The Value of Various Post-Processing Modalities of Diffusion Weighted Imaging in the Detection of Multiple Sclerosis
Abstract
:1. Introduction
2. Diffusion Tensor Imaging (DTI)
3. Q-Space Imaging (QSI)
4. Diffusional Kurtosis Imaging (DKI)
5. Neurite Orientation Dispersion and Density Imaging (NODDI)
6. AxCaliber
7. Future Perspective
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- AlOmair Othman, I.S.M.T.; Brereton Ian, M.; Galloway Graham, J.; Kurniawan Nyoman, D. Current developments in MRI for assessing rodent models of multiple sclerosis. Future Neurol. 2014, 9, 487–511. [Google Scholar] [CrossRef] [Green Version]
- Alamri, S. Adherence to MRI Protocol Consensus Guidelines in Multiple Sclerosis Patients at Taif Hospitals. Int. J. Med. Imaging 2020, 8, 102. [Google Scholar] [CrossRef]
- CAMMS223 Trial Investigators; Coles, A.J.; Compston, D.A.; Selmaj, K.W.; Lake, S.L.; Moran, S.; Margolin, D.H.; Norris, K.; Tandon, P.K. Alemtuzumab vs. Interferon Beta-1a in Early Multiple Sclerosis. N. Engl. J. Med. 2008, 359, 1786–1801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pachner, A.R. Experimental models of multiple sclerosis. Curr. Opin. Neurol. 2011, 24, 291–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.A.; Robertson, N.; La Rocca, N.; Uitdehaag, B.; Van Der Mei, I.; et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult. Scler. J. 2020, 26, 1816–1821. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K. MRI Analysis to Detect Gray Matter Tissue Loss in Multiple Sclerosis; Case Western Reserve University: Cleveland, OH, USA, 2011. [Google Scholar]
- MSIF. What is MS. 2015. Available online: http://www.msif.org/about-ms/what-is-ms/ (accessed on 7 January 2015).
- Ramagopalan, S.V.; Dobson, R.; Meier, U.C.; Giovannoni, G. Multiple sclerosis: Risk factors, prodromes, and potential causal pathways. Lancet Neurol. 2010, 9, 727–739. [Google Scholar] [CrossRef]
- Nathoo, N.; Yong, V.W.; Dunn, J.F. Using magnetic resonance imaging in animal models to guide drug development in multiple sclerosis. Mult. Scler. J. 2013, 20, 3–11. [Google Scholar] [CrossRef]
- Neema, M.; Ceccarelli, A.; Jackson, J.S.; Bakshi, R. Magnetic Resonance Imaging in Multiple Sclerosis. In Multiple Sclerosis; Wiley-Blackwell: Hoboken, NJ, USA, 2012; pp. 136–162. [Google Scholar]
- Neema, M.; Stankiewicz, J.; Arora, A.; Guss, Z.D.; Bakshi, R. MRI in multiple sclerosis: What’s inside the toolbox? Neurotherapeutics 2007, 4, 602–617. [Google Scholar] [CrossRef]
- Polman, C.H.; Reingold, S.C.; Banwell, B.; Clanet, M.; Cohen, J.A.; Filippi, M.; Fujihara, K.; Havrdova, E.; Hutchinson, M.; Kappos, L.; et al. Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Ann. Neurol. 2011, 69, 292–302. [Google Scholar] [CrossRef] [Green Version]
- Bakshi, R.; Thompson, A.; Rocca, M.; Pelletier, D.; Dousset, V.; Barkhof, F.; Inglese, M.; Guttmann, C.; Horsfield, M.; Filippi, M. MRI in multiple sclerosis: Current status and future prospects. Lancet Neurol. 2008, 7, 615–625. [Google Scholar] [CrossRef] [Green Version]
- Moll, N.M.; Rietsch Bs, A.M.; Thomas, S.; Ransohoff, A.J.; Lee, J.-C.; Fox, R.; Chang, A.; Ransohoff, R.M.; Fisher, E. Multiple sclerosis normal-appearing white matter: Pathology-imaging correlations. Ann. Neurol. 2011, 70, 764–773. [Google Scholar] [CrossRef] [PubMed]
