Exploring the Relationship between Cardiorespiratory Fitness and Executive Functioning in Adults with ADHD
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Materials
2.2.1. Conner’s Adult ADHD Rating Scale (CAARS)
2.2.2. Estimated Cardiorespiratory Fitness (CRF)
2.3. Cognitive Tasks
2.4. Stroop
2.5. Wisconsin Card Sorting Task (WCST)
2.6. Operation Span (OSPAN) Task
2.7. Covariates
2.8. Procedure
2.9. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Fitness x Executive Function
4. Discussion
Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Faraone, S.V.; Banaschewski, T.; Coghill, D.; Zheng, Y.; Biederman, J.; Bellgrove, M.A.; Newcorn, J.H.; Gignac, M.; Al Saud, N.M.; Manor, I.; et al. The World Federation of ADHD International Consensus Statement: 208 Evidence-based conclusions about the disorder. Neurosci. Biobehav. Rev. 2021, 128, 789–818. [Google Scholar] [CrossRef]
- Silverstein, M.J.; Faraone, S.V.; Leon, T.L.; Biederman, J.; Spencer, T.J.; Adler, L.A. The Relationship Between Executive Function Deficits and DSM-5-Defined ADHD Symptoms. J. Atten. Disord. 2020, 24, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Mäntylä, T.; Still, J.; Gullberg, S.; Del Missier, F. Decision Making in Adults with ADHD. J. Atten. Disord. 2012, 16, 164–173. [Google Scholar] [CrossRef]
- Salmi, J.; Salmela, V.; Salo, E.; Mikkola, K.; Leppämäki, S.; Tani, P.; Hokkanen, L.; Laasonen, M.; Numminen, J.; Alho, K. Out of focus—Brain attention control deficits in adult ADHD. Brain Res. 2018, 1692, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Roshani, F.; Piri, R.; Malek, A.; Michel, T.M.; Vafaee, M.S. Comparison of cognitive flexibility, appropriate risk-taking and reaction time in individuals with and without adult ADHD. Psychiatry Res. 2020, 284, 112494. [Google Scholar] [CrossRef]
- Daley, D.; Birchwood, J. ADHD and academic performance: Why does ADHD impact on academic performance and what can be done to support ADHD children in the classroom? Child Care Health Dev. 2010, 36, 455–464. [Google Scholar] [CrossRef]
- Canu, W.H.; Stevens, A.E.; Ranson, L.; Lefler, E.K.; LaCount, P.; Serrano, J.W.; Willcutt, E.; Hartung, C.M. College Readiness: Differences Between First-Year Undergraduates with and without ADHD. J. Learn. Disabil. 2021, 54, 403–411. [Google Scholar] [CrossRef]
- Goffer, A.; Cohen, M.; Maeir, A. Occupational experiences of college students with ADHD: A qualitative study. Scand. J. Occup. Ther. 2022, 29, 403–414. [Google Scholar] [CrossRef]
- Halleland, H.B.; Sørensen, L.; Posserud, M.-B.; Haavik, J.; Lundervold, A.J. Occupational Status Is Compromised in Adults with ADHD and Psychometrically Defined Executive Function Deficits. J. Atten. Disord. 2019, 23, 76–86. [Google Scholar] [CrossRef]
- Sjöwall, D.; Thorell, L.B. Neuropsychological deficits in relation to ADHD symptoms, quality of life, and daily life functioning in young adulthood. Appl. Neuropsychol. Adult 2022, 29, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Stern, A.; Pollak, Y.; Bonne, O.; Malik, E.; Maeir, A. The Relationship Between Executive Functions and Quality of Life in Adults with ADHD. J. Atten. Disord. 2017, 21, 323–330. [Google Scholar] [CrossRef]
