Treatment of Vascular Parkinsonism: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection of Studies
2.3. Data Extraction
2.4. Quality Assessment
3. Results
4. Treatments
4.1. Levodopa
4.2. Vitamin D
4.3. Repetitive Transcranial Magnetic Stimulation (rTMS)
4.4. Intracerebral Transcatheter Lase Photobiomodulation Therapy (PBMT)
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Critchley, M. Arteriosclerotic parkinsonism. Brain 1929, 52, 23–83. [Google Scholar] [CrossRef] [Green Version]
- Winikates, J.; Jankovic, J. Clinical Correlates of Vascular Parkinsonism. Arch. Neurol. 1999, 56, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Zijlmans, J.C.M.; Daniel, S.E.; Hughes, A.J.; Révész, T.; Lees, A.J. Clinicopathological investigation of vascular parkinsonism, including clinical criteria for diagnosis. Mov. Disord. 2004, 19, 630–640. [Google Scholar] [CrossRef]
- Benamer, H.T.S.; Grosset, D.G. Vascular Parkinsonism: A Clinical Review. Eur. Neurol. 2009, 61, 11–15. [Google Scholar] [CrossRef]
- Zijlmans, J.C.M.; Katzenschlager, R.; Daniel, S.E.; Lees, A.J.L. The L-dopa response in vascular parkinsonism. J. Neurol. Neurosurg. Psychiatry 2004, 75, 545–547. [Google Scholar] [CrossRef] [Green Version]
- Miguel-Puga, A.; Villafuerte, G.; Salas-Pacheco, J.; Arias-Carrión, O. Therapeutic Interventions for Vascular Parkinsonism: A Systematic Review and Meta-analysis. Front. Neurol. 2017, 22, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred Reporting Items for Systematic Review and meta-analysis Protocols (PRISMA-P) 2015 Statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M.; Strobe Initiative. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and Elaboration. PLoS Med. 2007, 4, e297. [Google Scholar] [CrossRef] [Green Version]
- Wells, G.; Wells, G.; Shea, B.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Appl. Eng. Agric. 2014, 18, 727–734. [Google Scholar]
- Higgins, J.P.T.; Altman, D.G.; Gotzsche, P.C.; Juni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [Green Version]
- Zijlmans, J.; Evans, A.; Fontes, F.; Katzenschlager, R.; Gacinovic, S.; Lees, A.J.; Costa, D. [123I] FP-CIT spect study in vascular parkinsonism and Parkinson’s disease. Mov. Disord. 2007, 22, 1278–1285. [Google Scholar] [CrossRef]
- Benítez-Rivero, S.; Marín-Oyaga, V.A.; García-Solís, D.; Huertas-Fernández, I.; García-Gomez, F.J.; Jesus, S.; Cáceres, M.T.; Carrillo, F.; Ortiz, A.M.; Carballo, M.; et al. Clinical features and 123I-FP-CIT SPECT imaging in vascular parkinsonism and Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2013, 84, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Iwamoto, J.; Honda, Y.; Amano, N. Vitamin D reduces falls and hip fractures in vascular Parkinsonism but not in Parkinson’s disease. Clin. Risk Manag. 2013, 9, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Vale, T.C.; Caramelli, P.; Cardoso, F. Vascular parkinsonism: A case series of 17 patients. Arq. Neuropsiquiatr. 2013, 71, 757–762. [Google Scholar] [CrossRef] [Green Version]
- Alcock, L.; Galna, B.; Perkins, R.; Lord, S.; Rochester, L. Step length determines minimum toe clearance in older adults and people with Parkinson’s disease. J. Biomech. 2018, 71, 30–36. [Google Scholar] [CrossRef]
- Stern, L.Z. Diphenylhydantoin for steroid-induced muscle weakness. JAMA 1973, 223, 1287–1288. [Google Scholar] [CrossRef]
