Interpersonal Competition in Elderly Couples: A Functional Near-Infrared Spectroscopy Hyperscanning Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Tasks and Procedures
2.3. fNIRS Data Acquisition
2.4. Data Analysis
2.4.1. Behavioral Data Analysis
2.4.2. fNIRS Data Analysis
3. Results
3.1. Behavioral Performance
3.2. Inter-Brain Synchronization
3.3. Directional Coupling
3.4. Classification Results
4. Discussion
5. Conclusions
6. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bailey, P.E.; Brady, B.; Ebner, N.C.; Ruffman, T. Effects of age on emotion regulation, emotional empathy, and prosocial behavior. J. Gerontol. Ser. B 2020, 75, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Cho, I.; Daley, R.T.; Cunningham, T.J.; Kensinger, E.A.; Gutchess, A. Aging, empathy, and prosocial behaviors during the COVID-19 pandemic. J. Gerontol. Ser. B 2022, 77, e57–e63. [Google Scholar] [CrossRef] [PubMed]
- Cutler, J.; Wittmann, M.K.; Abdurahman, A.; Hargitai, L.D.; Drew, D.; Husain, M.; Lockwood, P.L. Ageing is associated with disrupted reinforcement learning whilst learning to help others is preserved. Nat. Commun. 2021, 12, 4440. [Google Scholar] [CrossRef]
- Mayr, U.; Freund, A.M. Do we become more prosocial as we age, and if so, why? Curr. Dir. Psychol. Sci. 2020, 29, 248–254. [Google Scholar] [CrossRef] [Green Version]
- Sparrow, E.P.; Swirsky, L.T.; Kudus, F.; Spaniol, J. Aging and altruism: A meta-analysis. Psychol. Aging 2021, 36, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Mayr, U.; Wozniak, D.; Davidson, C.; Kuhns, D.; Harbaugh, W.T. Competitiveness across the life span: The feisty fifties. Psychol. Aging 2012, 27, 278–285. [Google Scholar] [CrossRef] [Green Version]
- Batool, S.S.; Lewis, C.A. Does positive parenting predict pro-social behavior and friendship quality among adolescents? Emotional intelligence as a mediator. Curr. Psychol. 2022, 41, 1997–2011. [Google Scholar] [CrossRef]
- Kammrath, L.K.; Peetz, J. The limits of love: Predicting immediate versus sustained caring behaviors in close relationships. J. Exp. Soc. Psychol. 2011, 47, 411–417. [Google Scholar] [CrossRef]
- Li, R.; Nguyen, T.; Potter, T.; Zhang, Y. Dynamic cortical connectivity alterations associated with Alzheimer’s disease: An EEG and fNIRS integration study. NeuroImage Clin. 2019, 21, 101622. [Google Scholar] [CrossRef]
- Maner, J.K.; Gailliot, M.T. Altruism and egoism: Prosocial motivations for helping depend on relationship context. Eur. J. Soc. Psychol. 2007, 37, 347–358. [Google Scholar] [CrossRef]
- Righetti, F.; Finkenauer, C.; Finkel, E.J. Low self-control promotes the willingness to sacrifice in close relationships. Psychol. Sci. 2013, 24, 1533–1540. [Google Scholar] [CrossRef] [PubMed]
- Shaver, P.R.; Mikulincer, M.; Cassidy, J. Attachment, caregiving in couple relationships, and prosocial behavior in the wider world. Curr. Opin. Psychol. 2019, 25, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Collins, N.L.; Kane, H.S.; Metz, M.A.; Cleveland, C.; Khan, C.; Winczewski, L.; Bowen, J.; Prok, T. Psychological, physiological, and behavioral responses to a partner in need: The role of compassionate love. J. Soc. Pers. Relatsh. 2014, 31, 601–629. [Google Scholar] [CrossRef]
- Rinner, M.T.; Haller, E.; Meyer, A.H.; Gloster, A.T. Is giving receiving? The influence of autonomy on the association between prosocial behavior and well-being. J. Context. Behav. Sci. 2022, 24, 120–125. [Google Scholar] [CrossRef]
