses | subordinate_post |
Type | Tag | Description | Example |
---|---|---|---|
Content | Cognitive criteria | ||
Contextual information | Details of time and space in the testimony. | It was <ci>June</ci> and we were in <ci>Valencia</ci>. | |
Superfluous details | Peripheral and unnecessary details for understanding the facts. | <sd>The ice cream was chocolate and vanilla with macadamia nuts.</sd> | |
Quantity of details | Descriptions about the place, people, objects, temporal context, etc. Attribute “n” indicates the amount of details provided. | I was walking with <qd n=”2”>my friend Maria to an art exhibition</qd>. | |
Motivational criteria | |||
Admitting lack of memory | Raising doubts or acknowledging not remembering a detail. | <lm>I don’t remember the street.</lm> | |
Spontaneous corrections | Spontaneous self-correction of a detail. Attribute “corrsp” indicates the actual correct word. | He stole her <err corrsp =”handbag”>wallet</err>. | |
Speech Disfluencies | False start | Truncated sentences restarted with a new train of thought. | <fs>Then, all of a sudden</fs>.... We were talking and all of a sudden we saw that behind the ice cream stand [...] |
Repetition | Words or phrases repeated. Attribute “n” indicates the number of repetitions. | I go with a friend to <rep n=”3”>the</rep> garden of Viveros. | |
Grammatical Corrections | Self-correction of grammar-related errors. Attribute “corrgr” indicates the actual correct word. | It was <err corrgr="the">a</err> hottest day of the year. | |
Hesitation | Speech fillers. Attribute “in_text” indicates what should be in the text in place of the filler. | The woman <vac in_text=”” >ehhh</vac> had dark hair |
Frequency Distribution | ||||||
---|---|---|---|---|---|---|
Part-of-Speech | T (%) | SD (%) | All (%) | Lexical Overlap | Spearman Corr. | |
Closed-class words | 7685 (54.84%) | 5993 (54.01%) | 13,678 (54.47%) | 64.36% | 0.871 | |
Adpositions | 1985 (14.16%) | 1473 (13.28%) | 3458 (13.77%) | 75.00% | 0.965 | |
Auxiliaries | 661 (4.72%) | 538 (4.85%) | 1199 (4.77%) | 58.33% | 0.964 | |
Conjunctions | 1480 (10.56%) | 1260 (11.36%) | 2740 (10.91%) | 100% | 0.952 | |
Determiners | 2060 (14.70%) | 1592 (14.35%) | 3652 (14.54%) | 60.00% | 0.965 | |
Numerals | 251 (1.79%) | 211 (1.90%) | 462 (1.84%) | 27.78% | 0.900 | |
Pronouns | 1248 (8.91%) | 919 (8.28%) | 2167 (8.63%) | 76.92% | 0.867 | |
Open-class words | 6315 (45.06%) | 5089 (45.86%) | 11,404 (45.42%) | 46.60% | 0.748 | |
Adjectives | 425 (3.03%) | 513 (4.62%) | 938 (3.74%) | 32.75% | 0.667 | |
Adverbs | 727 (5.19%) | 557 (5.02%) | 1284 (5.11%) | 60.92% | 0.797 | |
Nouns | 2634 (18.8%) | 2113 (19.04%) | 4747 (18.9%) | 42.52% | 0.803 | |
Proper nouns | 299 (2.13%) | 188 (1.69%) | 487 (1.94%) | 40.00% | 0.972 | |
Verbs | 2230 (15.91%) | 1718 (15.48%) | 3948 (15.72%) | 44.69% | 0.857 | |
Other | 14 (0.1%) | 14 (0.13%) | 28 (0.11%) | 20.00% | - | |
Total | 14,014 (100%) | 11,096 (100%) | 25,110 (100%) | 48.98% | 0.846 |
Adjectives | Adverbs | Nouns | Verbs | |||||
---|---|---|---|---|---|---|---|---|
T | SD | T | SD | T | SD | T | SD | |
1 | negro | blanco | no | no | bolso | bolso | ver | ver |
2 | caluroso | largo | detrás | detrás | hombre | hombre | correr | correr |
3 | asiático | bueno | más | mucho | mujer | mujer | ir | robar |
4 | largo | moreno | mucho | entonces | helado | chico | robar | ir |
5 | blanco | negro | entonces | más | chico | helado | coger | salir |
6 | bueno | joven | antes | así | amigo | amigo | salir | coger |
7 | contrario | caluroso | así | también | persona | pelo | ser | ser |
8 | corto | asiático | también | antes | señor | persona | pasear | pasear |
9 | moreno | fuerte | ya | menos | ladrón | señor | conseguir | estar |
10 | fresco | rubio | después | después | día | ladrón | estar | conseguir |
Mean and Standard Deviation | Variation | |||||||
---|---|---|---|---|---|---|---|---|
Group | Feature | T | Stdev | SD | Stdev | T > SD | T = SD | T < SD |
Raw Text | n_tokens | 82.19 | 45.23 | 64.80 | 39.75 | 75.00% | 1.04% | 23.96% |
