Carotenoids: Role in Neurodegenerative Diseases Remediation
Abstract
:1. Introduction
2. Types of Neurodegenerative Diseases
3. Role of Carotenoids and Background of Neurodegenerative Diseases
4. Effects of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) into Oxidative Stress (OS)
5. Game Changer Carotenoids for Parkinson’s Disease
6. Carotenoids as Anti-Apoptotic Agent
7. Clinical Studies
8. Safety and Toxicity of Carotenoids
9. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Etminan, M.; Gill, S.S.; Samii, A. Intake of Vitamin E, Vitamin C, and Carotenoids and the Risk of Parkinson’s Disease: A Meta-Analysis. Lancet Neurol. 2005, 4, 362–365. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Hwang, J.; Shim, E.; Chung, E.J.; Jang, S.H.; Koh, S.B. Association of Serum Carotenoid, Retinol, and Tocopherol Concentrations with the Progression of Parkinson’s Disease. Nutr. Res. Pract. 2017, 11, 114–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manochkumar, J.; Doss, C.G.P.; El-Seedi, H.R.; Efferth, T.; Ramamoorthy, S. The Neuroprotective Potential of Carotenoids in Vitro and in Vivo. Phytomedicine 2021, 91, 153676. [Google Scholar] [CrossRef]
- Rao, A.V.; Rao, L.G. Carotenoids and Human Health. Pharmacol. Res. 2007, 55, 207–216. [Google Scholar] [CrossRef]
- Johnson, C.C.; Gorell, J.M.; Rybicki, B.A.; Sanders, K.; Peterson, E.L. Adult Nutrient Intake as a Risk Factor for Parkinson’s Disease. Int. J. Epidemiol. 1999, 28, 1102–1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Sun, Z.; Sun, P.; Chen, T.; Chen, F. Microalgal Carotenoids: Beneficial Effects and Potential in Human Health. Food Funct. 2014, 5, 413–425. [Google Scholar] [CrossRef]
- Przybylska, S. Lycopene—A Bioactive Carotenoid Offering Multiple Health Benefits: A Review. Int. J. Food Sci. Technol. 2020, 55, 11–32. [Google Scholar] [CrossRef]
- Hughes, K.C.; Gao, X.; Kim, I.Y.; Rimm, E.B.; Wang, M.; Weisskopf, M.G.; Schwarzschild, M.A.; Ascherio, A. Intake of Antioxidant Vitamins and Risk of Parkinson’s Disease. Mov. Disord. 2016, 31, 1909–1914. [Google Scholar] [CrossRef] [Green Version]
- Svilaas, A.; Sakhi, A.K.; Andersen, L.F.; Svilaas, T.; Ström, E.C.; Jacobs, D.R.; Ose, L.; Blomhoff, R. Intakes of Antioxidants in Coffee, Wine, and Vegetables Are Correlated with Plasma Carotenoids in Humans. J. Nutr. 2004, 134, 562–567. [Google Scholar] [CrossRef] [Green Version]
- Fuller, B.; Smith, D.; Howerton, A.; Kern, D. Anti-Inflammatory Effects of CoQ10 and Colorless Carotenoids. J. Cosmet. Dermatol. 2006, 5, 30–38. [Google Scholar] [CrossRef]
- Prema, A.; Janakiraman, U.; Manivasagam, T.; Arokiasamy, J.T. Neuroprotective Effect of Lycopene against MPTP Induced Experimental Parkinson’s Disease in Mice. Neurosci. Lett. 2015, 599, 12–19. [Google Scholar] [CrossRef]
- Park, H.A.; Ellis, A.C. Dietary Antioxidants and Parkinson’s Disease. Antioxidants 2020, 9, 570. [Google Scholar] [CrossRef] [PubMed]
- Milani, A.; Basirnejad, M.; Shahbazi, S.; Bolhassani, A. Carotenoids: Biochemistry, Pharmacology and Treatment. Br. J. Pharmacol. 2017, 174, 1290–1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ying, A.F.; Khan, S.; Wu, Y.; Jin, A.; Wong, A.S.Y.; Tan, E.K.; Yuan, J.M.; Koh, W.P.; Tan, L.C.S. Dietary Antioxidants and Risk of Parkinson’s Disease in the Singapore Chinese Health Study. Mov. Disord. 2020, 35, 1765–1773. [Google Scholar] [CrossRef] [PubMed]