- Gago, M.F.; Fernandes, V.; Ferreira, J.; Silva, H.; Rodrigues, M.L.; Rocha, L.; Bicho, E.; Sousa, N. The effect of levodopa on postural stability evaluated by wearable inertial measurement units for idiopathic and vascular Parkinson’s disease. Gait Posture 2014, 41, 459–464. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Otano, J.; Gaig, C.; Muxi, A.; Lomeña, F.; Compta, Y.; Buongiorno, M.T.; Martí, M.J.; Tolosa, E.; Valldeoriola, F. 123I-MIBG cardiac uptake, smell identification and 123I-FP-CIT SPECT inthe differential diagnosis between vascular parkinsonism and Parkinson’s disease. Park. Relat Disord. 2014, 20, 192–197. [Google Scholar] [CrossRef]
- Vale, T.C.; Caramelli, P.; Cardoso, F. Clinicoradiological comparison between vascular parkinsonism and Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2015, 86, 547–553. [Google Scholar] [CrossRef]
- Lee, M.J.; Kim, S.L.; Kim, H.I.; Oh, Y.J.; Lee, S.H.; Kim, H.K.; Lyoo, C.; Ryu, Y. [18F] FP-CIT PET study in parkinsonian patients with leukoaraiosis. Park. Relat Disord. 2015, 21, 704–708. [Google Scholar] [CrossRef]
- Maksimovich, I.V. Intracerebral Transcatheter Laser Photobiomodulation Therapy in the Treatment of Binswanger’s Disease and Vascular Parkinsonism: Research and Clinical Experience. Photobiomodul. Photomed. Laser Surg. 2019, 37, 606–614. [Google Scholar] [CrossRef]
- Fernandes, C.; Ferreira, F.; Lopes, R.L.; Bicho, E.; Erlhagen, W.; Sousa, N.; Gago, M.F. Discrimination of idiopathic Parkinson’s disease and vascular parkinsonism based on gait time series and the levodopa effect. J. Biomech. 2021, 125, 110214. [Google Scholar] [CrossRef]
- Fénelon, G.; Houéto, J.L. Vascular Parkinson syndromes: A controversial concept. Rev. Neurol. 1998, 154, 291–302. [Google Scholar] [PubMed]
- Manap, H.H.; Tahir, N.; Yassin, A. Statistical analysis of parkinson disease gait classification using Artificial Neural Network. In Proceedings of the 2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Bilbao, Spain, 14–17 December 2011. [Google Scholar]
- Tahir, N.; Manap, H.H. Parkinson Disease Gait Classification based on Machine Learning Approach. J. Appl. Sci. 2012, 12, 180–185. [Google Scholar] [CrossRef] [Green Version]
- Bejek, Z.; Paróczai, R.; Illyés, Á.; Kiss, R.M. The influence of walking speed on gait parameters in healthy people and in patients with osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 2006, 14, 612–622. [Google Scholar] [CrossRef] [PubMed]
- Zeni, J.A.; Richards, J.G.; Higginson, J.S. Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture 2008, 27, 710–714. [Google Scholar] [CrossRef] [Green Version]
- Antonini, A.; Vitale, C.; Barone, P.; Cilia, R.; Righini, A.; Bonuccelli, U.; Abbruzzese, G.; Ramat, S.; Petrone, A.; Quatrale, R.; et al. The relationship between cerebral vascular disease and parkinsonism: The VADO study. Park. Relat Disord. 2012, 18, 775–780. [Google Scholar] [CrossRef]
- Dawson-Hughes, B.; Harris, S.S.; Krall, E.A.; Dallal, G.E. Effect of Calcium and Vitamin D Supplementation on Bone Density in Men and Women 65 Years of Age or Older. N. Engl. J. Med. 1997, 337, 670–676. [Google Scholar] [CrossRef]
- Sato, Y.; Iwamoto, J.; Kanoko, T.; Satoh, K. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: A randomized controlled trial. Cerebrovasc. Dis. 2005, 20, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Yip, C.W.; Cheong, P.W.; Green, A.; Prakash, P.K.; Fook-Cheong, S.K.; Tan, E.K.; Lo, Y.L. A prospective pilot study of repetitive transcranial magnetic stimulation for gait dysfunction in vascular parkinsonism. Clin Neurol Neurosurg. 2013, 115, 887–891. [Google Scholar] [CrossRef]