- Sbardella, E.; Tona, F.; Petsas, N.; Pantano, P. DTI Measurements in Multiple Sclerosis: Evaluation of Brain Damage and Clinical Implications. Mult. Scler. Int. 2013, 2013, 671730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, A.; Deriche, R. From Diffusion MRI to Brain Connectomics. In Modeling in Computational Biology and Biomedicine; Cazals, F., Kornprobst, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 193–234. [Google Scholar]
- Susumu Mori, J.-D.T. Chapter 1—Basics of Diffusion Measurement. In Introduction to Diffusion Tensor Imaging, 2nd ed.; Tournier, S.M.-D., Ed.; Academic Press: San Diego, CA, USA, 2014; pp. 1–9. [Google Scholar]
- Baliyan, V.; Das, C.J.; Sharma, R.; Gupta, A.K. Diffusion weighted imaging: Technique and applications. World J. Radiol. 2016, 8, 785–798. [Google Scholar] [CrossRef] [PubMed]
- Susumu Mori, J.-D.T. Chapter 4—Principle of Diffusion Tensor Imaging. In Introduction to Diffusion Tensor Imaging, 2nd ed.; Tournier, S.M.-D., Ed.; Academic Press: San Diego, CA, USA, 2014; pp. 27–32. [Google Scholar]
- Galantucci, S.; Tartaglia, M.C.; Wilson, S.M.; Henry, M.; Filippi, M.; Agosta, F.; Dronkers, N.F.; Henry, R.G.; Ogar, J.M.; Miller, B.L.; et al. White matter damage in primary progressive aphasias: A diffusion tensor tractography study. Brain 2011, 134, 3011–3029. [Google Scholar] [CrossRef] [PubMed]
- Borkowski, K.; Kłodowski, K.; Figiel, H.; Krzyżak, A.T. A theoretical validation of the B-matrix spatial distribution approach to diffusion tensor imaging. Magn. Reson. Imaging 2017, 36, 1–6. [Google Scholar] [CrossRef]
- Borkowski, K.; Krzyżak, A.T. Analysis and correction of errors in DTI-based tractography due to diffusion gradient inhomogeneity. J. Magn. Reson. 2018, 296, 5–11. [Google Scholar] [CrossRef]
- Hsu, E.W.; Mori, S. Analytical expressions for the NMR apparent diffusion coefficients in an anisotropic system and a simplified method for determining fiber orientation. Magn. Reson. Med. 1995, 34, 194–200. [Google Scholar] [CrossRef]
- Neeman, M.; Freyer, J.P.; Sillerud, L.O. A simple method for obtaining cross-term-free images for diffusion anisotropy studies in NMR microimaging. Magn. Reson. Med. 1991, 21, 138–143. [Google Scholar] [CrossRef]
- Güllmar, D.; Haueisen, J.; Reichenbach, J.R. Analysis of b-value calculations in diffusion weighted and diffusion tensor imaging. Concepts Magn. Reson. Part A 2005, 25, 53–66. [Google Scholar] [CrossRef]
- Özcan, A. Minimization of imaging gradient effects in diffusion tensor imaging. IEEE Trans. Med. Imaging 2011, 30, 642–654. [Google Scholar] [CrossRef] [Green Version]
- Bammer, R.; Markl, M.; Barnett, A.; Acar, B.; Alley, M.; Pelc, N.; Glover, G.; Moseley, M. Analysis and generalized correction of the effect of spatial gradient field distortions in diffusion-weighted imaging. Magn. Reson. Med. 2003, 50, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Janke, A.; Zhao, H.; Cowin, G.J.; Galloway, G.J.; Doddrell, D.M. Use of spherical harmonic deconvolution methods to compensate for nonlinear gradient effects on MRI images. Magn. Reson. Med. 2004, 52, 115–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krzyżak, A.T.; Olejniczak, Z. Improving the accuracy of PGSE DTI experiments using the spatial distribution of b matrix. Magn. Reson. Imaging 2015, 33, 286–295. [Google Scholar] [CrossRef]
- Krzyzak, A. Anisotropic Diffusion Phantom for Calibration of Diffusion Tensor Imaging Pulse Sequences used in MRI. U.S. Patent 8643369B2, 4 February 2014. [Google Scholar]