n_sentences | 4.23 | 2.10 | 3.30 | 1.67 | 56.25% | 28.13% | 15.63% | |
POS | upos_dist_ADP | 12.64 | 2.99 | 12.03 | 3.44 | 59.38% | 0.52% | 40.10% |
upos_dist_VERB | 14.74 | 3.17 | 14.05 | 3.54 | 58.85% | 0.52% | 40.63% | |
upos_dist_PRON | 7.84 | 2.86 | 7.22 | 2.97 | 57.81% | 0.52% | 41.67% | |
upos_dist_ADV | 4.38 | 2.37 | 3.90 | 2.68 | 55.21% | 2.08% | 42.71% | |
upos_dist_PROPN | 1.92 | 1.62 | 1.35 | 1.50 | 51.56% | 22.92% | 25.52% | |
upos_dist_NOUN | 16.96 | 2.80 | 17.90 | 3.23 | 39.58% | 1.56% | 58.85% | |
upos_dist_CCONJ | 5.60 | 2.47 | 6.44 | 2.79 | 35.94% | 2.08% | 61.98% | |
upos_dist_ADJ | 2.13 | 2.06 | 4.07 | 2.84 | 23.96% | 6.25% | 69.79% | |
upos_dist_INTJ | 0.01 | 0.10 | 0.06 | 0.37 | 1.04% | 94.79% | 4.17% | |
VerbInflection | verbs_form_dist_Inf | 15.15 | 10.70 | 13.18 | 11.36 | 48.44% | 13.54% | 38.02% |
verbs_tense_dist_Pres | 19.35 | 24.89 | 15.67 | 23.80 | 39.58% | 36.46% | 23.96% | |
aux_tense_dist_Pres | 14.08 | 28.83 | 9.87 | 23.66 | 19.27% | 71.35% | 9.38% | |
aux_mood_dist_Ind | 91.07 | 27.09 | 84.83 | 35.31 | 14.06% | 77.08% | 8.85% | |
TreeStructure | max_links_len | 15.11 | 7.71 | 13.24 | 7.18 | 58.33% | 4.69% | 36.98% |
n_prepositional_chains | 2.59 | 2.45 | 1.94 | 1.84 | 45.31% | 25.52% | 29.17% | |
avg_token_per_clause | 6.71 | 1.40 | 7.01 | 1.73 | 41.67% | 0.52% | 57.81% | |
SyntacticDep | dep_dist_obl | 6.22 | 2.60 | 5.41 | 2.71 | 57.81% | 0.52% | 41.67% |
dep_dist_acl:relcl | 2.32 | 2.03 | 1.84 | 1.85 | 55.21% | 8.33% | 36.46% | |
dep_dist_iobj | 3.35 | 2.04 | 3.76 | 2.61 | 43.75% | 2.08% | 54.17% | |
dep_dist_fixed | 1.01 | 1.27 | 0.69 | 1.12 | 39.58% | 32.29% | 28.13% | |
dep_dist_cc | 5.51 | 2.43 | 6.32 | 2.78 | 35.94% | 2.08% | 61.98% | |
dep_dist_conj | 4.16 | 2.39 | 5.33 | 3.11 | 34.90% | 2.60% | 62.50% | |
dep_dist_amod | 1.60 | 1.62 | 2.93 | 2.22 | 22.92% | 9.90% | 67.19% | |
dep_dist_nsubj:pass | 0.08 | 0.37 | 0.02 | 0.14 | 4.69% | 93.23% | 2.08% | |
Subord | subordinate_proposition_dist | 57.87 | 15.03 | 53.70 | 16.84 | 53.13% | 8.85% | 38.02% |
avg_subordinate_chain_len | 1.22 | 0.27 | 1.16 | 0.36 | 41.67% | 31.77% | 26.56% | |
principal_proposition_dist | 42.13 | 15.03 | 46.30 | 16.84 | 38.02% | 8.85% | 53.13% | |
subordinate_dist_2 | 17.05 | 19.71 | 13.96 | 22.15 | 36.98% | 37.50% | 25.52% |
Frequency | Variation | |||||
---|---|---|---|---|---|---|
Type | TAG | T | SD | T > SD | T = SD | T < SD |
Cognitive criteria | Contextual information | 288 | 180 | 65.63 | 27.08 | 7.29 |
Superfluous details | 190 | 132 | 52.08 | 39.58 | 8.34 | |
Quantity of details | 478 | 312 | 80.21 | 14.58 | 5.21 | |
Type average | 956 | 624 | 65.97 | 27.08 | 6.95 | |
Motivational criteria | Lack of memory | 65 | 19 | 21.87 | 75.00 | 3.13 |
Spontaneous corrections | 16 | 8 | 7.29 | 89.06 | 3.65 | |
Type average | 81 | 27 | 14.58 | 82.03 | 3.39 | |
Speech disfluencies | False start | 79 | 56 | 21.35 | 67.19 | 11.46 |
Repetition | 159 | 158 | 25.52 | 47.40 | 27.08 | |
Grammatical corrections | 42 | 37 | 15.63 | 70.83 | 13.54 | |
Hesitation | 557 | 567 | 33.85 | 22.92 | 43.23 | |
Type average | 837 | 818 | 24.09 | 52.08 | 23.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solà-Sales, S.; Alzetta, C.; Moret-Tatay, C.; Dell’Orletta, F. Analysing Deception in Witness Memory through Linguistic Styles in Spontaneous Language. Brain Sci. 2023, 13, 317. https://doi.org/10.3390/brainsci13020317
Solà-Sales S, Alzetta C, Moret-Tatay C, Dell’Orletta F. Analysing Deception in Witness Memory through Linguistic Styles in Spontaneous Language. Brain Sciences. 2023; 13(2):317. https://doi.org/10.3390/brainsci13020317
Chicago/Turabian StyleSolà-Sales, Sara, Chiara Alzetta, Carmen Moret-Tatay, and Felice Dell’Orletta. 2023. "Analysing Deception in Witness Memory through Linguistic Styles in Spontaneous Language" Brain Sciences 13, no. 2: 317. https://doi.org/10.3390/brainsci13020317
APA StyleSolà-Sales, S., Alzetta, C., Moret-Tatay, C., & Dell’Orletta, F. (2023). Analysing Deception in Witness Memory through Linguistic Styles in Spontaneous Language. Brain Sciences, 13(2), 317. https://doi.org/10.3390/brainsci13020317