- Pozzi, M.; Bertella, S.; Gatti, E.; Peeters, G.G.A.M.; Carnovale, C.; Zambrano, S.; Nobile, M. Emerging drugs for the treatment of attention-deficit hyperactivity disorder (ADHD). Expert Opin. Emerg. Drugs 2020, 25, 395–407. [Google Scholar] [CrossRef]
- Zalsman, G.; Shilton, T. Adult ADHD: A new disease? Int. J. Psychiatry Clin. Pract. 2016, 20, 70–76. [Google Scholar] [CrossRef]
- Mirabella, G. Inhibitory control and impulsive responses in neurodevelopmental disorders. Dev. Med. Child Neurol. 2021, 63, 520–526. [Google Scholar] [CrossRef]
- Chmielewski, W.; Bluschke, A.; Bodmer, B.; Wolff, N.; Roessner, V.; Beste, C. Evidence for an altered architecture and a hierarchical modulation of inhibitory control processes in ADHD. Dev. Cogn. Neurosci. 2019, 36, 100623. [Google Scholar] [CrossRef]
- Miles, S.; Howlett, C.A.; Berryman, C.; Nedeljkovic, M.; Moseley, G.L.; Phillipou, A. Considerations for using the Wisconsin Card Sorting Test to assess cognitive flexibility. Behav. Res. Methods 2021, 53, 2083–2091. [Google Scholar] [CrossRef]
- Cowan, N. Working Memory Underpins Cognitive Development, Learning, and Education. Educ. Psychol. Rev. 2014, 26, 197–223. [Google Scholar] [CrossRef] [Green Version]
- Miklós, M.; Futó, J.; Komáromy, D.; Balázs, J. Executive Function and Attention Performance in Children with ADHD: Effects of Medication and Comparison with Typically Developing Children. Int. J. Environ. Res. Public Health 2019, 16, 3822. [Google Scholar] [CrossRef] [Green Version]
- Alderson, R.M.; Hudec, K.L.; Patros, C.H.G.; Kasper, L.J. Working memory deficits in adults with attention-deficit/hyperactivity disorder (ADHD): An examination of central executive and storage/rehearsal processes. J. Abnorm. Psychol. 2013, 122, 532–541. [Google Scholar] [CrossRef] [Green Version]
- Jarrett, M.A. Attention-deficit/hyperactivity disorder (ADHD) symptoms, anxiety symptoms, and executive functioning in emerging adults. Psychol. Assess. 2016, 28, 245–250. [Google Scholar] [CrossRef]
- Mohamed, S.M.H.; Butzbach, M.; Fuermaier, A.B.M.; Weisbrod, M.; Aschenbrenner, S.; Tucha, L.; Tucha, O. Basic and complex cognitive functions in Adult ADHD. PLoS ONE 2021, 16, e0256228. [Google Scholar] [CrossRef]
- Adler, L.D.; Nierenberg, A.A. Review of Medication Adherence in Children and Adults with ADHD. Postgrad. Med. 2010, 122, 184–191. [Google Scholar] [CrossRef]
- Danielson, M.L.; Bitsko, R.H.; Ghandour, R.M.; Holbrook, J.R.; Kogan, M.D.; Blumberg, S.J. Prevalence of Parent-Reported ADHD Diagnosis and Associated Treatment among U.S. Children and Adolescents, 2016. J. Clin. Child Adolesc. Psychol. 2018, 47, 199–212. [Google Scholar] [CrossRef]
- Spencer, T.J.; Brown, A.; Seidman, L.J.; Valera, E.M.; Makris, N.; Lomedico, A.; Faraone, S.V.; Biederman, J. Effect of Psychostimulants on Brain Structure and Function in ADHD: A qualitative literature review of magnetic resonance imaging-based neuroimaging studies. J. Clin. Psychiatry 2013, 74, 902–917. [Google Scholar] [CrossRef] [Green Version]
- Biederman, J.; Fried, R.; Tarko, L.; Surman, C.; Spencer, T.; Pope, A.; Grossman, R.; McDermott, K.; Woodworth, K.Y.; Faraone, S.V. Memantine in the Treatment of Executive Function Deficits in Adults with ADHD: A pilot-randomized double-blind controlled clinical trial. J. Atten. Disord. 2017, 21, 343–352. [Google Scholar] [CrossRef]