- Krzyzak, A.; Borkowski, K. Theoretical analysis of phantom rotations in BSD-DTI. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015. [Google Scholar] [CrossRef]
- Borkowski, K.; Krzyzak, A. The generalized Stejskal-Tanner equation for non-uniform magnetic field gradients. J. Magn. Reson. 2018, 296, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Basser, P.; Mattiello, J.; LeBihan, D. MR diffusion tensor spectroscopy and imaging. Biophys. J. 1994, 66, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Soares, J.M.; Marques, P.; Alves, V.; Sousa, N. A hitchhiker’s guide to diffusion tensor imaging. Front. Neurosci. 2013, 7, 31. [Google Scholar] [CrossRef] [Green Version]
- Klistorner, A.; Vootakuru, N.; Wang, C.; Yiannikas, C.; Graham, S.L.; Parratt, J.; Garrick, R.; Levin, N.; Masters, L.; Lagopoulos, J.; et al. Decoding Diffusivity in Multiple Sclerosis: Analysis of Optic Radiation Lesional and Non-Lesional White Matter. PLoS ONE 2015, 10, e0122114. [Google Scholar] [CrossRef]
- Wang, X.; Cusick, M.F.; Wang, Y.; Sun, P.; Libbey, J.E.; Trinkaus, K.; Fujinami, R.S.; Song, S.-K. Diffusion basis spectrum imaging detects and distinguishes coexisting subclinical inflammation, demyelination and axonal injury in experimental autoimmune encephalomyelitis mice. NMR Biomed. 2014, 27, 843–852. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.; Smith, M.T. Multiple sclerosis-induced neuropathic pain: Pharmacological management and pathophysiological insights from rodent EAE models. Inflammopharmacology 2013, 22, 1–22. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, A.B.; Schwid, S.R.; Herrmann, D.N.; Markman, J.D.; Dworkin, R.H. Pain associated with multiple sclerosis: Systematic review and proposed classification. Pain 2008, 137, 96–111. [Google Scholar] [CrossRef]
- Khan, N.; Woodruff, T.M.; Smith, M.T. Establishment and characterization of an optimized mouse model of multiple sclerosis-induced neuropathic pain using behavioral, pharmacologic, histologic and immunohistochemical methods. Pharmacol. Biochem. Behav. 2014, 126, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Old, E.A.; Malcangio, M. Chemokine mediated neuron–glia communication and aberrant signalling in neuropathic pain states. Curr. Opin. Pharmacol. 2012, 12, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.-J.; Ji, R.-R. Chemokines, neuronal–glial interactions, and central processing of neuropathic pain. Pharmacol. Ther. 2010, 126, 56–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filippi, M.; Iannucci, G.; Cercignani, M.; Rocca, M.A.; Pratesi, A.; Comi, G. A quantitative study of water diffusion in multiple sclerosis lesions and normal-appearing white matter using echo-planar imaging. Arch. Neurol. 2000, 57, 1017–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filippi, M.; Cercignani, M.; Inglese, M.; Horsfield, M.; Comi, G. Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology 2001, 56, 304–311. [Google Scholar] [CrossRef]
- Vishwas, M.; Healy, B.; Pienaar, R.; Gorman, M.; Grant, P.; Chitnis, T. Diffusion Tensor Analysis of Pediatric Multiple Sclerosis and Clinically Isolated Syndromes. Am. J. Neuroradiol. 2012, 34, 417–423. [Google Scholar] [CrossRef] [Green Version]