- Prins, N.D.; van Dijk, E.J.; den Heijer, T.; Vermeer, S.E.; Jolles, J.; Koudstaal, P.J.; Hofman, A.; Breteler, M.M.B. Cerebral small-vessel disease and decline in information processing speed, executive function and memory. Brain 2005, 128, 2034–2041. [Google Scholar] [CrossRef] [Green Version]
- Jin, K.; Wang, X.; Xie, L.; Mao, X.O.; Zhu, W.; Wang, Y.; Shen, J.; Mao, Y.; Banwait, S.; Greenberg, D.A. Evidence for stroke-induced neurogenesis in the human brain. Proc. Natl. Acad. Sci. USA 2006, 103, 13198–13202. [Google Scholar] [CrossRef] [Green Version]
- Oron, A.; Oron, U.; Chen, J.; Eilam, A.; Zhang, C.; Sadeh, M.; Lampl, Y.; Streeter, J.; De Taboada, L.; Chopp, M. Low-level laser therapy applied transcranially to rats after induction of stroke significantly reduces long-term neurological deficits. Stroke 2006, 37, 2620–2624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamblin, M.R. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem. Photobiol. 2018, 94, 199–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassano, P.; Petrie, S.R.; Mischoulon, D.; Cusin, C.; Katnani, H.; Yeung, A.; De Taboada, L.; Archibald, A.; Bui, E.; Baer, L.; et al. Transcranial Photobiomodulation for the Treatment of Major Depressive Disorder. the ELATED-2 Pilot Trial. Photomed. Laser Surg. 2018, 36, 634–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glass, P.G.; Lees, A.J.; Bacellar, A.; Zijlmans, J.; Katzenschlager, R.; Silveira-Moriyama, L. The clinical features of pathologically confirmed vascular parkinsonism. J. Neurol. Neurosurg. Psychiatry 2012, 83, 1027–1029. [Google Scholar] [CrossRef] [PubMed]
- Zijlmans, J.C.M. The Role of Imaging in the Diagnosis of Vascular Parkinsonism. Neuroimaging Clin. N. Am. 2010, 20, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Gerschlager, W.; Bencsits, G.; Pirker, W.; Bloem, B.R.; Asenbaum, S.; Prayer, D.; Zijlmans, J.C.M.; Hoffmann, M.; Brücke, T. [123I]β-CIT SPECT distinguishes vascular parkinsonism from Parkinson’s disease. Mov. Disord. 2002, 17, 518–523. [Google Scholar] [CrossRef]
- Katzenshlager, R.; Evans, A.; Manson, A.; Palsalos, P.N.; Ratnaraj, N.; Watt, H.; Timmermann, L.; Van Der Giessen, R.; Lees, A.J. Mucuna pruriens in Parkinson’s disease: A double blind clinical and pharmacological study. J. Neurol. Neurosurg. Psychiatry 2004, 75, 1672–1677. [Google Scholar] [CrossRef] [Green Version]
- Fearnley, J.M.; Lees, A.J. Ageing and Parkinson’s Disease: Substantia Nigra Regional Selectivity. Brain 1991, 114, 2283–2301. [Google Scholar] [CrossRef]
Study | Design | Mean Age (n) | Main Symptoms | Comparative Group (vs. VP) | Follow-Up | Blinded | Diagnostic Criteria for VP |
---|---|---|---|---|---|---|---|
Zijlmans, J. et al., 2007 [11] | Case-control | Group I (VP): 74.1 years ± 11.5 (13) Group II (IPD): 66.0 ± 14.5 (14) Group III (controls): 66.3 ± 18 (14) | Gait disorder, acute contralateral bradykinetic rigid syndrome, cognitive dysfunction | VP/IPD | No | Nuclear Medicine specialists | Zijlmans et al. |
Antonini, A. et al., 2012 [12] | Case-control | Group I (SPECT no pathological): 72.8 ± 4.8 (59–80) (28) Group II (SPECT pathological): 72.6 ± 5.7 (48) | Lower body parkinsonism | VP/IPD | No | Radiologists and Nuclear Medicine specialists | Zijlmans et al. |