- Carstensen, L.L. Evidence for a life-span theory of socioemotional selectivity. Curr. Dir. Psychol. Sci. 1995, 4, 151–156. [Google Scholar] [CrossRef]
- Yang, F.; Li, Z.; Wang, G.W.; Shi, X.X.; Fu, C. Cognitive function and its influencing factors in empty-nest elderly and non-empty-nest elderly adults in China. Aging 2021, 13, 4552–4563. [Google Scholar] [CrossRef]
- Atalay, K.; Staneva, A. The effect of bereavement on cognitive functioning among elderly people: Evidence from Australia. Econ. Hum. Biol. 2020, 39, 100932. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, H.; Zheng, P.; Liu, B.; Guo, Z.; Geng, S.; Hong, S. Life negative events and depressive symptoms: The China longitudinal ageing social survey. BMC Public Health 2020, 20, 968. [Google Scholar] [CrossRef]
- Caillot-Ranjeva, S.; Amieva, H.; Meillon, C.; Helmer, C.; Berr, C.; Bergua, V. Similarities in cognitive abilities in older couples: A study of mutual influences. J. Clin. Exp. Neuropsychol. 2021, 43, 78–90. [Google Scholar] [CrossRef]
- Berg, C.A.; Schindler, I.; Smith, T.W.; Skinner, M.; Beveridge, R.M. Perceptions of the cognitive compensation and interpersonal enjoyment functions of collaboration among middle-aged and older married couples. Psychol. Aging 2011, 26, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.W.; Berg, C.A.; Florsheim, P.; Uchino, B.N.; Pearce, G.; Hawkins, M.; Henry, N.J.; Beveridge, R.M.; Skinner, M.A.; Olsen-Cerny, C. Conflict and collaboration in middle-aged and older couples: I. Age differences in agency and communion during marital interaction. Psychol. Aging 2009, 24, 259–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooke, A.; Kavussanu, M.; McIntyre, D.; Ring, C. Effects of competition on endurance performance and the underlying psychological and physiological mechanisms. Biol. Psychol. 2011, 86, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Cooke, A.; Kavussanu, M.; McIntyre, D.; Ring, C. The effects of individual and team competitions on performance, emotions, and effort. J. Sport Exerc. Psychol. 2013, 35, 132–143. [Google Scholar] [CrossRef] [PubMed]
- To, C.; Kilduff, G.J.; Rosikiewicz, B.L. When interpersonal competition helps and when it harms: An integration via challenge and threat. Acad. Manag. Ann. 2020, 14, 908–934. [Google Scholar] [CrossRef]
- Wittchen, M.; Krimmel, A.; Kohler, M.; Hertel, G. The two sides of competition: Competition-induced effort and affect during intergroup versus interindividual competition. Br. J. Psychol. 2013, 104, 320–338. [Google Scholar] [CrossRef]
- Anderson-Hanley, C.; Snyder, A.L.; Nimon, J.P.; Arciero, P.J. Social facilitation in virtual reality-enhanced exercise: Competitiveness moderates exercise effort of older adults. Clin. Interv. Aging 2011, 6, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Lu, J.; Wang, Y.; Feng, Z.; Yuan, B. Social distance influences the outcome evaluation of cooperation and conflict: Evidence from event-related potentials. Neurosci. Lett. 2017, 647, 78–84. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, B.; Roberts, K.; Wang, Y.; Lin, C.; Simons, R.F. How friendly is a little friendly competition? Evidence of self-interest and empathy during outcome evaluation. Int. J. Psychophysiol. 2014, 91, 155–162. [Google Scholar] [CrossRef]
- Ravaja, N.; Saari, T.; Turpeinen, M.; Laarni, J.; Salminen, M.; Kivikangas, M. Spatial presence and emotions during video game playing: Does it matter with whom you play? Presence Teleoperators Virtual Environ. 2006, 15, 381–392. [Google Scholar] [CrossRef]