- Dewanjee, S.; Zia-Ul-Haq, M.; Riaz, M.; Sarkhel, S.; Chakraborty, P.; Ahmed, S. Carotenoids as antiparkinson agents. In Carotenoids: Structure and Function in the Human Body; Springer: Berlin/Heidelberg, Germany, 2021; pp. 533–554. [Google Scholar]
- Biswal, S. Oxidative Stress and Astaxanthin: The Novel Supernutrient Carotenoid. Int. J. Health Allied Sci. 2014, 3, 147. [Google Scholar] [CrossRef]
- Yuan, J.P.; Peng, J.; Yin, K.; Wang, J.H. Potential Health-Promoting Effects of Astaxanthin: A High-Value Carotenoid Mostly from Microalgae. Mol. Nutr. Food Res. 2011, 55, 150–165. [Google Scholar] [CrossRef]
- Ahmed, S.; Khan, S.T.; Aziz, A.; Gul, S.; Buvnariu, L.; Zia-Ul-Haq, M. Role of Carotenoids in Neurological Diseases. In Carotenoids: Structure and Function in the Human Body; Springer: Berlin/Heidelberg, Germany, 2021; pp. 555–568. [Google Scholar]
- Tsuboi, H.; Shimoi, K.; Kinae, N.; Oguni, I.; Hori, R.; Kobayashi, F. Depressive Symptoms Are Independently Correlated with Lipid Peroxidation in a Female Population: Comparison with Vitamins and Carotenoids. J. Psychosom. Res. 2004, 56, 53–58. [Google Scholar] [CrossRef]
- Ådén, E.; Carlsson, M.; Poortvliet, E.; Stenlund, H.; Linder, J.; Edström, M.; Forsgren, L.; Håglin, L. Dietary Intake and Olfactory Function in Patients with Newly Diagnosed Parkinson’s Disease: A Case-Control Study. Nutr. Neurosci. 2011, 14, 25–31. [Google Scholar] [CrossRef]
- Talebi, S.; Ghoreishy, S.M.; Jayedi, A.; Travica, N.; Mohammadi, H. Dietary Antioxidants and Risk of Parkinson’s Disease: A Systematic Review and Dose-Response Meta-Analysis of Observational Studies. Adv. Nutr. 2022, 13, 1493–1504. [Google Scholar] [CrossRef]
- Mullan, K.; Williams, M.A.; Cardwell, C.R.; McGuinness, B.; Passmore, P.; Silvestri, G.; Woodside, J.V.; McKay, G.J. Serum Concentrations of Vitamin E and Carotenoids Are Altered in Alzheimer’s Disease: A Case-Control Study. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2017, 3, 432–439. [Google Scholar] [CrossRef] [Green Version]
- Akinade, T.C.; Babatunde, O.O.; Adedara, A.O.; Adeyemi, O.E.; Otenaike, T.A.; Ashaolu, O.P.; Johnson, T.O.; Terriente-Felix, A.; Whitworth, A.J.; Abolaji, A.O. Protective Capacity of Carotenoid Trans-Astaxanthin in Rotenone-Induced Toxicity in Drosophila Melanogaster. Sci. Rep. 2022, 12, 4594. [Google Scholar] [CrossRef]
- Galasso, C.; Orefice, I.; Pellone, P.; Cirino, P.; Miele, R.; Ianora, A.; Brunet, C.; Sansone, C. On the Neuroprotective Role of Astaxanthin: New Perspectives? Marine Drugs 2018, 16, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohmiya, M.; Tanaka, M.; Wei Tak, N.; Yanagisawa, M.; Tanino, Y.; Suzuki, Y.; Okamoto, K.; Yamamoto, Y. Redox Status of Plasma Coenzyme Q10 Indicates Elevated Systemic Oxidative Stress in Parkinson’s Disease. J. Neurol. Sci. 2004, 223, 161–166. [Google Scholar] [CrossRef]
- Tung, K.-H. Dietary Consumption of Carotenoids as a Risk Factor for Parkinson’s Disease. Ph.D. Thesis, University of Hawai’I at Mānoa, Honolulu, HI, USA, 1994. Available online: https://www.proquest.com/openview/db67887d884c10dd2dddc82471d9fb7a/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed on 2 January 2023).