- Vishwas, M.; Chitnis, T.; Pienaar, R.; Healy, B.; Grant, P. Tract-Based Analysis of Callosal, Projection, and Association Pathways in Pediatric Patients with Multiple Sclerosis: A Preliminary Study. Am. J. Neuroradiol. 2009, 31, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Rocca, M.A.; Sonkin, M.; Copetti, M.; Pagani, E.; Arnold, D.L.; Narayanan, S.; Sled, J.G.; Banwell, B.; Filippi, M. Diffusion tensor magnetic resonance imaging in very early onset pediatric multiple sclerosis. Mult. Scler. J. 2015, 22, 620–627. [Google Scholar] [CrossRef]
- Rovaris, M.; Iannucci, G.; Falautano, M.; Possa, F.; Martinelli, V.; Comi, G.; Filippi, M. Cognitive dysfunction in patients with mildly disabling relapsing–remitting multiple sclerosis: An exploratory study with diffusion tensor MR imaging. J. Neurol. Sci. 2002, 195, 103–109. [Google Scholar] [CrossRef]
- Schneider, T. Sensitivity of multi-shell NODDI to multiple sclerosis white matter changes: A pilot study. Funct. Neurol. 2017, 32, 97–101. [Google Scholar] [CrossRef]
- Hori, M.; Yoshida, M.; Yokoyama, K.; Kamagata, K.; Kumagai, F.; Fukunaga, I.; Kamiya, K.; Suzuki, M.; Masutani, Y.; Hamasaki, N.; et al. Multiple sclerosis: Benefits of q-space imaging in evaluation of normal-appearing and periplaque white matter. Magn. Reson. Imaging 2014, 32, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Winston, G.P. The potential role of novel diffusion imaging techniques in the understanding and treatment of epilepsy. Quant. Imaging Med. Surg. 2015, 5, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, K.; Hori, M.; Aoki, S. NODDI in clinical research. J. Neurosci. Methods 2020, 346, 108908. [Google Scholar] [CrossRef] [PubMed]
- Assaf, Y.; Ben-Bashat, D.; Chapman, J.; Peled, S.; Biton, I.E.; Kafri, M.; Segev, Y.; Hendler, T.; Korczyn, A.D.; Graif, M.; et al. High b-value q-space analyzed diffusion-weighted MRI: Application to multiple sclerosis. Magn. Reson. Med. 2002, 47, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Cohen, Y.; Assaf, Y. High b-value q-space analyzed diffusion-weighted MRS and MRI in neuronal tissues—A technical review. NMR Biomed. 2002, 15, 516–542. [Google Scholar] [CrossRef]
- Wu, Y.-C.; Mustafi, S.M.; Harezlak, J.; Kodiweera, C.; Randolph, J.S.; Ford, J.C.; Wishart, H.A. Detecting white matter alterations in multiple sclerosis using advanced diffusion magnetic resonance imaging. Neural Regen. Res. 2019, 14, 114–123. [Google Scholar] [CrossRef]
- Kira, J.-I. q-space Myelin Map imaging: A new imaging technique for treatment evaluation in multiple sclerosis. J. Neurol. Sci. 2017, 373, 358–359. [Google Scholar] [CrossRef]
- Sommer, R.C.; Hata, J.; Rimkus, C.D.M.; da Costa, B.K.; Nakahara, J.; Sato, D.K. Mechanisms of myelin repair, MRI techniques and therapeutic opportunities in multiple sclerosis. Mult. Scler. Relat. Disord. 2021, 58, 103407. [Google Scholar] [CrossRef]
- Fujiyoshi, K.; Hikishima, K.; Nakahara, J.; Tsuji, O.; Hata, J.; Konomi, T.; Nagai, T.; Shibata, S.; Kaneko, S.; Iwanami, A.; et al. Application of q-Space Diffusion MRI for the Visualization of White Matter. J. Neurosci. 2016, 36, 2796. [Google Scholar] [CrossRef] [Green Version]
- Tanikawa, M.; Nakahara, J.; Hata, J.; Suzuki, S.; Fujiyoshi, K.; Fujiwara, H.; Momoshima, S.; Jinzaki, M.; Nakamura, M.; Okano, H.; et al. q-Space Myelin Map imaging for longitudinal analysis of demyelination and remyelination in multiple sclerosis patients treated with fingolimod: A preliminary study. J. Neurol. Sci. 2017, 373, 352–357. [Google Scholar] [CrossRef]