- Sugimoto, H.; Shigemune, Y.; Tsukiura, T. Competing against a familiar friend: Interactive mechanism of the temporo-parietal junction with the reward-related regions during episodic encoding. NeuroImage 2016, 130, 261–272. [Google Scholar] [CrossRef]
- Balconi, M.; Angioletti, L. Unravelling competitors’ brain-and-body correlates. The two-persons social neuroscience approach to study competition. Neuropsychol. Trends 2021, 29, 83–104. [Google Scholar] [CrossRef]
- Bitsch, F.; Berger, P.; Nagels, A.; Falkenberg, I.; Straube, B. The role of the right temporo–parietal junction in social decision-making. Hum. Brain Mapp. 2018, 39, 3072–3085. [Google Scholar] [CrossRef] [Green Version]
- Era, V.; Aglioti, S.M.; Candidi, M. Inhibitory theta burst stimulation highlights the role of left aIPS and right TPJ during complementary and imitative human–avatar interactions in cooperative and competitive scenarios. Cereb. Cortex 2020, 30, 1677–1687. [Google Scholar] [CrossRef]
- Liu, T.; Saito, G.; Lin, C.; Saito, H. Inter-brain network underlying turn-based cooperation and competition: A hyperscanning study using near-infrared spectroscopy. Sci. Rep. 2017, 7, 8684. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Saito, H.; Oi, M. Role of the right inferior frontal gyrus in turn-based cooperation and competition: A near-infrared spectroscopy study. Brain Cogn. 2015, 99, 17–23. [Google Scholar] [CrossRef]
- Piva, M.; Zhang, X.; Noah, J.A.; Chang, S.W.; Hirsch, J. Distributed neural activity patterns during human-to-human competition. Front. Hum. Neurosci. 2017, 11, 571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.S.; Cheng, J.T.; Hsu, I.; Liou, S.; Kung, C.C.; Chen, D.Y.; Weng, M.H. Distinct cerebral coherence in task-based fMRI hyperscanning: Cooperation versus competition. Cereb. Cortex 2022, 33, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhou, X.; Feng, D.; Yuan, D.; Li, S.; Lu, C.; Li, X. Effects of acute psychosocial stress on interpersonal cooperation and competition in young women. Brain Cogn. 2021, 151, 105738. [Google Scholar] [CrossRef]
- Zhou, X.; Pan, Y.; Zhang, R.; Bei, L.; Li, X. Mortality threat mitigates interpersonal competition: An EEG-based hyperscanning study. Soc. Cogn. Affect. Neurosci. 2021, 16, 621–631. [Google Scholar] [CrossRef]
- Cheng, X.; Guo, B.; Hu, Y. Distinct neural couplings to shared goal and action coordination in joint action: Evidence based on fNIRS hyperscanning. Soc. Cogn. Affect. Neurosci. 2022, 17, 956–964. [Google Scholar] [CrossRef]
- Hirsch, J.; Zhang, X.; Noah, J.A.; Ono, Y. Frontal temporal and parietal systems synchronize within and across brains during live eye-to-eye contact. NeuroImage 2017, 157, 314–330. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Novembre, G.; Song, B.; Li, X.; Hu, Y. Interpersonal synchronization of inferior frontal cortices tracks social interactive learning of a song. NeuroImage 2018, 183, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, P.; Weissman-Fogel, I.; Dumas, G.; Shamay-Tsoory, S.G. Brain-to-brain coupling during handholding is associated with pain reduction. Proc. Natl. Acad. Sci. USA 2018, 115, E2528–E2537. [Google Scholar] [CrossRef] [Green Version]
- Long, Y.; Chen, C.; Wu, K.; Zhou, S.; Zhou, F.; Zheng, L.; Zhao, H.; Zhai, Y.; Lu, C. Interpersonal conflict increases interpersonal neural synchronization in romantic couples. Cereb. Cortex 2022, 32, 3254–3268. [Google Scholar] [CrossRef]
- Long, Y.; Zheng, L.; Zhao, H.; Zhou, S.; Zhai, Y.; Lu, C. Interpersonal neural synchronization during interpersonal touch underlies affiliative pair bonding between romantic couples. Cereb. Cortex 2021, 31, 1647–1659. [Google Scholar] [CrossRef] [PubMed]
