Protective Effects of Sodium Para-Aminosalicylic Acid on Lead and Cadmium Co-Exposure in SH-SY5Y Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Cell Culture
2.3. Experimental Treatments
2.4. Cytotoxicity Test with the MTT Assay
2.5. ROS Production Detection
2.6. Immunofluorescence
2.7. Western Blotting Assay
2.8. Statistical Analysis
3. Results
3.1. Establishment of SH-SY5Y Cell Nerve Injury Model Induced by Pb and Cd
3.2. Co-Exposure of Lead and Cadmium Can Induce Oxidative Stress in SH-SY5Y Cells
3.3. Effects of Single and Combined Exposure of Lead and Cadmium and Sodium para-aminosalicylic acid (PAS-Na) Intervention on PI3K/Akt Signaling Pathway
3.4. PAS-Na Attenuates the Increase in Nrf2 and HO-1 Protein Expression Caused by Lead and Cadmium Co-Exposure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization and Regional Office for Europe. Health Risks of Heavy Metals from Long-Range Transboundary Air Pollution; World Health Organization and Regional Office for Europe: Copenhagen, Denmark, 2007. [Google Scholar]
- Cai, Q.L.; Peng, D.J.; Lin, Z.; Chen, J.W.; Yong, L.; Luo, H.L.; Ou, S.Y.; Huang, M.L.; Jiang, Y.M. Impact of Lead Exposure on Thyroid Status and IQ Performance among School-age Children Living Nearby a Lead-Zinc Mine in China. Neurotoxicology 2021, 82, 177–185. [Google Scholar] [CrossRef]
- Mu, Y.; Yu, J.; Ji, W.; Chen, L.; Wang, X.; Yan, B. Alleviation of Pb(2+) pollution-induced oxidative stress and toxicity in microglial cells and zebrafish larvae by chicoric acid. Ecotoxicol. Environ. Saf. 2019, 180, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Zhang, H.; Niu, J.; Luo, B.; Wang, H.; Tian, M.; Li, X. Effects of lead and cadmium co-exposure on liver function in residents near a mining and smelting area in northwestern China. Env. Geochem. Health 2022. [CrossRef]
- Ji, X.; Wang, B.; Paudel, Y.N.; Li, Z.; Zhang, S.; Mou, L.; Liu, K.; Jin, M. Protective Effect of Chlorogenic Acid and Its Analogues on Lead-Induced Developmental Neurotoxicity Through Modulating Oxidative Stress and Autophagy. Front. Mol. Biosci. 2021, 8, 655549. [Google Scholar] [CrossRef]
- Cai, J.Y.; Zhang, W.L. Advances of Epidemiological Study on Population Exposure and Health Hazard of Environmental Cadmium Pollution. J. Environ. Hyg. 2019, 9, 621–627. (In Chinese) [Google Scholar]
- Weuve, J.; Press, D.Z.; Grodstein, F.; Wright, R.O.; Hu, H.; Weisskopf, M.G. Cumulative exposure to lead and cognition in persons with Parkinson’s disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2013, 28, 176–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, B.S.; Stewart, W.F.; Bolla, K.I.; Simon, P.D.; Bandeen-Roche, K.; Gordon, P.B.; Links, J.M.; Todd, A.C. Past adult lead exposure is associated with longitudinal decline in cognitive function. Neurology 2000, 55, 1144–1150. [Google Scholar] [CrossRef] [Green Version]
- Bellinger, D.C.; Matthews-Bellinger, J.A.; Kordas, K. A developmental perspective on early-life exposure to neurotoxicants. Environ. Int. 2016, 94, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.A. Is Prenatal Lead Exposure a Concern in Infancy? What Is the Evidence? Adv. Neonatal Care Off. J. Natl. Assoc. Neonatal Nurses 2015, 15, 416–420. [Google Scholar] [CrossRef]
- Santa Maria, M.P.; Hill, B.D.; Kline, J. Lead (Pb) neurotoxicology and cognition. Applied neuropsychology. Child 2019, 8, 272–293. [Google Scholar]