Sato, Y., et al. 2013 [13] | Case-control | Group I (VP): 73.9 ± 6.2 (94) Group II (IPD): 73.6 ± 5.9 (92) | Bradykinetic rigid syndrome, rest tremor | VP/IPD | 2 years | A therapist that evaluated muscle strength | Zijlmans et al. |
Vale, T.C. et al., 2013 [14] | Case series | Group I (VP): 75.8 ± 10.1 (17) | Lower body parkinsonism, pyramidal signs, urinary incontinence | Their selves | No | No | Zijlmans et al. |
Benítez-Rivero, S. et al., 2013 [15] | Case series to correlate image to VP clinic. Case control to find clinical and image differences between PD and VP | Group I (VP): 72.6 ± 6.8 (106) Group II (IPD): 55.3 ± 12.6 (280) | Gait disorder, postural tremor, mixed tremor, rest tremor, falls, postural instability, dysphagia, urinary incontinence, cognitive dysfunction, emotional lability | VP/IPD | 5 years | Nuclear Medicine specialists | Zijlmans et al. |
Yip, C.W. et al., 2013 [16] | Case series | Group I (VP): 64.2 (5) | Bradykinetic rigid syndrome, tremor, postural instability | No | 6 months | No | Winikates et al. |
Gago, M.F. et al., 2014 [17] | Case-control | Group I (VP): 77 (5) Group II (IPD): 73 (10) | Worse MoCA and UPDRS III scores, gait impairment, difficulty getting up from the chair and low global spontaneity of movement | VP/IPD | No | No | Zijlmans et al. |
Navarro-Otano, J. et al., 2014 [18] | Case-control | Group I (VP): 68.11 ± 8.2 (15) Group II (IPD): 66.2 ± 9.5 (15) Group III (controls): 66.2 ± 8.2 (9) | Gait disorder, postural tremor, falls, postural instability | VP/IPD/controls | No | Nuclear medicine specialists | Zijlmans et al. |
Vale, T.C. et al., 2015 [19] | Case-control | Group I: (VP) 75.7 ± 10.4 (15) Group II: (IPD) 67.3 ± 7.5 (30) | Lower body parkinsonism, pyramidal signs, instability urinary incontinence | VP/IPD | No | No | Zijlmans et al. |
Lee, M.J. et al., 2015 [20] | Case-control | Group I: (no pathological) 75.77 ± 6.16 (22) Group II: (pathological) 75.15 ± 6.75. (20) | Gait disorder, postural tremor, resting tremor, falls, postural instability, urinary incontinence supranuclear palsy, dysphagia, emotional lability | NDD+/NDD− | No | No | Zijlmans et al. |
Maksimovich, I.V. et al., 2019 [21] | Case-control | Group I (VP): 52–80 (37) Group II (control group): (25) | Cognitive dysfunction | VP/ Binswanger Disease/ controls | 8 years | No | Does not specify |
Fernandes, C. et al., 2021 [22] | Case-control | Group I (VP): 80.53 ± 4.63 (14) Group II (IPD): 76.60 ± 4.29 (15) Group III (controls): 52.76 ± 22.91 (34) | Gait disorder | VP/IPD/controls | No | No | Zijlmans et al. |
Study | Used Scales Image Testing | Type of Vascular Lesion Specified | Primary Endpoint | VP Treatment as Primary Endpoint | Definition of Treatment Response | Response to Treatment |
---|---|---|---|---|---|---|
Zijlmans, J. et al., 2007 [11] | UPDRS III [123I] FP-CIT SPECT | In or near areas that can increase the basal ganglia motor output or decrease the thalamocortical drive directly (substantia nigra in one, globus pallidum/putamen area in the others). Extensive subcortical white matter lesions | To compare pre-synaptic dopaminergic function VP vs IPD; VPa vs VPi and if severity and response to levodopa can be related to pre-synaptic dopaminergic function | Yes | Based on the mean % reduction in motor UPDRS | (L-dopa) Mean reduction in motor UPDRS in Group I (VP patients): 14% “Good” response: 0.07% |
