A Pilot Study: Extraction of a Neural Network and Feature Extraction of Generation and Reduction Mechanisms Due to Acute Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Selection of Stress-Induced Task
2.3. Intervention Design
2.4. Functional MRI Acquisition
2.5. Functional Brain Imaging Analysis
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stress: The Different Kinds of Stress; American Psychological Association: Washington, DC, USA, 2017.
- Chronic Stress; American Institute of Stress: Fort Worth, TX, USA, 2021.
- Stress; Mayo Clinic: Rochester, NY, USA, 2021.
- Physical Stress; American Heart Association: Chicago, IL, USA, 2021.
- Dedovic, K.; Renwick, R.; Mahani, N.K.; Engert, V.; Lupien, S.J.; Pruessner, J.C. The Montreal Imaging Stress Task: Using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain. J Psychiatry Neurosci. 2005, 30, 319–325. [Google Scholar]
- Goldwater, D.S.; Pavlides, C.; Hunter, R.G.; Bloss, E.B.; Hof, P.R.; McEwen, B.S.; Morrison, J.H. Structural and functional alterations to rat medial prefrontal cortex following chronic restraint stress and recovery. Neuroscience 2009, 164, 798–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares, J.M.; Sampaio, A.; Ferreira, L.M.; Santos, N.C.; Marques, P.; Marques, F.; Palha, J.A.; Cerqueira, J.J.; Sousa, N. Stress Impact on Resting State Brain Networks. PLoS ONE 2013, 8, e66500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corr, R.; Glier, S.; Bizzell, J.; Pelletier-Baldelli, A.; Campbell, A.; Killian-Farrell, C.; Belger, A. Triple Network Functional Connectivity During Acute Stress in Adolescents and the Influence of Polyvictimization. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2022, 7, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Broeders, T.A.A.; Schoonheim, M.M.; Vink, M.; Douw, L.; Geurts, J.J.G.; van Leeuwen, J.M.C.; Vinkers, C.H. Dorsal attention network centrality increases during recovery from acute stress exposure. Neuroimage Clin. 2021, 31, 102721. [Google Scholar] [CrossRef]
- Kim, Y.; Whalen, P.J. The structural and functional connectivity of the human amygdala. Nat. Rev. Neurosci. 2010, 11, 663–676. [Google Scholar] [CrossRef]
- Veer, I.M.; Oei, N.Y.; Spinhoven, P.; van Buchem, M.A.; Elzinga, B.M.; Rombouts, S.A. Beyond acute social stress: Increased functional connectivity between amygdala and cortical midline structures. Neuroimage 2011, 57, 1534–1541. [Google Scholar] [CrossRef]
- Soares, J.M.; Sampaio, A.; Marques, P.; Ferreira, L.M.; Santos, N.C.; Marques, F.; Palha, J.A.; Cerqueira, J.J.; Sousa, N. Plasticity of resting state brain networks in recovery from stress. Front Hum. Neurosci. 2013, 27, 919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slavich, G.M.; Irwin, M.R. From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychol. Bull. 2014, 140, 774–815. [Google Scholar] [CrossRef] [Green Version]
- Britton, J.C.; Phan, K.L.; Taylor, S.F.; Fig, L.M.; Liberzon, I. Corticolimbic blood flow in posttraumatic stress disorder during script-driven imagery. Biol. Psychiatry 2010, 67, 740–746. [Google Scholar] [CrossRef]
- Nitschke, J.B.; Sarinopoulos, I.; Oathes, D.J.; Johnstone, T.; Whalen, P.J.; Davidson, R.J. Anticipatory activation in the amygdala and anterior cingulate in generalized anxiety disorder and prediction of treatment response. Neuropsychopharmacology 2009, 34, 2676–2685. [Google Scholar] [CrossRef] [Green Version]