- Mason, L.H.; Harp, J.P.; Han, D.Y. Pb neurotoxicity: Neuropsychological effects of lead toxicity. BioMed Res. Int. 2014, 2014, 840547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellinger, D.C. Very low lead exposures and children’s neurodevelopment. Curr. Opin. Pediatr. 2008, 20, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Karri, V.; Kumar, V.; Ramos, D.; Oliveira, E.; Schuhmacher, M. An in vitro cytotoxic approach to assess the toxicity of heavy metals and their binary mixtures on hippocampal HT-22 cell line. Toxicol. Lett. 2018, 282, 25–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karri, V.; Schuhmacher, M.; Kumar, V. Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: A general review of metal mixture mechanism in brain. Environ. Toxicol. Pharmacol. 2016, 48, 203–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López, E.; Arce, C.; Oset-Gasque, M.J.; Cañadas, S.; González, M.P. Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free. Radic. Biol. Med. 2006, 40, 940–951. [Google Scholar] [CrossRef] [PubMed]
- de Souza, I.D.; de Andrade, A.S.; Dalmolin, R.J.S. Lead-interacting proteins and their implication in lead poisoning. Crit. Rev. Toxicol. 2018, 48, 375–386. [Google Scholar] [CrossRef]
- Liu, C.M.; Zheng, G.H.; Ming, Q.L.; Sun, J.M.; Cheng, C. Protective effect of quercetin on lead-induced oxidative stress and endoplasmic reticulum stress in rat liver via the IRE1/JNK and PI3K/Akt pathway. Free. Radic. Res. 2013, 47, 192–201. [Google Scholar] [CrossRef]
- Saedi, S.; Jafarzadeh Shirazi, M.R.; Niazi, A.; Tahmasebi, A.; Ebrahimie, E. Prepubertal exposure to high dose of cadmium induces hypothalamic injury through transcriptome profiling alteration and neuronal degeneration in female rats. Chem.-Biol. Interact. 2021, 337, 109379. [Google Scholar] [CrossRef]
- Li, X.; Huo, C.; Xiao, Y.; Xu, R.; Liu, Y.; Jia, X.; Wang, X. Bisdemethoxycurcumin Protection of Cardiomyocyte Mainly Depends on Nrf2/HO-1 Activation Mediated by the PI3K/AKT Pathway. Chem. Res. Toxicol. 2019, 32, 1871–1879. [Google Scholar] [CrossRef]
- Zhao, D.; Zhang, X. Selenium Antagonizes the Lead-Induced Apoptosis of Chicken Splenic Lymphocytes In Vitro by Activating the PI3K/Akt Pathway. Biol. Trace Elem. Res. 2018, 182, 119–129. [Google Scholar] [CrossRef]
- Yiming, Z.; Zhaoyi, L.; Jing, L.; Jinliang, W.; Zhiqiang, S.; Guangliang, S.; Shu, L. Cadmium induces the thymus apoptosis of pigs through ROS-dependent PTEN/PI3K/AKT signaling pathway. Environ. Sci. Pollut. Res. 2021, 28, 39982–39992. [Google Scholar] [CrossRef]
- Yang, F.; Chen, Z.R.; Yang, X.H.; Xu, Y.; Ran, N.J.; Liu, M.J.; Jin, S.G.; Jia, H.N.; Zhang, Y. Monomethyl lithospermate alleviates ischemic stroke injury in middle cerebral artery occlusion mice in vivo and protects oxygen glucose deprivation/reoxygenation induced SH-SY5Y cells in vitro via activation of PI3K/Akt signaling. Front. Pharmacol. 2022, 13, 1024439. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, T.; Li, D.; Ma, M.; Liang, X.; Ma, Z.; Ye, Q.; Yang, H.; Li, M.; Qu, A.; et al. The synergistic effect of Angelica sinensis (Oliv.) Diels and Rehmannia glutinosa (Gaertn.) DC. on antioxidant activity and protective ability against cell injury. J. Food Biochem. 2022, 46, e14196. [Google Scholar] [CrossRef] [PubMed]