Antonini, A. et al., 2012 [12] | UPDRS III, UPDRS II, Y&H, DAT SCAN | Periventricular hyperintensities, lesions in hemispheric white matter, basal ganglia, infra-tentorial foci | Clinical and neuroimage profile | No | ≥30% changes in total UPDRS motor scores from the baseline | (L-dopa) Negative response: Group I (VP patients): 68.4% Group II (IPD patients): 40% |
Sato, Y. et al., 2013 [13] | Barthel index, SSS arm score, SSS leg score | Cerebral infarction/Cerebral hemorrhage | Clinical profile | Yes | The number of falls per person and incidence of hip fractures | (Vitamin D supplementation) VP patients: 59% reduction in falls IPD patients: 0% reduction in falls Increase of strength in both groups (does not provide details) |
Vale, T.C. et al., 2013 [14] | DSM-UPDRS, HY, MMSE, FAB, EIS, Pfeffer, Katz, NINDS-AIREN | Substance nigra, White matter disease, Multiple lacunar infarcts | Clinic and radiological profile | No | Based on the percentage of reduction in Part III of DSM-UPDRS and Hoehn-Yahr | (L-dopa) Improvement in part III DSM-UPDRS: 5.8 ± 4.4 (Efficacy is based on mean scale score reduction, no control group) |
Benítez-Rivero, S. et al., 2013 [15] | UPDRS, HY, Stchelten’s scale DAT SCAN, | Supratentorial lesions: Subcortical basal gabglia>thalamus>internal capsule Infratentorial | (A) To find clinical and image (SPECT) differences between IPD and VP. (B) Among VP patients, to study possible clinical features related to SPECT or structural image (CT or MRI) | No | Does not specify criteria for responsiveness | (L-Dopa) Group I (VP patients): 47.9% Group II (IPD patients): 100% |
Yip, C.W. et al., 2013 [16] | UPDRS rTMS | Multiple lacunar infarcts, lentiform nuclei, caudate, Multiple subcortical lesions | Gait improvement | Yes | Mean timing measured in seconds of 10 m walk and the improvement of UPDRS score | (rTMS) At 4 weeks post-rTMS:11.9%, At 2 weeks post-rTMS: 6.8%, Not statistically significant by 6 weeks For the UPDRS post-rTMS over time: 11.8% |
Gago, M.F. et al., 2014 [17] | MDS-UPDRS III, MoCA | Subcortical or basal ganglia lesions | Clinical improvement on postural stability | Yes | Percentage of the difference between “off” and “on” states | (L-dopa) Group I (VP patients): 19% Group II (IPD patients): 57.5% |
Navarro-Otano, J. et al., 2014 [18] | UPDRS, HY 123I-MIBG cardiac gammagraphy, UPSIT, DaT-SPECT | Decreased uptake with a pattern typical for IPD (symmetric or asymmetric levodopa uptake reduction or absent uptake) or decreased uptake pattern non-typical of PD (as a local or patchy defect where cerebral MR imaging showed an ischemic lesion) | To ascertain the clinical value of 123I-MIBG cardiac gammagraphy, UPSIT and DaT-SPECT to diagnosis | No | Levodopa response was codified as good, partial and absent, does not specify criteria for responsiveness | (L-dopa) Group I (VP patients with normal H/M ratio): 0% Group II (VP patients with low H/M ratio): 28.6% In total good response: 14.3% Group III (IPD patients): 100% |
Vale, T.C. et al., 2015 [19] | MDS-UPDRS, MMSE, FAB, EXIT25, Hachinski scale, Katz index, Pfeffer, FOG-Q, HY | Extensive white matter disease, Multiple lacunar infarcts | Clinic and radiological profile | No | Based on the percentage of reduction in Part III of MDS-UPDRS | (L-dopa) Yes Not percentages |