- Grimmig, B.; Daly, L.; Subbarayan, M.; Hudson, C.; Williamson, R.; Nash, K.; Bickford, P.C. Astaxanthin Is Neuroprotective in an Aged Mouse Model of Parkinson’s Disease. Oncotarget 2018, 9, 10388–10401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, E.M.; Allsopp, P.J.; Magee, P.J.; Gill, C.I.; Nitecki, S.; Strain, C.R.; Mcsorley, E.M. Seaweed and Human Health. Nutr. Rev. 2014, 72, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Seifert, G.; Schilling, K.; Steinhäuser, C. Astrocyte Dysfunction in Neurological Disorders: A Molecular Perspective. Nat. Rev. Neurosci. 2006, 7, 194–206. [Google Scholar] [CrossRef]
- Rajkowska, G.; Miguel-Hidalgo, J.J.; Wei, J.; Dilley, G.; Pittman, S.D.; Meltzer, H.Y.; Overholser, J.C.; Roth, B.L.; Stockmeier, C.A. Morphometric Evidence for Neuronal and Glial Prefrontal Cell Pathology in Major Depression. Biol. Psych. 1999, 45, 1085–1098. [Google Scholar] [CrossRef] [PubMed]
- Hanisch, U.-K.; Kettenmann, H. Microglia: Active Sensor and Versatile Effector Cells in the Normal and Pathologic Brain. Nat. Neurosci. 2007, 10, 1387–1394. [Google Scholar] [CrossRef]
- Mitra, S.; Rauf, A.; Tareq, A.M.; Jahan, S.; Emran, T.B.; Shahriar, T.G.; Dhama, K.; Alhumaydhi, F.A.; Aljohani, A.S.M.; Rebezov, M.; et al. Potential Health Benefits of Carotenoid Lutein: An Updated Review. Food Chem. Toxicol. 2021, 154, 112328. [Google Scholar] [CrossRef] [PubMed]
- Park, H.A.; Hayden, M.M.; Bannerman, S.; Jansen, J.; Crowe-White, K.M. Anti-Apoptotic Effects of Carotenoids in Neurodegeneration. Molecules 2020, 25, 3453. [Google Scholar] [CrossRef]
- Kabir, M.T.; Rahman, M.H.; Shah, M.; Jamiruddin, M.R.; Basak, D.; Al-Harrasi, A.; Bhatia, S.; Ashraf, G.M.; Najda, A.; El-kott, A.F.; et al. Therapeutic Promise of Carotenoids as Antioxidants and Anti-Inflammatory Agents in Neurodegenerative Disorders. Biomed. Pharmacother. 2022, 146, 610. [Google Scholar] [CrossRef] [PubMed]
- Lakey-Beitia, J.; Jagadeesh Kumar, D.; Hegde, M.L.; Rao, K.S. Carotenoids as Novel Therapeutic Molecules against Neurodegenerative Disorders: Chemistry and Molecular Docking Analysis. Int. J. Mol. Sci. 2019, 20, 5553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, K.S.; Shin, M.; Kim, S.; Lee, S.B. Recent Advances in Studies on the Therapeutic Potential of Dietary Carotenoids in Neurodegenerative Diseases. Oxidative Med. Cell. Longev. 2018, 2018, 458. [Google Scholar] [CrossRef]
- McCord, J.M.; Fridovich, I. Superoxide Dismutase. An Enzymic Function for Erythrocuprein (Hemocuprein). J. Biol. Chem. 1969, 244, 6049–6055. [Google Scholar] [CrossRef] [PubMed]
- Barbacanne, M.A.; Souchard, J.P.; Darblade, B.; Iliou, J.P.; Nepveu, F.; Pipy, B.; Bayard, F.; Arnal, J.F. Detection of Superoxide Anion Released Extracellularly by Endothelial Cells Using Cytochrome c Reduction, ESR, Fluorescence and Lucigenin-Enhanced Chemiluminescence Techniques. Free. Radic. Biol. Med. 2000, 29, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Rai, S.N.; Yadav, S.K.; Singh, D.; Singh, S.P. Ursolic Acid Attenuates Oxidative Stress in Nigrostriatal Tissue and Improves Neurobehavioral Activity in MPTP-Induced Parkinsonian Mouse Model. J. Chem. Neuroanat. 2016, 71, 41–49. [Google Scholar] [CrossRef]