- Jensen, J.H.; Helpern, J.A.; Ramani, A.; Lu, H.; Kaczynski, K. Diffusional kurtosis imaging: The quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn. Reson. Med. 2005, 53, 1432–1440. [Google Scholar] [CrossRef] [PubMed]
- Thaler, C.; Kyselyova, A.A.; Faizy, T.D.; Nawka, M.T.; Jespersen, S.; Hansen, B.; Stellmann, J.-P.; Heesen, C.; Stürner, K.H.; Stark, M.; et al. Heterogeneity of multiple sclerosis lesions in fast diffusional kurtosis imaging. PLoS ONE 2021, 16, e0245844. [Google Scholar] [CrossRef]
- Bester, M.; Jensen, J.H.; Babb, J.; Tabesh, A.; Miles, L.; Herbert, J.; Grossman, R.I.; Inglese, M. Non-Gaussian diffusion MRI of gray matter is associated with cognitive impairment in multiple sclerosis. Mult. Scler. J. 2014, 21, 935–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.Q.; Yin, B.; Quan, C.; Geng, D.Y.; Yu, H.; Bao, Y.F.; Liu, J.; Li, Y.X. Evaluation of patients with relapsing-remitting multiple sclerosis using tract-based spatial statistics analysis: Diffusion kurtosis imaging. BMC Neurol. 2018, 18, 108. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Chan, K.H.; Hui, E.S.; Lee, C.Y.; Hu, Y.; Mak, H.K.-F. Application of diffusional kurtosis imaging to detect occult brain damage in multiple sclerosis and neuromyelitis optica. NMR Biomed. 2016, 29, 1536–1545. [Google Scholar] [CrossRef]
- de Kouchkovsky, I.; Fieremans, E.; Fleysher, L.; Herbert, J.; Grossman, R.I.; Inglese, M. Quantification of normal-appearing white matter tract integrity in multiple sclerosis: A diffusion kurtosis imaging study. J. Neurol. 2016, 263, 1146–1155. [Google Scholar] [CrossRef] [Green Version]
- Sahin, S.; Çam, I.; Öztürk, O.; Efendi, H.; Anık, Y.; Gundogdu, O. White Matter Evaluation in Multiple Sclerosis Through Magnetic Resonance Kurtosis Imaging. Cureus 2019, 11, e6424. [Google Scholar] [CrossRef] [Green Version]
- Hori, M.; Fukunaga, I.; Masutani, Y.; Taoka, T.; Kamagata, K.; Suzuki, Y.; Aoki, S. Visualizing Non-Gaussian Diffusion: Clinical Application of q-Space Imaging and Diffusional Kurtosis Imaging of the Brain and Spine. Magn. Reson. Med. Sci. 2012, 11, 221–233. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.R.; Aleksanderek, I.; Cohen-Adad, J.; Tarmohamed, Z.; Tetreault, L.; Smith, N.; Cadotte, D.W.; Crawley, A.; Ginsberg, H.; Mikulis, D.J.; et al. Translating state-of-the-art spinal cord MRI techniques to clinical use: A systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI. NeuroImage Clin. 2015, 10, 192–238. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Schneider, T.; Wheeler-Kingshott, C.A.; Alexander, D.C. NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 2012, 61, 1000–1016. [Google Scholar] [CrossRef]
- De Santis, S.; Bastiani, M.; Droby, A.; Kolber, P.; Zipp, F.; Pracht, E.; Stoecker, T.; Groppa, S.; Roebroeck, A. Characterizing Microstructural Tissue Properties in Multiple Sclerosis with Diffusion MRI at 7 T and 3 T: The Impact of the Experimental Design. Neuroscience 2018, 403, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Novikov, D.S.; Kiselev, V.G.; Jespersen, S.N. On modeling. Magn. Reson. Med. 2018, 79, 3172–3193. [Google Scholar] [CrossRef] [PubMed]
- Jelescu, I.O.; Palombo, M.; Bagnato, F.; Schilling, K.G. Challenges for biophysical modeling of microstructure. J. Neurosci. Methods 2020, 344, 108861. [Google Scholar] [CrossRef] [PubMed]