- Imam, S.Z.; Lantz-McPeak, S.M.; Cuevas, E.; Rosas-Hernandez, H.; Liachenko, S.; Zhang, Y.; Sarkar, S.; Ramu, J.; Robinson, B.L.; Jones, Y.; et al. Iron Oxide Nanoparticles Induce Dopaminergic Damage: In vitro Pathways and In Vivo Imaging Reveals Mechanism of Neuronal Damage. Mol. Neurobiol. 2015, 52, 913–926. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.F.; Ou, S.Y.; Jiang, Y.M.; Chen, H.B.; Deng, X.; Lu, S.; Wang, K.; Jiang, Y.H.; Li, G.; Lu, J.P. Effect of p-aminosalicylic acid on ultrastructure of hippocampus in rats exposed by subchronic lead. Toxicology 2009, 23, 213–216. (In Chinese) [Google Scholar]
- Luo, Y.N.; Li, Y.; Peng, D.J.; He, S.N.; Chen, J.W.; Li, S.J.; Yuan, Z.X.; Mo, Y.H.; Huang, X.W.; Jiang, Y.M. Effects of PAS-Na on learning and memory and amino acid neurotransmitters in young rats induced by lead. Toxicology 2016, 30, 444–447. (In Chinese) [Google Scholar]
- Rehman, K.; Fatima, F.; Waheed, I.; Akash, M.S.H. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem. 2018, 119, 157–184. [Google Scholar] [CrossRef]
- Sears, M.E. Chelation: Harnessing and enhancing heavy metal detoxification—A review. Sci. World J. 2013, 2013, 219840. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekaran, V.R.; Hsu, D.Z.; Liu, M.Y. Beneficial effect of sesame oil on heavy metal toxicity. JPEN J. Parenter. Enter. Nutr. 2014, 38, 179–185. [Google Scholar] [CrossRef]
- Zhou, R.; Zhao, J.; Li, D.; Chen, Y.; Xiao, Y.; Fan, A.; Chen, X.T.; Wang, H.L. Combined exposure of lead and cadmium leads to the aggravated neurotoxicity through regulating the expression of histone deacetylase 2. Chemosphere 2020, 252, 126589. [Google Scholar] [CrossRef]
- Zhao, J. Neurotoxicity Induced by Combined Exposure to Lead and Cadmium and the Regulatory Role of HDAC2. Master’s Thesis, Hefei University of Technology, Hefei, China, 2019. (In Chinese). [Google Scholar]
- Matovic, V.; Buha, A.; Dukic-Cosic, D.; Bulat, Z. Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. 2015, 78, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Flora, S.J.S.; Agrawal, S. Chapter 31—Arsenic, Cadmium, and Lead. In Reproductive and Developmental Toxicology, 2nd ed.; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 537–566. [Google Scholar]
- Flora, G.; Gupta, D.; Tiwari, A. Toxicity of lead: A review with recent updates. Interdiscip. Toxicol. 2012, 5, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Tubsakul, A.; Sangartit, W.; Pakdeechote, P.; Kukongviriyapan, V.; Apaijit, K.; Kukongviriyapan, U. Curcumin Mitigates Hypertension, Endothelial Dysfunction and Oxidative Stress in Rats with Chronic Exposure to Lead and Cadmium. Tohoku J. Exp. Med. 2021, 253, 69–76. [Google Scholar] [CrossRef]
- Nieboer, E.; Richardson, D.H.S. The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions. Environ. Pollut. Ser. B Chem. Phys. 1980, 1, 3–26. [Google Scholar] [CrossRef]
- Li, Z.G.; Zhou, F.K.; Yin, A.M.; Gao, Y.Y.; Jiang, X.; Liu, S.S.; Zhang, Y.Y.; Bo, D.D.; Xie, J.; Jia, Q.Y.; et al. Cellular damage of low-dose combined exposure to mercury, lead and cadmium on hippocampal neurons in rats. Zhonghua Yu Fang Yi Xue Za Zhi (Chin. J. Prev. Med.) 2018, 52, 976–982. [Google Scholar]
- Zhou, F.; Yin, G.; Gao, Y.; Liu, D.; Xie, J.; Ouyang, L.; Fan, Y.; Yu, H.; Zha, Z.; Wang, K.; et al. Toxicity assessment due to prenatal and lactational exposure to lead, cadmium and mercury mixtures. Environ. Int. 2019, 133, 105192. [Google Scholar] [CrossRef]