- Dexter, D.T.; Holley, A.E.; Flitter, W.D.; Slater, T.F.; Wells, F.R.; Daniel, S.E.; Lees, A.J.; Jenner, P.; Marsden, C.D. Increased Levels of Lipid Hydroperoxides in the Parkinsonian Substantia Nigra: An HPLC and ESR Study. Mov. Disord. 1994, 9, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Hald, A.; Lotharius, J. Oxidative Stress and Inflammation in Parkinson’s Disease: Is There a Causal Link? Exp. Neurol. 2005, 193, 279–290. [Google Scholar] [CrossRef]
- Khan, M.M.; Kempuraj, D.; Thangavel, R.; Zaheer, A. Protection of MPTP-Induced Neuroinflammation and Neurodegeneration by Pycnogenol. Neurochem. Int. 2013, 62, 379–388. [Google Scholar] [CrossRef] [Green Version]
- Pino-Lagos, K.; Guo, Y.; Noelle, R.J. Retinoic Acid: A Key Player in Immunity. BioFactors 2010, 36, 430–436. [Google Scholar] [CrossRef]
- Ross, S.A.; McCaffery, P.J.; Drager, U.C.; De Luca, L.M. Retinoids in Embryonal Development. Physiol. Rev. 2000, 80, 1021–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lng, K.V.Q.; Nguyn, L.T.H. Roles of Vitamin D in Amyotrophic Lateral Sclerosis: Possible Genetic and Cellular Signaling Mechanisms. Mol. Brain 2013, 6, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagao, A. Bioavailability of Dietary Carotenoids: Intestinal Absorption and Metabolism. Jpn. Agric. Res. Q. 2014, 48, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Trippier, P.C.; Jansen Labby, K.; Hawker, D.D.; Mataka, J.J.; Silverman, R.B. Target- and Mechanism-Based Therapeutics for Neurodegenerative Diseases: Strength in Numbers. J. Med. Chem. 2013, 56, 3121–3147. [Google Scholar] [CrossRef] [Green Version]
- Huiming, Y.; Chaomin, W.; Meng, M. Vitamin A for Treating Measles in Children. Cochrane Database Syst. Rev. 2005, 4, CD001479. [Google Scholar]
- Mayo-Wilson, E.; Imdad, A.; Herzer, K.; Yakoob, M.Y.; Bhutta, Z.A. Vitamin A Supplements for Preventing Mortality, Illness, and Blindness in Children Aged under 5: Systematic Review and Meta-Analysis. BMJ 2011, 343, d5094. [Google Scholar] [CrossRef] [Green Version]
- Sudfeld, C.R.; Navar, A.M.; Halsey, N.A. Effectiveness of Measles Vaccination and Vitamin A Treatment. Int. J. Epidemiol. 2010, 39, 21. [Google Scholar] [CrossRef]
- Bhandari, N.; Bhan, M.K.; Sazawal, S. Impact of Massive Dose of Vitamin A given to Preschool Children with Acute Diarrhoea on Subsequent Respiratory and Diarrhoeal Morbidity. BMJ 1994, 309, 1404. [Google Scholar] [CrossRef] [Green Version]
- Cui, D.; Moldoveanu, Z.; Stephensen, C.B. High-Level Dietary Vitamin A Enhances T-Helper Type 2 Cytokine Production and Secretory Immunoglobulin A Response to Influenza A Virus Infection in BALB/c Mice. J. Nutr. 2000, 130, 1132–1139. [Google Scholar] [CrossRef] [Green Version]