- Djalovski, A.; Kinreich, S.; Zagoory-Sharon, O.; Feldman, R. Social dialogue triggers biobehavioral synchrony of partners’ endocrine response via sex-specific, hormone-specific, attachment-specific mechanisms. Sci. Rep. 2021, 11, 12421. [Google Scholar] [CrossRef]
- Duan, H.; Yang, T.; Wang, X.; Kan, Y.; Zhao, H.; Li, Y.; Hu, W. Is the creativity of lovers better? A behavioral and functional near-infrared spectroscopy hyperscanning study. Curr. Psychol. 2020, 41, 41–54. [Google Scholar] [CrossRef]
- Miller, J.G.; Vrtička, P.; Cui, X.; Shrestha, S.; Hosseini, S.H.; Baker, J.M.; Reiss, A.L. Inter-brain synchrony in mother-child dyads during cooperation: An fNIRS hyperscanning study. Neuropsychologia 2019, 124, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Reindl, V.; Gerloff, C.; Scharke, W.; Konrad, K. Brain-to-brain synchrony in parent-child dyads and the relationship with emotion regulation revealed by fNIRS-based hyperscanning. NeuroImage 2018, 178, 493–502. [Google Scholar] [CrossRef]
- Nguyen, T.; Schleihauf, H.; Kayhan, E.; Matthes, D.; Vrtička, P.; Hoehl, S. The effects of interaction quality on neural synchrony during mother-child problem solving. Cortex 2020, 124, 235–249. [Google Scholar] [CrossRef]
- Nguyen, T.; Schleihauf, H.; Kungl, M.; Kayhan, E.; Hoehl, S.; Vrtička, P. Interpersonal neural synchrony during father–child problem solving: An fNIRS hyperscanning study. Child Dev. 2021, 92, e565–e580. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Cheng, X.; Zhang, Z.; Li, X.; Hu, Y. Cooperation in lovers: An f NIRS-based hyperscanning study. Hum. Brain Mapp. 2017, 38, 831–841. [Google Scholar] [CrossRef] [PubMed]
- Egetemeir, J.; Stenneken, P.; Koehler, S.; Fallgatter, A.J.; Herrmann, M.J. Exploring the neural basis of real-life joint action: Measuring brain activation during joint table setting with functional near-infrared spectroscopy. Front. Hum. Neurosci. 2011, 5, 95. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Bryant, D.M.; Reiss, A.L. NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation. NeuroImage 2012, 59, 2430–2437. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Li, X.; Hu, Y. Synchronous brain activity during cooperative exchange depends on gender of partner: A fNIRS-based hyperscanning study. Hum. Brain Mapp. 2015, 36, 2039–2048. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.; Liu, Y.; Cao, X.; Wu, J. The influence of members’ relationship on collaborative remembering. Acta Psychol. Sin. 2021, 53, 481–493. [Google Scholar] [CrossRef]
- Okamoto, M.; Dan, H.; Sakamoto, K.; Takeo, K.; Shimizu, K.; Kohno, S.; Oda, I.; Isobe, S.; Suzuki, T.; Kohyama, K.; et al. Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. NeuroImage 2004, 21, 99–111. [Google Scholar] [CrossRef]
- Singh, A.K.; Okamoto, M.; Dan, H.; Jurcak, V.; Dan, I. Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI. NeuroImage 2005, 27, 842–851. [Google Scholar] [CrossRef]
- Song, X.; Zhang, J.; Shi, J.; You, X. Influence of emotional valence on the spatial simon effect under the vocal response mode. Acta Psychol. Sin. 2017, 49, 1031. [Google Scholar] [CrossRef]
- Huppert, T.J.; Diamond, S.G.; Franceschini, M.A.; Boas, D.A. HomER: A review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl. Opt. 2009, 48, D280–D298. [Google Scholar] [CrossRef] [Green Version]