- He, Y.; Zou, L.; Luo, W.; Yi, Z.; Yang, P.; Yu, S.; Liu, N.; Ji, J.; Guo, Y.; Liu, P.; et al. Heavy metal exposure, oxidative stress and semen quality: Exploring associations and mediation effects in reproductive-aged men. Chemosphere 2020, 244, 125498. [Google Scholar] [CrossRef]
- Al-Ghafari, A.; Elmorsy, E.; Fikry, E.; Alrowaili, M.; Carter, W.G. The heavy metals lead and cadmium are cytotoxic to human bone osteoblasts via induction of redox stress. PLoS ONE 2019, 14, e0225341. [Google Scholar] [CrossRef] [Green Version]
- Bischoff, L.J.M.; Kuijper, I.A.; Schimming, J.P.; Wolters, L.; Braak, B.T.; Langenberg, J.P.; Noort, D.; Beltman, J.B.; van de Water, B. A systematic analysis of Nrf2 pathway activation dynamics during repeated xenobiotic exposure. Arch. Toxicol. 2019, 93, 435–451. [Google Scholar] [CrossRef] [Green Version]
- El-Missiry, M.A.; Shalaby, F. Role of beta-carotene in ameliorating the cadmium-induced oxidative stress in rat brain and testis. J. Biochem. Mol. Toxicol. 2000, 14, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Fiorim, J.; Simões, M.R.; de Azevedo, B.F.; Ribeiro, R.F.J.; Dos Santos, L.; Padilha, A.S.; Vassallo, D.V. Increased endothelial nitric oxide production after low level lead exposure in rats involves activation of angiotensin II receptors and PI3K/Akt pathway. Toxicology 2020, 443, 152557. [Google Scholar] [CrossRef]
- Tan, Y.; Cheng, H.; Su, C.; Chen, P.; Yang, X. PI3K/Akt Signaling Pathway Ameliorates Oxidative Stress-Induced Apoptosis upon Manganese Exposure in PC12 Cells. Biol. Trace Elem. Res. 2022, 200, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Su, L.; Yang, L.; Zhu, L.; Liu, Z.; Duan, R. Effect of exogenous TGF-β1 on the cadmium-induced nephrotoxicity by inhibiting apoptosis of proximal tubular cells through PI3K-AKT-mTOR signaling pathway. Chem. Biol. Interact. 2017, 269, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Xing, T.; Tang, M.; Yong, W.; Yan, D.; Deng, H.; Wang, H.; Wang, M.; Chen, J.; Ruan, D. Involvement of cyclin D1/CDK4 and pRb mediated by PI3K/AKT pathway activation in Pb2+-induced neuronal death in cultured hippocampal neurons. Toxicol. Appl. Pharmacol. 2008, 229, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.J.; Chen, R.C.; Sun, G.B.; Yang, L.P.; Zhu, Y.D.; Xu, X.D.; Sun, X.B. Protective effects of total flavonoids from Clinopodium chinense (Benth.) O. Ktze on myocardial injury in vivo and in vitro via regulation of Akt/Nrf2/HO-1 pathway. Phytomedicine Int. J. Phytother. Phytopharm. 2018, 40, 88–97. [Google Scholar] [CrossRef]
- Li, S.J.; Li, Y.; Chen, J.W.; Yuan, Z.X.; Mo, Y.H.; Lu, G.D.; Jiang, Y.M.; Ou, C.Y.; Wang, F.; Huang, X.W.; et al. Sodium Para-aminosalicylic Acid Protected Primary Cultured Basal Ganglia Neurons of Rat from Manganese-Induced Oxidative Impairment and Changes of Amino Acid Neurotransmitters. Biol. Trace Elem. Res. 2016, 170, 357–365. [Google Scholar] [CrossRef]
- Wang, F.; Wang, C.; Jiang, Y.; Deng, X.; Lu, J.; Ou, S. Protective role of sodium para-amino salicylic acid against manganese-induced hippocampal neurons damage. Environ. Toxicol. Pharmacol. 2014, 37, 1071–1078. [Google Scholar] [CrossRef]
- Peng, D.; Li, J.; Deng, Y.; Zhu, X.; Zhao, L.; Zhang, Y.; Li, Z.; Ou, S.; Li, S.; Jiang, Y. Sodium para-aminosalicylic acid inhibits manganese-induced NLRP3 inflammasome-dependent pyroptosis by inhibiting NF-κB pathway activation and oxidative stress. J. Neuroinflammation 2020, 17, 343. [Google Scholar] [CrossRef]