- Cohen, S. Perceived stress in a probability sample of the United States. In The Social Psychology of Health; Sage Publications, Inc.: Thousand Oaks, CA, USA, 1988; pp. 31–67. [Google Scholar]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Zalesky, A.; Cocchi, L.; Fornito, A.; Murray, M.M.; Bullmore, E. Connectivity differences in brain networks. Neuroimage 2012, 60, 1055–1062. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Zhan, L.; Hu, C.L.; Yang, J.; Wang, C.; Gu, L.; Zhong, S.; Huang, Y.; Wu, Q.; Xie, X.; et al. Emotion regulation and complex brain networks: Association between expressive suppression and efficiency in the frontoparietal network and default-mode network. Front Hum. Neurosci. 2018, 12, 70. [Google Scholar] [CrossRef]
- Buckner, R.L.; Andrews-Hanna, J.R.; Schacter, D.L. The brain’s default network: Anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 2008, 1124, 593–608. [Google Scholar] [CrossRef] [Green Version]
- Menon, V.; Uddin, L.Q. Saliency, switching, attention and control: A network model of insula function. Brain Struct. Funct 2010, 214, 655–667. [Google Scholar] [CrossRef] [Green Version]
- Yeo, B.T.; Krienen, F.M.; Sepulcre, J.; Sabuncu, M.R.; Lashkari, D.; Hollinshead, M.; Roffman, J.L.; Smoller, J.W.; Zöllei, L.; Polimeni, J.R.; et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. NeuroPhysiol. 2011, 106, 1125–1165. [Google Scholar]
- Corbetta, M.; Shulman, G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002, 3, 201–215. [Google Scholar] [CrossRef]
- Buschman, T.J.; Kastner, S. From behavior to neural dynamics: An integrated theory of attention. Neuron 2015, 88, 127–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ptak, R. The frontoparietal attention network of the human brain: Action, saliency, and a priority map of the environment. Neuroscientist 2012, 18, 502–515. [Google Scholar] [CrossRef] [PubMed]
- Moore, T.; Armstrong, K.M. Selective gating of visual signals by microstimulation of frontal cortex. Nature 2003, 421, 370–373. [Google Scholar] [CrossRef]
- Friedman, N.P.; Robbins, T.W. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology 2002, 47, 72–89. [Google Scholar] [CrossRef]
- Chochon, F.; Cohen, L.; Moortele, P.F.; van de Dehaene, S. Differential contributions of the left and right inferior parietal lobules to number processing. J. Cogn. Neurosci. 1999, 11, 617–630. [Google Scholar] [CrossRef] [Green Version]
- Georgopoulos, A.P.; Pellizzer, G. The mental and the neural: Psychological and neural studies of mental rotation and memory scanning. Neuropsychologia 1995, 33, 1531–1547. [Google Scholar] [CrossRef]
- Brass, M.; Ullsperger, M.; Knoesche, T.R.; Cramon, D.Y.; von Phillips, N.A. Who comes first? The role of the prefrontal and parietal cortex in cognitive control. J. Cogn. Neurosci. 2005, 17, 1367–1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Ren, X.; Zeng, M.; Li, J.; Zhao, X.; Zhang, X.; Yang, J. Resting-state dynamic functional connectivity predicts the psychosocial stress response. Behav. Brain Res. 2019, 417, 113618. [Google Scholar] [CrossRef]
- Hermans, E.J.; Henckens, M.J.A.G.; Joels, M.; Fernandez, G. Dynamic adaptation of large-scale brain networks in response to acute stressors. Trends Neurosci. 2014, 37, 304–314. [Google Scholar] [CrossRef]
- van Oort, J.; Tendolkar, I.; Hermans, E.J.; Mulders, P.C.; Beckmann, C.F.; Schene, A.H.; Fernandez, G.; van Eijndhoven, P.F. How the brain connects in response to acute stress: A review at the human brain systems level. Neurosci. Biobehav. Rev. 2017, 83, 281–297. [Google Scholar] [CrossRef]
- Calhoun, V.D.; Stevens, M.C.; Pearlson, G.D.; Kiehl, K.A. Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Neuroimage 2009, 45, 614–622. [Google Scholar] [CrossRef] [Green Version]
- Menon, V. Salience network anatomy, function, and physiology. Neuroimage 2015, 123, 22–35. [Google Scholar] [CrossRef]