- Grussu, F.; Schneider, T.; Zhang, H.; Alexander, D.C.; Wheeler–Kingshott, C.A. Neurite orientation dispersion and density imaging of the healthy cervical spinal cord in vivo. Neuroimage 2015, 111, 590–601. [Google Scholar] [CrossRef] [Green Version]
- Caverzasi, E.; Papinutto, N.; Castellano, A.; Zhu, A.H.; Scifo, P.; Riva, M.; Bello, L.; Falini, A.; Bharatha, A.; Henry, R. Neurite Orientation Dispersion and Density Imaging Color Maps to Characterize Brain Diffusion in Neurologic Disorders. J. Neuroimaging 2016, 26, 494–498. [Google Scholar] [CrossRef]
- Hagiwara, A.; Kamagata, K.; Shimoji, K.; Yokoyama, K.; Andica, C.; Hori, M.; Fujita, S.; Maekawa, T.; Irie, R.; Akashi, T.; et al. White Matter Abnormalities in Multiple Sclerosis Evaluated by Quantitative Synthetic MRI, Diffusion Tensor Imaging, and Neurite Orientation Dispersion and Density Imaging. Am. J. Neuroradiol. 2019, 40, 1642–1648. [Google Scholar] [CrossRef] [Green Version]
- Hagiwara, A.; Hori, M.; Yokoyama, K.; Nakazawa, M.; Ueda, R.; Horita, M.; Andica, C.; Abe, O.; Aoki, S. Analysis of White Matter Damage in Patients with Multiple Sclerosis via a Novel In Vivo MR Method for Measuring Myelin, Axons, and G-Ratio. Am. J. Neuroradiol. 2017, 38, 1934–1940. [Google Scholar] [CrossRef] [Green Version]
- Granberg, T.; Fan, Q.; Treaba, C.A.; Ouellette, R.; Herranz, E.; Mangeat, G.; Louapre, C.; Cohen-Adad, J.; Klawiter, E.C.; Sloane, J.A.; et al. In vivo characterization of cortical and white matter neuroaxonal pathology in early multiple sclerosis. Brain 2017, 140, 2912–2926. [Google Scholar] [CrossRef] [Green Version]
- Spanò, B.; Giulietti, G.; Pisani, V.; Morreale, M.; Tuzzi, E.; Nocentini, U.; Francia, A.; Caltagirone, C.; Bozzali, M.; Cercignani, M. Disruption of neurite morphology parallels MS progression. Neurol.-Neuroimmunol. Neuroinflammation 2018, 5, e502. [Google Scholar] [CrossRef] [Green Version]
- Lakhani, D.; Schilling, K.; Xu, J.; Bagnato, F. Advanced Multicompartment Diffusion MRI Models and Their Application in Multiple Sclerosis. Am. J. Neuroradiol. 2020, 41, 751–757. [Google Scholar] [CrossRef]
- Collorone, S.; Prados, F.; Kanber, B.; Cawley, N.M.; Tur, C.; Grussu, F.; Solanky, B.S.; Yiannakas, M.; Davagnanam, I.; Wheeler-Kingshott, C.A.M.G.; et al. Brain microstructural and metabolic alterations detected in vivo at onset of the first demyelinating event. Brain 2021, 144, 1409–1421. [Google Scholar] [CrossRef] [PubMed]
- Sacco, S.; Caverzasi, E.; Papinutto, N.; Cordano, C.; Bischof, A.; Gundel, T.; Cheng, S.; Asteggiano, C.; Kirkish, G.; Mallott, J.; et al. Neurite Orientation Dispersion and Density Imaging for Assessing Acute Inflammation and Lesion Evolution in MS. Am. J. Neuroradiol. 2020, 41, 2219–2226. [Google Scholar] [CrossRef]
- Lee, C.H.; Li, J.; Ge, Y.; Shepherd, T.M.; Wadghiri, Y.Z.; Zhang, J.; Nauen, D.W. Post-mortem Diffusion MRI Analysis of Neuronal Pathways in the Human Hippocampus. In Proceedings of the ISMRM & SMRT Virtual Conference & Exhibition, Online, 8–14 August 2020. [Google Scholar]
- Grussu, F.; Schneider, T.; Tur, C.; Yates, R.L.; Tachrount, M.; Ianuş, A.; Yiannakas, M.C.; Newcombe, J.; Zhang, H.; Alexander, D.C.; et al. Neurite dispersion: A new marker of multiple sclerosis spinal cord pathology? Ann. Clin. Transl. Neurol. 2017, 4, 663–679. [Google Scholar] [CrossRef]