- Charach, A.; Ickowicz, A.; Schachar, R. Stimulant Treatment Over Five Years: Adherence, Effectiveness, and Adverse Effects. J. Am. Acad. Child Adolesc. Psychiatry 2004, 43, 559–567. [Google Scholar] [CrossRef]
- Safren, S.A.; Duran, P.; Yovel, I.; Perlman, C.A.; Sprich, S. Medication Adherence in Psychopharmacologically Treated Adults with ADHD. J. Atten. Disord. 2007, 10, 257–260. [Google Scholar] [CrossRef]
- Lohr, W.D.; Wanta, J.W.; Baker, M.; Grudnikoff, E.; Morgan, W.; Chhabra, D.; Lee, T. Intentional Discontinuation of Psychostimulants Used to Treat ADHD in Youth: A Review and Analysis. Front. Psychiatry 2021, 12, 642798. [Google Scholar] [CrossRef]
- Rajeh, A.; Amanullah, S.; Shivakumar, K.; Cole, J. Interventions in ADHD: A comparative review of stimulant medications and behavioral therapies. Asian J. Psychiatry 2017, 25, 131–135. [Google Scholar] [CrossRef]
- Sinha, A.; Lewis, O.; Kumar, R.; Yeruva, S.L.H.; Curry, B.H. Adult ADHD Medications and Their Cardiovascular Implications. Case Rep. Cardiol. 2016, 2016, 2343691. [Google Scholar] [CrossRef] [Green Version]
- Gajria, K.; Lu, M.; Sikirica, V.; Greven, P.; Zhong, Y.; Qin, P.; Xie, J. Adherence, persistence, and medication discontinuation in patients with attention-deficit/hyperactivity disorder—A systematic literature review. Neuropsychiatr. Dis. Treat. 2014, 10, 1543–1569. [Google Scholar] [CrossRef] [Green Version]
- Perugi, G.; De Rosa, U.; Barbuti, M. What value do norepinephrine/dopamine dual reuptake inhibitors have to the current treatment of adult attention deficit hyperactivity disorder (ADHD) treatment armamentarium? Expert Opin. Pharmacother. 2022, 23, 1975–1978. [Google Scholar] [CrossRef]
- Compton, W.M.; Han, B.; Blanco, C.; Johnson, K.; Jones, C.M. Prevalence and Correlates of Prescription Stimulant Use, Misuse, Use Disorders, and Motivations for Misuse Among Adults in the United States. Am. J. Psychiatry 2018, 175, 741–755. [Google Scholar] [CrossRef]
- Lambez, B.; Harwood-Gross, A.; Golumbic, E.Z.; Rassovsky, Y. Non-pharmacological interventions for cognitive difficulties in ADHD: A systematic review and meta-analysis. J. Psychiatr. Res. 2020, 120, 40–55. [Google Scholar] [CrossRef]
- Suarez-Manzano, S.; Ruiz-Ariza, A.; De La Torre-Cruz, M.; Martínez-López, E.J. Acute and chronic effect of physical activity on cognition and behaviour in young people with ADHD: A systematic review of intervention studies. Res. Dev. Disabil. 2018, 77, 12–23. [Google Scholar] [CrossRef]
- Browne, R.A.; Costa, E.C.; Sales, M.M.; Fonteles, A.I.; Moraes, J.F.; Barros, J.d.F. Efeito agudo do exercício aeróbio vigoroso sobre o controle inibitório em adolescentes Acute effect of vigorous aerobic exercise on the inhibitory control in adolescents. Rev. Paul. De Pediatr. 2016, 34, 154–161. [Google Scholar] [CrossRef]
- Marques, A.; Marconcin, P.; Werneck, A.; Ferrari, G.; Gouveia, É.R.; Kliegel, M.; Peralta, M.; Ihle, A. Bidirectional Association between Physical Activity and Dopamine Across Adulthood—A Systematic Review. Brain Sci. 2021, 11, 829. [Google Scholar] [CrossRef]