- Hu, N.; Li, Q.B.; Zou, S.Y. Effect of Vitamin A as an Adjuvant Therapy for Pneumonia in Children: A Meta Analysis. Chin. J. Contemp. Pediatr. 2018, 20, 146–153. [Google Scholar] [CrossRef]
- Nikawa, T.; Odahara, K.; Koizumi, H.; Kido, Y.; Teshima, S.; Rokutan, K.; Kishi, K. Vitamin A Prevents the Decline in Immunoglobulin A and Th2 Cytokine Levels in Small Intestinal Mucosa of Protein-Malnourished Mice. J. Nutr. 1999, 129, 934–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDaniel, K.L.; Restori, K.H.; Dodds, J.W.; Kennett, M.J.; Ross, A.C.; Cantornaa, M.T. Vitamin A-Deficient Hosts Become Nonsymptomatic Reservoirs of Escherichia Coli-like Enteric Infections. Infect. Immun. 2015, 83, 2984–2991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elom, M.O.; Okafor, F.; Eyo, J. Vitamin A Supplementation of Malaria-Infected PregnantWomen and Infant Birth Weight Outcomes A Case Study of EbonyiState, Nigeria. Gastro 2014, 2, 109. [Google Scholar] [CrossRef]
- Owusu-Agyei, S.; Newton, S.; Mahama, E.; Febir, L.G.; Ali, M.; Adjei, K.; Tchum, K.; Alhassan, L.; Moleah, T.; Tanumihardjo, S.A. Impact of Vitamin A with Zinc Supplementation on Malaria Morbidity in Ghana. Nutr. J. 2013, 12, 131. [Google Scholar] [CrossRef] [Green Version]
- Zeba, A.N.; Sorgho, H.; Rouamba, N.; Zongo, I.; Rouamba, J.; Guiguemdé, R.T.; Hamer, D.H.; Mokhtar, N.; Ouedraogo, J.B. Major Reduction of Malaria Morbidity with Combined Vitamin A and Zinc Supplementation in Young Children in Burkina Faso: A Randomized Double Blind Trial. Nutr. J. 2008, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Yang, Y.; Yan, X.; Chen, J.; Yu, H.; Wang, W. Influence of Vitamin A Status on the Antiviral Immunity of Children with Hand, Foot and Mouth Disease. Clin. Nutr. 2012, 31, 543–548. [Google Scholar] [CrossRef]
- Soye, K.J.; Trottier, C.; Di Lenardo, T.Z.; Restori, K.H.; Reichman, L.; Miller, W.H.; Ward, B.J. In Vitro Inhibition of Mumps Virus by Retinoids. Virol. J. 2013, 10, 337. [Google Scholar] [CrossRef] [Green Version]
- Martin, L.J.; Semenkow, S.; Hanaford, A.; Wong, M. The Mitochondrial Permeability Transition Pore Regulates Parkinson’s Disease Development in Mutant α-Synuclein Transgenic Mice. Neurobiol. Aging 2014, 35, 1132–1152. [Google Scholar] [CrossRef] [Green Version]
- Gallego, R.; Valdés, A.; Suárez-Montenegro, Z.J.; Sánchez-Martínez, J.D.; Cifuentes, A.; Ibáñez, E.; Herrero, M. Anti-Inflammatory and Neuroprotective Evaluation of Diverse Microalgae Extracts Enriched in Carotenoids. Algal Res. 2022, 67, 830. [Google Scholar] [CrossRef]
- Repine, J.E.; Bast, A.; Lankhorst, I. Oxidative Stress in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 1997, 156, 341–357. [Google Scholar] [CrossRef] [Green Version]