Analysis Unit | ||||
---|---|---|---|---|
Cluster 1/9 | Mass = 371.47 | p-unc | p-FDR | p-FWE |
networks.Salience.RPFC (L) (−32,45,27)–networks.FrontoParietal.LPFC (L) (−43,33,28) | T(36) = 5.45 | 0.000004 | 0.000467 | |
networks.Salience.ACC (0,22,35)–networks.Salience.RPFC (L) (−32,45,27) | T(36) = 5.32 | 0.000006 | 0.000467 | |
networks.DefaultMode.PCC (1,−61,38)–networks.FrontoParietal.LPFC (R) (41,38,30) | T(36) = 4.96 | 0.000017 | 0.000715 | |
networks.Salience.RPFC (R) (32,46,27)–networks.Salience.ACC (0,22,35) | T(36) = 4.55 | 0.000058 | 0.001986 | |
networks.Salience.RPFC (R) (32,46,27)–networks.Salience.RPFC (L) (−32,45,27) | T(36) = 4.32 | 0.000117 | 0.003341 | |
networks.Salience.AInsula (L) (−44,13,1)–networks.Salience.ACC (0,22,35) | T(36) = 4.15 | 0.000197 | 0.004805 | |
networks.FrontoParietal.LPFC (R) (41,38,30)–networks.Salience.RPFC® (32,46,27) | T(36) = 3.91 | 0.00039 | 0.008331 | |
networks.DefaultMode.PCC (1,−61,38)–networks.Salience.RPFC (L) (−32,45,27) | T(36) = 3.53 | 0.001156 | 0.016535 | |
networks.FrontoParietal.LPFC (R) (41,38,30)–networks.Salience.ACC (0,22,35) | T(36) = 3.26 | 0.00244 | 0.02782 | |
networks.DefaultMode.PCC (1,−61,38)–networks.Salience.ACC (0,22,35) | T(36) = 2.83 | 0.07501 | 0.063607 | |
Cluster 2/9 | Mass = 94.44 | p-unc | p-FDR | p-FWE |
networks.DorsalAttention.IPS (L) (−39,−43,52)–networks.DorsalAttention.IPS (R) (39,−42,54) | T(36) = −3.72 | 0.000679 | 0.011612 | |
networks.Salience.SMG (L) (−60,−39,31)–networks.FrontoParietal.PPC (R)(52,−52,45) | T(36) = −3.53 | 0.00116 | 0.016535 | |
networks.Salience.SMG (L) (−60,−39,31)–networks.Salience.SMG (R) (62,−35,32) | T(36) = −3.28 | 0.002335 | 0.02782 | |
networks.DorsalAttention.IPS (L) (−39,−43,52)–networks.Salience.SMG (R)(62,−35,32) | T(36) = −3.19 | 0.002913 | 0.029298 | |
Cluster 3/9 | Mass = 54.03 | p-unc | p-FDR | p-FWE |
networks.Salience.AInsula (R) (47,14,0)–networks.Salience.AInsula (L) (−44,13,1) | T(36) = 5.20 | 0.000008 | 0.000467 | |
Cluster 4/9 | Mass = 49.79 | p-unc | p-FDR | p-FWE |
networks.FrontoParietal.PPC (R) (52,−52,45)–networks.Salience.SMG (R) (62,−35,32) | T(36) = 3.83 | 0.000492 | 0.009342 | |
networks.Salience.SMG (R) (62,−35,32)–networks.DorsalAttention.IPS (R)(39,−42,54) | T(36) = 3.20 | 0.0029 | 0.029298 |
Analysis Unit | ||||
---|---|---|---|---|
Cluster 1/9 | Mass = 1090.39 | p-unc | p-FDR | p-FWE |
networks.Salience.ACC (0,22,35)–networks.Salience.RPFC (L) (−32,45,27) | T(36) = 9.22 | 0 | 0 | |
networks.Salience.RPFC (L) (−32,45,27)–networks.FrontoParietal.LPFC (L)(−43,33,28) | T(36) = 9.04 | 0 | 0 | |
networks.FrontoParietal.LPFC (R) (41,38,30)–networks.Salience.RPFC (R) (32,46,27) | T(36) = 7.76 | 0 | 0 | |
networks.Salience.RPFC (R) (32,46,27)–networks.Salience.RPFC (L) (−32,45,27) | T(36) = 5.90 | 0.000001 | 0.000039 | |
networks.Salience.RPFC (R) (32,46,27)–networks.Salience.ACC (0,22,35) | T(36) = 5.83 | 0.000001 | 0.000039 | |
networks.DefaultMode.PCC (1,−61,38)–networks.FrontoParietal.LPFC (R) (41,38,30) | T(36) = 5.62 | 0.000002 | 0.000055 | |
networks.FrontoParietal.LPFC (R) (41,38,30)–networks.Salience.ACC (0,22,35) | T(36) = 5.51 | 0.000003 | 0.000067 | |
networks.DefaultMode.PCC (1,−61,38)–networks.Salience.ACC (0,22,35) | T(36) = 4.78 | 0.000029 | 0.000418 | |
networks.DefaultMode.PCC (1,−61,38)–networks.Salience.RPFC (L) (−32,45,27) | T(36) = 4.32 | 0.000117 | 0.001542 | |
networks.DefaultMode.MPFC (1,55,−3)–networks.Salience.ACC (0,22,35) | T(36) = 4.21 | 0.000162 | 0.001843 | |
networks.Salience.ACC (0,22,35)–networks.FrontoParietal.LPFC (L) (−43,33,28) | T(36) = 4.10 | 0.000227 | 0.00243 | |