- Beck, D.; de Lange, A.-M.G.; Maximov, I.I.; Richard, G.; Andreassen, O.A.; Nordvik, J.E.; Westlye, L.T. White matter microstructure across the adult lifespan: A mixed longitudinal and cross-sectional study using advanced diffusion models and brain-age prediction. Neuroimage 2020, 224, 117441. [Google Scholar] [CrossRef] [PubMed]
- Assaf, Y.; Blumenfeld-Katzir, T.; Yovel, Y.; Basser, P.J. Axcaliber: A method for measuring axon diameter distribution from diffusion MRI. Magn. Reson. Med. 2008, 59, 1347–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duval, T.; McNab, J.A.; Setsompop, K.; Witzel, T.; Schneider, T.; Huang, S.Y.; Keil, B.; Klawiter, E.C.; Wald, L.L.; Cohen-Adad, J. In vivo mapping of human spinal cord microstructure at 300 mT/m. Neuroimage 2015, 118, 494–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Luca, G.; Ebers, G.; Esiri, M.M. Axonal loss in multiple sclerosis: A pathological survey of the corticospinal and sensory tracts. Brain 2004, 127, 1009–1018. [Google Scholar] [CrossRef] [Green Version]
- Assaf, Y.; Alexander, D.C.; Jones, D.K.; Bizzi, A.; Behrens, T.E.; Clark, C.A.; Cohen, Y.; Dyrby, T.B.; Huppi, P.S.; Knoesche, T.R.; et al. The CONNECT project: Combining macro- and micro-structure. Neuroimage 2013, 80, 273–282. [Google Scholar] [CrossRef]
- Assaf, Y.; Basser, P.J. Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. Neuroimage 2005, 27, 48–58. [Google Scholar] [CrossRef]
- Barazany, D.; Basser, P.J.; Assaf, Y. In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. Brain 2009, 132, 1210–1220. [Google Scholar] [CrossRef] [Green Version]
- Horowitz, A.; Barazany, D.; Tavor, I.; Bernstein, M.; Yovel, G.; Assaf, Y. In vivo correlation between axon diameter and conduction velocity in the human brain. Anat. Embryol. 2014, 220, 1777–1788. [Google Scholar] [CrossRef] [PubMed]
- McNab, J.A.; Witzel, T.; Bhat, H.; Heberlein, K.; Keil, B.; Cohen-Adad, J.; Tisdall, M.D.; Wald, L.L. In Vivo Human Brain Measurements of Axon Diameter Distributions in the Corpus Callosum using 300 mT/m Maximum Gradient Strengths. In Proceedings of the ISMRM 20th Annual Meeting and Exhibition, Melbourne, Australia, 5–11 May 2012; Volume 1530. [Google Scholar]
- Huang, S.Y.; Fan, Q.; Machado, N.; Eloyan, A.; Bireley, J.; Russo, A.W.; Tobyne, S.M.; Patel, K.R.; Brewer, K.; Rapaport, S.F.; et al. Corpus callosum axon diameter relates to cognitive impairment in multiple sclerosis. Ann. Clin. Transl. Neurol. 2019, 6, 882–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duval, T.; Smith, V.; Stikov, N.; Klawiter, E.C.; Cohen-Adad, J. Scan–rescan of axcaliber, macromolecular tissue volume, and g-ratio in the spinal cord. Magn. Reson. Med. 2018, 79, 2759–2765. [Google Scholar] [CrossRef]
- De Santis, S.; Herranz, E.; Treaba, C.A.; Barletta, V.; Mehndiratta, A.; Mainero, C.; Toschi, N. Whole brain in vivo axonal diameter mapping in multiple sclerosis. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 204–207. [Google Scholar] [CrossRef]
- Huang, S.Y.; Tobyne, S.; Nummenmaa, A.; Witzel, T.; Wald, L.; McNab, J.A.; Klawiter, E.C. Characterization of Axonal Disease in Patients with Multiple Sclerosis Using High-Gradient-Diffusion MR Imaging. Radiology 2016, 280, 244–251. [Google Scholar] [CrossRef] [Green Version]