- Grievink, L.; Smit, H.A.; Ocké, M.C.; Van’T Veer, P.; Kromhout, D. Dietary Intake of Antioxidant (pro)-Vitamins, Respiratory Symptoms and Pulmonary Function the MORGEN Study. Thorax 1998, 53, 166–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paiva, S.A.; Russell, R.M. Beta-Carotene and Other Carotenoids as Antioxidants. J. Am. Coll. Nutr. 1999, 18, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D. Biochemical indicators of dietary intake. In Nutritional Epidemiology; Oxford University Press: Oxford, NY, USA, 2009; ISBN 9780199864249. [Google Scholar]
- Schünemann, H.J.; Grant, B.J.B.; Freudenheim, J.L.; Muti, P.; Browne, R.W.; Drake, J.A.; Klocke, R.A.; Trevisan, M. The Relation of Serum Levels of Antioxidant Vitamins C and E, Retinol and Carotenoids with Pulmonary Function in the General Population. Am. J. Respir. Crit. Care Med. 2001, 163, 1246–1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isonaka, R.; Katakura, T.; Kawakami, T. Effect of Inhibition of Superoxide Dismutase on Motor Neurons during Growth: Comparison of Phosphorylated and Non-Phosphorylated Neurofilament- Containing Spinal Neurons by Histogram Distribution. Brain Res. 2012, 1470, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Di Matteo, V.; Pierucci, M.; Di Giovanni, G.; Dragani, L.K.; Murzilli, S.; Poggi, A.; Esposito, E. Intake of Tomato-Enriched Diet Protects from 6-Hydroxydopamine-Induced Degeneration of Rat Nigral Dopaminergic Neurons. J. Neural Transm. Suppl. 2009, 73, 333–341. [Google Scholar] [CrossRef]
- Chen, S.A.; Wang, X.; Zhao, B.; Yuan, X.; Wang, Y. Production of Crocin Using Crocus Sativus Callus by Two-Stage Culture System. Biotechnol. Lett. 2003, 25, 1235–1238. [Google Scholar] [CrossRef]
- Multhaup, G.; Ruppert, T.; Schlicksupp, A.; Hesse, L.; Beher, D.; Masters, C.L.; Beyreuther, K. Reactive Oxygen Species and Alzheimer’s Disease. Biochem. Pharmacol. 1997, 54, 533–539. [Google Scholar] [CrossRef]
- Peng, H.C.; Chen, J.R.; Chen, Y.L.; Yang, S.C.; Yang, S.S. Β-Carotene Exhibits Antioxidant and Antiapoptotic Properties To Prevent Ethanol-Induced Cytotoxicity in Isolated Rat Hepatocytes. Phytother. Res. 2010, 24, 3068. [Google Scholar] [CrossRef]
- Gumpricht, E.; Dahl, R.; Devereaux, M.W.; Sokol, R.J. β-Carotene Prevents Bile Acid-Induced Cytotoxicity in the Rat Hepatocyte: Evidence for an Antioxidant and Anti-Apoptotic Role of β-Carotene In Vitro. Pediatr. Res. 2004, 55, 814–821. [Google Scholar] [CrossRef] [Green Version]
- Palozza, P.; Serini, S.; Di Nicuolo, F.; Calviello, G. Mitogenic and Apoptotic Signaling by Carotenoids: Involvement of a Redox Mechanism. IUBMB Life 2001, 52, 77–81. [Google Scholar] [CrossRef]
- Mitra, S.; Anjum, J.; Muni, M.; Das, R.; Rauf, A.; Islam, F.; Bin Emran, T.; Semwal, P.; Hemeg, H.A.; Alhumaydhi, F.A.; et al. Exploring the Journey of Emodin as a Potential Neuroprotective Agent: Novel Therapeutic Insights with Molecular Mechanism of Action. Biomed. Pharmacother. 2022, 149, 112877. [Google Scholar] [CrossRef]