- Lia, H.; Ibukunoluwa, O.; Chris, D.; Alex, C.; Blaise, F.; Jeff, D. Automated processing of fnirs data—A visual guide to the pitfalls and consequences. Algorithms 2018, 11, 67. [Google Scholar]
- Morais, G.; Scholkmann, F.; Balardin, J.B.; Furucho, R.A.; Paula, R.; Biazoli, C.E.; Sato, J.R. Non-neuronal evoked and spontaneous hemodynamic changes in the anterior temporal region of the human head may lead to misinterpretations of functional near-infrared spectroscopy signals. Neurophotonics 2017, 5, 011002. [Google Scholar]
- Molavi, B.; Dumont, G.A. Wavelet-based motion artifact removal for functional near-infrared spectroscopy. Physiol. Meas. 2012, 33, 259–270. [Google Scholar] [CrossRef]
- Zhang, Q.; Worsnop, D.R.; Canagaratna, M.R.; Jimenez, J.L. Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: Insights into sources and processes of organic aerosols. Atmos. Chem. Phys. 2005, 5, 3289–3311. [Google Scholar] [CrossRef] [Green Version]
- Boas, D.A.; Dale, A.M.; Franceschini, M.A. Diffuse optical imaging of brain activation: Approaches to optimizing image sensitivity, resolution, and accuracy. NeuroImage 2004, 23, S275–S288. [Google Scholar] [CrossRef] [Green Version]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, X.; Wang, C.; Cao, M.; Deng, S.; Du, X.; Dai, Y.; Geng, S.; Fan, Y.; Cui, L.; et al. Different strategies, distinguished cooperation efficiency, and brain synchronization for couples: An fNIRS-based hyperscanning study. Brain Behav. 2020, 10, e01768. [Google Scholar] [CrossRef]
- Lu, K.; Hao, N. When do we fall in neural synchrony with others? Soc. Cogn. Affect. Neurosci. 2019, 14, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Nozawa, T.; Sasaki, Y.; Sakaki, K.; Yokoyama, R.; Kawashima, R. Interpersonal frontopolar neural synchronization in group communication: An exploration toward fNIRS hyperscanning of natural interactions. NeuroImage 2016, 133, 484–497. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Chen, C.; Liu, W.; Long, Y.; Zhao, H.; Bai, X.; Zhang, Z.; Han, Z.; Liu, L.; Guo, T.; et al. Enhancement of teaching outcome through neural prediction of the students’ knowledge state. Hum. Brain Mapp. 2018, 39, 3046–3057. [Google Scholar] [CrossRef] [Green Version]
- Barnett, L.; Seth, A.K. The MVGC multivariate Granger causality toolbox: A new approach to Granger-causal inference. J. Neurosci. Methods 2014, 223, 50–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Fix, E.; Hodges, J.L. Discriminatory Analysis, Nonparametric Estimation: Consistency Properties; Report 4, Project n° 21-49, 4; USAF School of Aviation Medicine, Randolph Field: San Antonio, TX, USA, 1951. [Google Scholar]
- Leen, E.A.; Lang, F.R. Motivation of computer based learning across adulthood. Comput. Hum. Behav. 2013, 29, 975–983. [Google Scholar] [CrossRef]
- Charness, G.; Villeval, M.C. Cooperation and competition in intergenerational experiments in the field and the laboratory. Am. Econ. Rev. 2009, 99, 956–978. [Google Scholar] [CrossRef] [Green Version]
- Sproten, A.N.; Schwieren, C. Age Differences in the Reaction to Incentives—Do Older People Avoid Competition? Discussion Paper Series No. 522; University of Heidelberg, Department of Economics: Heidelberg, Germany, 2012. [Google Scholar]
- Azhari, A.; Bizzego, A.; Esposito, G. Father-child dyads exhibit unique inter-subject synchronization during co-viewing of animation video stimuli. Soc. Neurosci. 2021, 16, 522–533. [Google Scholar] [CrossRef]
- Nguyen, T.; Schleihauf, H.; Kayhan, E.; Matthes, D.; Vrtička, P.; Hoehl, S. Neural synchrony in mother–child conversation: Exploring the role of conversation patterns. Soc. Cogn. Affect. Neurosci. 2021, 16, 93–102. [Google Scholar] [CrossRef]