- Wang, G.-J.; Volkow, N.D.; Wigal, T.; Kollins, S.H.; Newcorn, J.H.; Telang, F.; Logan, J.; Jayne, M.; Wong, C.T.; Han, H.; et al. Long-Term Stimulant Treatment Affects Brain Dopamine Transporter Level in Patients with Attention Deficit Hyperactive Disorder. PLoS ONE 2013, 8, e63023. [Google Scholar] [CrossRef] [Green Version]
- Heijer, A.E.D.; Groen, Y.; Tucha, L.; Fuermaier, A.B.M.; Koerts, J.; Lange, K.W.; Thome, J.; Tucha, O. Sweat it out? The effects of physical exercise on cognition and behavior in children and adults with ADHD: A systematic literature review. J. Neural Transm. 2017, 124, 3–26. [Google Scholar] [CrossRef] [Green Version]
- Pontifex, M.B.; Saliba, B.J.; Raine, L.B.; Picchietti, D.L.; Hillman, C.H. Exercise Improves Behavioral, Neurocognitive, and Scholastic Performance in Children with Attention-Deficit/Hyperactivity Disorder. J. Pediatr. 2013, 162, 543–551. [Google Scholar] [CrossRef] [Green Version]
- Welsch, L.; Alliott, O.; Kelly, P.; Fawkner, S.; Booth, J.; Niven, A. The effect of physical activity interventions on executive functions in children with ADHD: A systematic review and meta-analysis. Ment. Health Phys. Act. 2021, 20, 100379. [Google Scholar] [CrossRef]
- Gapin, J.I.; Labban, J.D.; Bohall, S.C.; Wooten, J.S.; Chang, Y.-K. Acute exercise is associated with specific executive functions in college students with ADHD: A preliminary study. J. Sport Health Sci. 2015, 4, 89–96. [Google Scholar] [CrossRef] [Green Version]
- LaCount, P.A.; Hartung, C.M.; Vasko, J.M.; Serrano, J.W.; Wright, H.A.; Smith, D.T. Acute effects of physical exercise on cognitive and psychological functioning in college students with attention-deficit/hyperactivity disorder. Ment. Health Phys. Act. 2022, 22, 100443. [Google Scholar] [CrossRef]
- Mehren, A.; Özyurt, J.; Lam, A.; Brandes, M.; Müller, H.H.O.; Thiel, C.M.; Philipsen, A. Acute Effects of Aerobic Exercise on Executive Function and Attention in Adult Patients with ADHD. Front. Psychiatry 2019, 10, 132. [Google Scholar] [CrossRef] [Green Version]
- Tsuk, S.; Netz, Y.; Dunsky, A.; Zeev, A.; Carasso, R.; Dvolatzky, T.; Salem, R.; Behar, S.; Rotstein, A. The Acute Effect of Exercise on Executive Function and Attention: Resistance Versus Aerobic Exercise. Adv. Cogn. Psychol. 2019, 15, 208–215. [Google Scholar] [CrossRef]
- Verburgh, L.; Königs, M.; Scherder, E.J.A.; Oosterlaan, J. Physical exercise and executive functions in preadolescent children, adolescents and young adults: A meta-analysis. Br. J. Sport. Med. 2014, 48, 973–979. [Google Scholar] [CrossRef] [Green Version]
- Benzing, V.; Chang, Y.-K.; Schmidt, M. Acute Physical Activity Enhances Executive Functions in Children with ADHD. Sci. Rep. 2018, 8, 12382. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.-K.; Liu, S.; Yu, H.-H.; Lee, Y.-H. Effect of Acute Exercise on Executive Function in Children with Attention Deficit Hyperactivity Disorder. Arch. Clin. Neuropsychol. 2012, 27, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Neudecker, C.; Mewes, N.; Reimers, A.K.; Woll, A. Exercise Interventions in Children and Adolescents with ADHD: A Systematic Review. J. Atten. Disord. 2019, 23, 307–324. [Google Scholar] [CrossRef]