- Islam, F.; Muni, M.; Mitra, S.; Emran, T.B.; Chandran, D.; Das, R.; Rauf, A.; Safi, S.Z.; Chidambaram, K.; Dhawan, M.; et al. Recent Advances in Respiratory Diseases: Dietary Carotenoids as Choice of Therapeutics. Biomed. Pharmacother. 2022, 155, 113786. [Google Scholar] [CrossRef] [PubMed]
- Ravikrishnan, R.; Rusia, S.; Ilamurugan, G.; Salunkhe, U.; Deshpande, J.; Shankaranarayanan, J.; Shankaranarayana, M.L.; Soni, M.G. Safety Assessment of Lutein and Zeaxanthin (LutemaxTM 2020): Subchronic Toxicity and Mutagenicity Studies. Food Chem. Toxicol. 2011, 49, 2841–2848. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.F.; Roberts, J.E.; Liu, Q.H.; Pang, J.; Sarna, T. Zeaxanthin and Lutein in the Management of Eye Diseases. J. Ophthalmol. 2016, 2016, 4915916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyers, K.J.; Mares, J.A.; Igo, R.P.; Truitt, B.; Liu, Z.; Millen, A.E.; Klein, M.; Johnson, E.J.; Engelman, C.D.; Karki, C.K.; et al. Genetic Evidence for Role of Carotenoids in Age-Related Macular Degeneration in the Carotenoids in Age-Related Eye Disease Study (CAREDS). Investig. Ophthalmol. Vis. Sci. 2013, 55, 587–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Role of Carotenoids | Disease | Analysis Method | Model Taken | Ref. |
---|---|---|---|---|
Mortality reduction | Measles | Meta-analysis | Human | [47] |
Morbidity and mortality reduction | Measles | Systematic review and meta-analysis | Human | [48] |
Mortality reduction | Measles | Meta-analysis | Human | [49] |
Mortality reduction | Measles | Randomized double-blind controlled trial | Human | [50] |
Increasing antibodies | Pneumonia | Randomized controlled trial | Mice | [51] |
Relieving medical symptoms | Pneumonia | Meta-analysis | Human | [52] |
Morbidity and mortality reduction | Diarrhea | Systematic review and meta-analysis | Human | [48] |
Increase intestinal immunoglobulin A (IgA) production and mucosal immune function | Diarrhea | Randomized controlled trial | Mice | [53] |
Reduce morbidity | Diarrhea | Randomized double-blind controlled trial | Human | [50] |
Morbidity and mortality reduction | Enteric infection | Randomized controlled trial | Mice | [54] |
Reduce morbidity | Malaria | Randomized double-blind controlled trial | Human | [55] |
Reduce morbidity | Malaria | Randomized controlled trial | Human | [56] |
Reduce morbidity | Malaria | Randomized double-blind controlled trial | Human | [57] |
Drive up Ig production and beef up your immune system’s ability to fight off viruses | Hand, foot, and mouth disease | Cross-sectional observation and study | Human | [58] |
The increase in type 1 interferon and its ability to suppress viral replication | Mumps | In vitro controlled experiment | Live cells | [59,60] |
Carotenoids | Source | Concentration | Pathways for Neuroprotection | Ref. |
---|---|---|---|---|
α-Carotene | Daucus carota Cucurbita spp. | 58.8% of total carotenoid | Decrease AD and PD risk in people | [2] |