- Baker, J.M.; Liu, N.; Cui, X.; Vrticka, P.; Saggar, M.; Hosseini, S.M.; Reiss, A.L. Sex differences in neural and behavioral signatures of cooperation revealed by fNIRS hyperscanning. Sci. Rep. 2016, 6, 26492. [Google Scholar] [CrossRef]
- Li, R.; Bruno, J.L.; Lee, C.H.; Bartholomay, K.L.; Sundstrom, J.; Piccirilli, A.; Jordan, T.; Miller, J.G.; Lightbody, A.A.; Reiss, A.L. Aberrant brain network and eye gaze patterns during natural social interaction predict multi-domain social-cognitive behaviors in girls with fragile X syndrome. Mol. Psychiatry 2022, 27, 3768–3776. [Google Scholar] [CrossRef]
- Mayseless, N.; Hawthorne, G.; Reiss, A.L. Real-life creative problem solving in teams: fNIRS based hyperscanning study. NeuroImage 2019, 203, 116161. [Google Scholar] [CrossRef]
- Koike, T.; Tanabe, H.C.; Okazaki, S.; Nakagawa, E.; Sasaki, A.T.; Shimada, K.; Sugawara, S.K.; Takahashi, H.K.; Yoshihara, K.; Bosch-Bayard, J.; et al. Neural substrates of shared attention as social memory: A hyperscanning functional magnetic resonance imaging study. NeuroImage 2016, 125, 401–412. [Google Scholar] [CrossRef] [Green Version]
- Anada, R.; Watanabe, H.; Takano, K.; Saito, M.; Shiraishi, H.; Yokosawa, K. Desynchronization of alpha rhythm during exchanging semantic words―MEG hyperscanning study. In Proceedings of the 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society, Online, 1–5 November 2021. [Google Scholar]
- Gumilar, I.; Sareen, E.; Bell, R.; Stone, A.; Hayati, A.; Mao, J.; Barde, A.; Gupta, A.; Dey, A.; Lee, G.; et al. A comparative study on inter-brain synchrony in real and virtual environments using hyperscanning. Comput. Graph. 2021, 94, 62–75. [Google Scholar] [CrossRef]
- Liu, T.; Duan, L.; Dai, R.; Pelowski, M.; Zhu, C. Team-work, team-brain: Exploring synchrony and team interdependence in a nine-person drumming task via multiparticipant hyperscanning and inter-brain network topology with fNIRS. NeuroImage 2021, 237, 118147. [Google Scholar] [CrossRef] [PubMed]
- Abe, M.O.; Koike, T.; Okazaki, S.; Sugawara, S.K.; Takahashi, K.; Watanabe, K.; Sadato, N. Neural correlates of online cooperation during joint force production. NeuroImage 2019, 191, 150–161. [Google Scholar] [CrossRef]
- Assaf, M.; Hyatt, C.J.; Wong, C.G.; Johnson, M.R.; Schultz, R.T.; Hendler, T.; Pearlson, G.D. Mentalizing and motivation neural function during social interactions in autism spectrum disorders. NeuroImage Clin. 2013, 3, 321–331. [Google Scholar] [CrossRef] [Green Version]
- Decety, J.; Jackson, P.L.; Sommerville, J.A.; Chaminade, T.; Meltzoff, A.N. The neural bases of cooperation and competition: An fMRI investigation. NeuroImage 2004, 23, 744–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsoi, L.; Dungan, J.; Waytz, A.; Young, L. Distinct neural patterns of social cognition for cooperation versus competition. NeuroImage 2016, 137, 86–96. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Chen, C.; Dai, B.; Shi, G.; Ding, G.; Liu, L.; Lu, C. Leader emergence through interpersonal neural synchronization. Proc. Natl. Acad. Sci. USA 2015, 112, 4274–4279. [Google Scholar] [CrossRef] [Green Version]
- Lahnakoski, J.M.; Glerean, E.; Jääskeläinen, I.P.; Hyönä, J.; Hari, R.; Sams, M.; Nummenmaa, L. Synchronous brain activity across individuals underlies shared psychological perspectives. NeuroImage 2014, 100, 316–324. [Google Scholar] [CrossRef] [Green Version]