- He, S.N.; Qin, W.X.; Lu, Y.H. Effect of sodium para-aminosalicylic acid on apoptosis of PC12 cells induced by lead-exposure. Chin. J. Pharm. Toxicol. 2017, 31, 159–164. (In Chinese) [Google Scholar]
- Hong, L.; Jiang, W.; Zheng, W.; Zeng, S. HPLC analysis of para-aminosalicylic acid and its metabolite in plasma, cerebrospinal fluid and brain tissues. J. Pharm. Biomed. Anal. 2011, 54, 1101–1109. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Jiang, Y.M.; Zhang, Y.; Jiang, W.; Wang, X.; Cowan, D.M. Chelation therapy of manganese intoxication with para-aminosalicylic acid (PAS) in Sprague-Dawley rats. Neurotoxicology 2009, 30, 240–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.C.; Wang, F.; Li, S.J.; Zhao, L.; Li, J.Y.; Deng, Y.; Zhu, X.J.; Zhang, Y.W.; Peng, D.J.; Jiang, Y.M. Sodium Para-aminosalicylic Acid Reverses Changes of Glutamate Turnover in Manganese-Exposed Rats. Biol. Trace Elem. Res. 2020, 197, 544–554. [Google Scholar] [CrossRef] [PubMed]
- Li, S.J.; Qin, W.X.; Peng, D.J.; Yuan, Z.X.; He, S.N.; Luo, Y.N.; Aschner, M.; Jiang, Y.M.; Liang, D.Y.; Xie, B.Y.; et al. Sodium P-aminosalicylic acid inhibits sub-chronic manganese-induced neuroinflammation in rats by modulating MAPK and COX-2. Neurotoxicology 2018, 64, 219–229. [Google Scholar] [CrossRef]
- Tandon, S.K.; Chandra, S.V.; Singh, J.; Husain, R.; Seth, P.K. Chelation in metal intoxication. I. In vivo effect of chelating agents on liver and testis of manganese administered rats. Environ. Res. 1975, 9, 18–25. [Google Scholar] [CrossRef]
- Li, Z.C.; Wang, L.L.; Zhao, Y.S.; Peng, D.J.; Chen, J.; Jiang, S.Y.; Zhao, L.; Aschner, M.; Li, S.J.; Jiang, Y.M. Sodium para-aminosalicylic acid ameliorates lead-induced hippocampal neuronal apoptosis by suppressing the activation of the IP(3)R-Ca(2+)-ASK1-p38 signaling pathway. Ecotoxicol. Environ. Saf. 2022, 241, 113829. [Google Scholar] [CrossRef]
- Zhao, Y.S.; Li, J.Y.; Li, Z.C.; Wang, L.L.; Gan, C.L.; Chen, J.; Jiang, S.Y.; Aschner, M.; Ou, S.Y.; Jiang, Y.M. Sodium Para-aminosalicylic Acid Inhibits Lead-Induced Neuroinflammation in Brain Cortex of Rats by Modulating SIRT1/HMGB1/NF-κB Pathway. Neurochem. Res. 2023, 48, 238–249. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, J.-C.; Deng, Y.; Song, H.-X.; Fang, Y.-Y.; Gan, C.-L.; Lin, J.-J.; Luo, J.-J.; Zheng, X.-W.; Aschner, M.; Jiang, Y.-M. Protective Effects of Sodium Para-Aminosalicylic Acid on Lead and Cadmium Co-Exposure in SH-SY5Y Cells. Brain Sci. 2023, 13, 382. https://doi.org/10.3390/brainsci13030382
Peng J-C, Deng Y, Song H-X, Fang Y-Y, Gan C-L, Lin J-J, Luo J-J, Zheng X-W, Aschner M, Jiang Y-M. Protective Effects of Sodium Para-Aminosalicylic Acid on Lead and Cadmium Co-Exposure in SH-SY5Y Cells. Brain Sciences. 2023; 13(3):382. https://doi.org/10.3390/brainsci13030382
Chicago/Turabian StylePeng, Jian-Chao, Yue Deng, Han-Xiao Song, Yuan-Yuan Fang, Cui-Liu Gan, Jun-Jie Lin, Jing-Jing Luo, Xiao-Wei Zheng, Michael Aschner, and Yue-Ming Jiang. 2023. "Protective Effects of Sodium Para-Aminosalicylic Acid on Lead and Cadmium Co-Exposure in SH-SY5Y Cells" Brain Sciences 13, no. 3: 382. https://doi.org/10.3390/brainsci13030382
APA StylePeng, J. -C., Deng, Y., Song, H. -X., Fang, Y. -Y., Gan, C. -L., Lin, J. -J., Luo, J. -J., Zheng, X. -W., Aschner, M., & Jiang, Y. -M. (2023). Protective Effects of Sodium Para-Aminosalicylic Acid on Lead and Cadmium Co-Exposure in SH-SY5Y Cells. Brain Sciences, 13(3), 382. https://doi.org/10.3390/brainsci13030382