β-carotene | Dunaliella salina Elaeis guineens Saccharomyces cerevisiae Chlorella saccharophila Odontella aurita Chlorella zofingiensis(CZ-bkt1) | 14% of dry weight 40 mg/g 5.9 mg/g dry weight 4.98 mg/g 18.47 mg/g 34.64 mg/L | Neuropathic inhibition PD and ALS enzyme activation | [62] |
Lycopene | Solanum lycopersicum Sachharomyces cerevisiae Haematococcus pluvialis SAG 19-a | 100 µg/g 54.63 mg/g DCW 1.4 mg/g DCW | ARE activation and phase II enzyme induction PD anti-inflammatory drugs target autophagy | [63] |
Crocin | Crocus sativus Gardenia jasminoides Ellis | 0.43 g/L 8.4 mg/g dry powder | Microglial stimulation and excitotoxic pathway inhibition AD and PD antioxidants and antineuroinflammatory pathway NMDA inhibitor | [64] |
Trans-crocin 4 | Stigma of Crocus sativus | 102 mg/g | Inhibition of Aβ-aggregation by inhibition of JNK/p38 pathway | [65] |
Bixin | Bixa orellana | 22 mg/g dried seeds 5–6% weight of seeds | Attenuation of inflammatory pathway by inhibiting NF-κB activation | [66] |
Lutein | Marigold Chlorella vulgaris Chlorella zofingiensis(CZ-bkt1) | 3.823 µg/g 3.36 mg/g 33.97 mg/g | Targets autophagy and apoptosis pathway Inhibition of NF-κB pathway | [67] |
Zeaxanthin | Chlorella zofingiensis(CZ-bkt1) Chlorella saccharophila Dunaliella tertiolecta | 36.79 mg/g 11.2 mg/g 8 mg/L | Activate antioxidant and anti-inflammatory | [68] |
β-Cryptoxanthin | Cucurbita moschata Duch. | 3.4% of total carotenoids | Inhibition of oxidative damage | [68] |
Fucoxanthin | Nitzschia laevis Phaeodactylum tricornutum | 2.24 mg/g dry weight 15.7 mg/g dry weight | Targets P13k/Akt pathway Activation of autophagy pathway | [69] |
Fucoxanthinol | Nitzschia laevis | 4.64 mg/g dry weight | Inhibition of P13k/Akt and MAPK pathway | [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gandla, K.; Babu, A.K.; Unnisa, A.; Sharma, I.; Singh, L.P.; Haque, M.A.; Dashputre, N.L.; Baig, S.; Siddiqui, F.A.; Khandaker, M.U.; et al. Carotenoids: Role in Neurodegenerative Diseases Remediation. Brain Sci. 2023, 13, 457. https://doi.org/10.3390/brainsci13030457
Gandla K, Babu AK, Unnisa A, Sharma I, Singh LP, Haque MA, Dashputre NL, Baig S, Siddiqui FA, Khandaker MU, et al. Carotenoids: Role in Neurodegenerative Diseases Remediation. Brain Sciences. 2023; 13(3):457. https://doi.org/10.3390/brainsci13030457
Chicago/Turabian StyleGandla, Kumaraswamy, Ancha Kishore Babu, Aziz Unnisa, Indu Sharma, Laliteshwar Pratap Singh, Mahammad Akiful Haque, Neelam Laxman Dashputre, Shahajan Baig, Falak A. Siddiqui, Mayeen Uddin Khandaker, and et al. 2023. "Carotenoids: Role in Neurodegenerative Diseases Remediation" Brain Sciences 13, no. 3: 457. https://doi.org/10.3390/brainsci13030457
APA StyleGandla, K., Babu, A. K., Unnisa, A., Sharma, I., Singh, L. P., Haque, M. A., Dashputre, N. L., Baig, S., Siddiqui, F. A., Khandaker, M. U., Almujally, A., Tamam, N., Sulieman, A., Khan, S. L., & Emran, T. B. (2023). Carotenoids: Role in Neurodegenerative Diseases Remediation. Brain Sciences, 13(3), 457. https://doi.org/10.3390/brainsci13030457