networks.Salience.AInsula (R) (47,14,0)–networks.Salience.ACC (0,22,35) | T(36) = 4.06 | 0.000251 | 0.002472 | |
networks.DefaultMode.PCC (1,−61,38)–networks.FrontoParietal.LPFC (L) (−43,33,28) | T(36) = 4.05 | 0.00026 | 0.002472 | |
networks.FrontoParietal.LPFC (R) (41,38,30)–networks.Salience.RPFC (L) (−32,45,27) | T(36) = 3.92 | 0.000383 | 0.003449 | |
networks.Salience.AInsula (L) (−44,13,1)–networks.Salience.ACC (0,22,35) | T(36) = 3.74 | 0.000636 | 0.005181 | |
networks.DefaultMode.PCC (1,−61,38)–networks.Salience.RPFC (R) (32,46,27) | T(36) = 3.40 | 0.001651 | 0.011763 | |
networks.DefaultMode.MPFC (1,55,−3)–networks.FrontoParietal.LPFC (R) (41,38,30) | T(36) = 3.35 | 0.001892 | 0.012943 | |
networks.Salience.AInsula (L) (−44,13,1)–networks.Salience.RPFC (L) (−32,45,27) | T(36) = 3.05 | 0.004267 | 0.02516 | |
networks.Salience.AInsula (R) (47,14,0)–networks.Salience.RPFC (L) (−32,45,27) | T(36) = 2.94 | 0.005704 | 0.029555 | |
networks.Salience.RPFC (R) (32,46,27)–networks.FrontoParietal.LPFC (L) (−43,33,28) | T(36) = 2.90 | 0.006269 | 0.031146 | |
Cluster 2/9 | Mass = 245.44 | p-unc | p-FDR | p-FWE |
networks.DorsalAttention.IPS (R) (39,−42,54)–networks.Salience.AInsula (L) (−44,13,1) | T(36) = 5.08 | 0.000012 | 0.000215 | |
networks.DorsalAttention.IPS (R) (39,−42,54)–networks.Salience.AInsula (R) (47,14,0) | T(36) = 5.06 | 0.000013 | 0.000215 | |
networks.DorsalAttention.IPS (R) (39,−42,54)–networks.Salience.SMG (R) (62,−35,32) | T(36) = 4.78 | 0.000029 | 0.000418 | |
networks.DorsalAttention.IPS (R) (39,−42,54)–networks.DefaultMode.LP (R)(47,−67,29) | T(36) = 3.28 | 0.002314 | 0.015221 | |
networks.Salience.SMG (R) (62,−35,32)–networks.FrontoParietal.PPC (R) (52,−52,45) | T(36) = 3.23 | 0.002628 | 0.016644 | |
networks.DorsalAttention.IPS (R) (39,−42,54)–networks.DorsalAttention.FEF (R) (30,−6,64) | T(36) =3.14 | 0.00336 | 0.020522 | |
networks.Salience.SMG (R) (62,−35,32)–networks.DefaultMode.LP (R) (47,−67,29) | T(36) = 3.01 | 0.004742 | 0.02534 | |
networks.FrontoParietal.PPC (R) (52,−52,45)–networks.DefaultMode.LP (R)(47,−67,29) | T(36) = 2.89 | 0.006454 | 0.031146 | |
Cluster 3/9 | Mass = 84.80 | p-unc | p-FDR | p-FWE |
networks.Salience.AInsula (R) (47,14,0)–networks.Salience.AInsula (L) (−44,13,1) | T(36) = 5.76 | 0.000001 | 0.000042 | |
networks.Salience.AInsula (R) (47,14,0)–networks.DefaultMode.MPFC (1,55,−3) | T(36) = 3.04 | 0.004417 | 0.025177 | |
Cluster 4/9 | Mass = 54.64 | p-unc | p-FDR | p-FWE |
networks.Salience.SMG (R) (62,−35,32)–networks.Salience.SMG (L) (−60,−39,31) | T(36) = −3.85 | 0.000468 | 0.003998 | |
networks.Salience.SMG (R) (62,−35,32)–networks.DorsalAttention.IPS (L) (−39,−43,52) | T(36) = −3.54 | 0.001137 | 0.008452 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, M.-H. A Pilot Study: Extraction of a Neural Network and Feature Extraction of Generation and Reduction Mechanisms Due to Acute Stress. Brain Sci. 2023, 13, 519. https://doi.org/10.3390/brainsci13030519
Choi M-H. A Pilot Study: Extraction of a Neural Network and Feature Extraction of Generation and Reduction Mechanisms Due to Acute Stress. Brain Sciences. 2023; 13(3):519. https://doi.org/10.3390/brainsci13030519
Chicago/Turabian StyleChoi, Mi-Hyun. 2023. "A Pilot Study: Extraction of a Neural Network and Feature Extraction of Generation and Reduction Mechanisms Due to Acute Stress" Brain Sciences 13, no. 3: 519. https://doi.org/10.3390/brainsci13030519
APA StyleChoi, M.-H. (2023). A Pilot Study: Extraction of a Neural Network and Feature Extraction of Generation and Reduction Mechanisms Due to Acute Stress. Brain Sciences, 13(3), 519. https://doi.org/10.3390/brainsci13030519