Lee, M.J. et al., 2015 [20] | MMSE, UPDRS III [18F] FP-CIT PET, MRI | Moderate or severe white matter lesions in the lobar subcortical or periventricular regions Deep subcortical lesions in frontal, temporal, parietal and occipital regions | Clinical and MRI findings that indicate NDD | No | ≥30% changes in total UPDRS motor scores from the baseline | (L-dopa) Group I (Normal uptake): 4.5% Group II (reduced uptake): 40% In total good response: 44,5% |
Maksimovich, I.V. et al., 2019 [21] | Clinical Dementia Rating scale, MMSE, BI MRI, CT, SG, REG, MUGA. | Signs of brain involutional changes, Subarachnoid space expansion, Nonocclusive hydrocephalus signs, Local focal subcortical demyelization, Leukoaraiosis signs | Clinical and image improvement | Yes | Mental and motor functions, an improvement in blood flow measured through SG and REG and a narrowing of the subarachnoid space | (PBMT) Group I (case group VP with PBMT):94.60% Group II (control group VP without PBMT): 56.00% Group III (case group BD with PBMT): 53.85% |
Fernandes, C. et al., 2021 [22] | CDR, Hoehn-Yahr CNNs | Does not specify | Clinical improvement | Yes | Based on gait time series with and without the influence of levodopa medication | (L-dopa) Group I (VP patients): 79.33% Group II (IPD patients): 82.33% Group III (controls): 86% |
Study | Image Testing | Response to Treatment (Levodopa) Depending on Image | Comments |
---|---|---|---|
Navarro-Otano, J. et a, 2014 [18] | 123I-MIBG cardiac image | VP patients with normal H/M ratio (non-suggesting IPD): 0% (0/7) VP patients with low H/M ratio: 28.6% (2/8) | A normal H/M ratio (not suggestive of IPD) predicted a poor response to treatment. |
Lee, M.J. et al. 2015 [20] | [18F] FP-CIT PET | Group I: 4.5 (1/22) Group II: 40.0% (8/20) | Patients with a pathological PET study showed significantly better response to levodopa Good response based on ≥30% changes in UPDRS. |
Benítez-Rivero, S. et al., 2012 [15] | 123 I-FP-CIT SPECT | Does not compare the response to treatment according to an image. | SPECT results were only associated with the presence of falls. |
Zijlmans, J. et al., 2007 [11] | [123I] FP-SPECT Based on BP% | Two L-dopa responders with a BG BP% similar to the 11 non-responders (mean 29.5 (28.4–30.5) vs mean 26.0 (6.9–56.5)) | [123I] FP-SPECT uptake not correlated to levodopa response based on reduction in UPDRS III scale. |
Antonini, A. et al., 2012 [12] | FP-CIT SPECT | SPECT (no pathological) l: 93% (26/28) SPECT (pathological): 48% (23/48) | They confirm that a normal FP-CIT SPECT is associated with a poor levodopa effect. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
del Toro-Pérez, C.; Guevara-Sánchez, E.; Martínez-Sánchez, P. Treatment of Vascular Parkinsonism: A Systematic Review. Brain Sci. 2023, 13, 489. https://doi.org/10.3390/brainsci13030489
del Toro-Pérez C, Guevara-Sánchez E, Martínez-Sánchez P. Treatment of Vascular Parkinsonism: A Systematic Review. Brain Sciences. 2023; 13(3):489. https://doi.org/10.3390/brainsci13030489
Chicago/Turabian Styledel Toro-Pérez, Cristina, Eva Guevara-Sánchez, and Patricia Martínez-Sánchez. 2023. "Treatment of Vascular Parkinsonism: A Systematic Review" Brain Sciences 13, no. 3: 489. https://doi.org/10.3390/brainsci13030489
APA Styledel Toro-Pérez, C., Guevara-Sánchez, E., & Martínez-Sánchez, P. (2023). Treatment of Vascular Parkinsonism: A Systematic Review. Brain Sciences, 13(3), 489. https://doi.org/10.3390/brainsci13030489