- Barreto, C.; Bruneri, G.D.A.; Brockington, G.; Ayaz, H.; Sato, J.R. A New Statistical Approach for fNIRS Hyperscanning to Predict Brain Activity of Preschoolers’ Using Teacher’s. Front. Hum. Neurosci. 2021, 15, 181. [Google Scholar] [CrossRef]
- Kruse, L.A.; Reiss, A.L.; Kochenderfer, M.J.; Balters, S. Dyadic Sex Composition and Task Classification Using fNIRS Hyperscanning Data. In Proceedings of the 20th IEEE International Conference on Machine Learning and Applications (ICMLA), Pasadena, CA, USA, 13–16 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 582–588. [Google Scholar]
- Pan, Y.; Dikker, S.; Goldstein, P.; Zhu, Y.; Yang, C.; Hu, Y. Instructor-learner brain coupling discriminates between instructional approaches and predicts learning. NeuroImage 2020, 211, 116657. [Google Scholar] [CrossRef]
- Cheng, X.; Liu, M.; Pan, Y.; Li, H. The teaching and learning brains: Interpersonal neuroscience in educational research. Adv. Psychol. Sci. 2021, 29, 1993–2001. [Google Scholar] [CrossRef]
- Liang, Z.; Li, S.; Zhou, S.; Chen, S.; Li, Y.; Chen, Y.; Zhao, Q.; Huang, F.; Lu, C.; Yu, Q.; et al. Increased or decreased? Interpersonal neural synchronization in group creation. NeuroImage 2022, 260, 119448. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Song, B.; Hu, Y.; Pan, Y.; Hu, Y. The averaged inter-brain coherence between the audience and a violinist predicts the popularity of violin performance. NeuroImage 2020, 211, 116655. [Google Scholar] [CrossRef] [PubMed]
- Gneezy, U.; Niederle, M.; Rustichini, A. Performance in competitive environments: Gender differences. Q. J. Econ. 2003, 118, 1049–1074. [Google Scholar] [CrossRef] [Green Version]
- Niederle, M.; Vesterlund, L. Do women shy away from competition? Do men compete too much? Q. J. Econ. 2007, 122, 1067–1101. [Google Scholar] [CrossRef]
- Niederle, M.; Vesterlund, L. Gender and competition. Annu. Rev. Econ. 2011, 3, 601–630. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Zhang, T.; Zhang, R.; Wang, N.; Yin, Q.; Li, Y.; Liu, J.; Liu, T.; Li, X. Neural alignment during face-to-face spontaneous deception: Does gender make a difference? Hum. Brain Mapp. 2020, 41, 4964–4981. [Google Scholar] [CrossRef]
- Andrea, B.; Atiqah, A.; Gianluca, E. Reproducible inter-personal brain coupling measurements in hyperscanning settings with functional near infra-red spectroscopy. Neuroinformatics 2021, 20, 665–675. [Google Scholar] [CrossRef]
- Horn, S.S.; Avrahami, J.; Kareev, Y.; Hertwig, R. Age-related differences in strategic competition. Sci. Rep. 2021, 11, 15318. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Liu, Z.; Qian, H.; Hu, Y.; Gao, X. Interpersonal Competition in Elderly Couples: A Functional Near-Infrared Spectroscopy Hyperscanning Study. Brain Sci. 2023, 13, 600. https://doi.org/10.3390/brainsci13040600
Zhang Q, Liu Z, Qian H, Hu Y, Gao X. Interpersonal Competition in Elderly Couples: A Functional Near-Infrared Spectroscopy Hyperscanning Study. Brain Sciences. 2023; 13(4):600. https://doi.org/10.3390/brainsci13040600
Chicago/Turabian StyleZhang, Qian, Zhennan Liu, Haoyue Qian, Yinying Hu, and Xiangping Gao. 2023. "Interpersonal Competition in Elderly Couples: A Functional Near-Infrared Spectroscopy Hyperscanning Study" Brain Sciences 13, no. 4: 600. https://doi.org/10.3390/brainsci13040600
APA StyleZhang, Q., Liu, Z., Qian, H., Hu, Y., & Gao, X. (2023). Interpersonal Competition in Elderly Couples: A Functional Near-Infrared Spectroscopy Hyperscanning Study. Brain Sciences, 13(4), 600. https://doi.org/10.3390/brainsci13040600