- Nedjati-Gilani, G.L.; Schneider, T.; Hall, M.G.; Cawley, N.; Hill, I.; Ciccarelli, O.; Drobnjak, I.; Wheeler-Kingshott, C.A.G.; Alexander, D.C. Machine learning based compartment models with permeability for white matter microstructure imaging. Neuroimage 2017, 150, 119–135. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Measuring Restriction Sizes Using Diffusion Weighted Magnetic Resonance Imaging: A Review. Magn. Reson. Insights 2013, 6, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Xu, J. Probing neural tissues at small scales: Recent progress of oscillating gradient spin echo (OGSE) neuroimaging in humans. J. Neurosci. Methods 2021, 349, 109024. [Google Scholar] [CrossRef]
- Wu, Y.C.; Alexander, A.L. Hybrid diffusion imaging. Neuroimage 2007, 36, 617–629. [Google Scholar] [CrossRef] [Green Version]
- Mazur, W.; Krzyżak, A.T. Attempts at the Characterization of In-Cell Biophysical Processes Non-Invasively—Quantitative NMR Diffusometry of a Model Cellular System. Cells 2020, 9, 2124. [Google Scholar] [CrossRef]
- Franconi, F.; Lemaire, L.; Gimel, J.-C.; Bonnet, S.; Saulnier, P. NMR diffusometry: A new perspective for nanomedicine exploration. J. Control. Release 2021, 337, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Babaeeghazvini, P.; Rueda-Delgado, L.M.; Gooijers, J.; Swinnen, S.P.; Daffertshofer, A. Brain Structural and Functional Connectivity: A Review of Combined Works of Diffusion Magnetic Resonance Imaging and Electro-Encephalography. Front. Hum. Neurosci. 2021, 15, 721206. [Google Scholar] [CrossRef] [PubMed]
- Shirani, A.; Sun, P.; Trinkaus, K.; Perantie, D.C.; George, A.; Naismith, R.T.; Schmidt, R.E.; Song, S.; Cross, A.H. Diffusion basis spectrum imaging for identifying pathologies in MS subtypes. Ann. Clin. Transl. Neurol. 2019, 6, 2323–2327. [Google Scholar] [CrossRef]
- Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 2010, 52, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Kamagata, K.; Zalesky, A.; Yokoyama, K.; Andica, C.; Hagiwara, A.; Shimoji, K.; Kumamaru, K.K.; Takemura, M.Y.; Hoshino, Y.; Kamiya, K.; et al. MR g-ratio-weighted connectome analysis in patients with multiple sclerosis. Sci. Rep. 2019, 9, 13522. [Google Scholar] [CrossRef] [Green Version]
- Charalambous, T.; Clayden, J.D.; Powell, E.; Prados, F.; Tur, C.; Kanber, B.; Chard, D.; Ourselin, S.; Wheeler-Kingshott, C.A.M.G.; Thompson, A.J.; et al. Disrupted principal network organisation in multiple sclerosis relates to disability. Sci. Rep. 2020, 10, 3620. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghamdi, A.J. The Value of Various Post-Processing Modalities of Diffusion Weighted Imaging in the Detection of Multiple Sclerosis. Brain Sci. 2023, 13, 622. https://doi.org/10.3390/brainsci13040622
Alghamdi AJ. The Value of Various Post-Processing Modalities of Diffusion Weighted Imaging in the Detection of Multiple Sclerosis. Brain Sciences. 2023; 13(4):622. https://doi.org/10.3390/brainsci13040622
Chicago/Turabian StyleAlghamdi, Ahmad Joman. 2023. "The Value of Various Post-Processing Modalities of Diffusion Weighted Imaging in the Detection of Multiple Sclerosis" Brain Sciences 13, no. 4: 622. https://doi.org/10.3390/brainsci13040622
APA StyleAlghamdi, A. J. (2023). The Value of Various Post-Processing Modalities of Diffusion Weighted Imaging in the Detection of Multiple Sclerosis. Brain Sciences, 13(4), 622. https://doi.org/10.3390/brainsci13040622