- Gawrilow, C.; Stadler, G.; Langguth, N.; Naumann, A.; Boeck, A. Physical Activity, Affect, and Cognition in Children with Symptoms of ADHD. J. Atten. Disord. 2016, 20, 151–162. [Google Scholar] [CrossRef]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar]
- Chaddock, L.; Hillman, C.; Pontifex, M.; Johnson, C.R.; Raine, L.B.; Kramer, A. Childhood aerobic fitness predicts cognitive performance one year later. J. Sport. Sci. 2012, 30, 421–430. [Google Scholar] [CrossRef]
- Dupuy, O.; Gauthier, C.J.; Fraser, S.A.; Desjardins-Crã¨peau, L.; Desjardins, M.; Mekary, S.; Lesage, F.; Hoge, R.D.; Pouliot, P.; Bherer, L. Higher levels of cardiovascular fitness are associated with better executive function and prefrontal oxygenation in younger and older women. Front. Hum. Neurosci. 2015, 9, 66. [Google Scholar] [CrossRef] [Green Version]
- Meijer, A.; Königs, M.; de Bruijn, A.G.; Visscher, C.; Bosker, R.; Hartman, E.; Oosterlaan, J. Cardiovascular fitness and executive functioning in primary school-aged children. Dev. Sci. 2021, 24, e13019. [Google Scholar] [CrossRef]
- Brassell, A.A.; Shoulberg, E.K.; Pontifex, M.B.; Smith, A.L.; Paoli, A.G.D.; Hoza, B. Aerobic Fitness and Inhibition in Young Children: Moderating Roles of ADHD Status and Age. J. Clin. Child Adolesc. Psychol. 2017, 46, 646–652. [Google Scholar] [CrossRef]
- Christiansen, L.; Beck, M.M.; Bilenberg, N.; Wienecke, J.; Astrup, A.; Lundbye-Jensen, J. Effects of Exercise on Cognitive Performance in Children and Adolescents with ADHD: Potential Mechanisms and Evidence-based Recommendations. J. Clin. Med. 2019, 8, 841. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.H.; Jin, Z.; He, B.C.; Guo, B.S.; Zhang, Y.; Quan, M. Chronic Exercise for Core Symptoms and Executive Functions in ADHD: A Meta-analysis. Pediatrics 2023, 151, e2022057745. [Google Scholar] [CrossRef]
- Chang, Y.-K.; Hung, C.-L.; Huang, C.-J.; Hatfield, B.D.; Hung, T.-M. Effects of an Aquatic Exercise Program on Inhibitory Control in Children with ADHD: A Preliminary Study. Arch. Clin. Neuropsychol. 2014, 29, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Qiu, H.; Wang, P.; Sit, C.H.P. The impacts of a combined exercise on executive function in children with ADHD: A randomized controlled trial. Scand. J. Med. Sci. Sport. 2022, 32, 1297–1312. [Google Scholar] [CrossRef]
- Szabo, A.N.; McAuley, E.; Erickson, K.I.; Voss, M.; Prakash, R.S.; Mailey, E.L.; Wójcicki, T.R.; White, S.M.; Gothe, N.; Olson, E.A.; et al. Cardiorespiratory fitness, hippocampal volume, and frequency of forgetting in older adults. Neuropsychology 2011, 25, 545–553. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Yu, Q.; Herold, F.; Cheval, B.; Dong, X.; Cui, L.; Xiong, X.; Chen, A.; Yin, H.; Kong, Z.; et al. Brain Structure, Cardiorespiratory Fitness, and Executive Control Changes after a 9-Week Exercise Intervention in Young Adults: A Randomized Controlled Trial. Life 2021, 11, 292. [Google Scholar] [CrossRef]
- Jeoung, B.J. The relationship between attention deficit hyperactivity disorder and health-related physical fitness in university students. J. Exerc. Rehabil. 2014, 10, 367–371. [Google Scholar] [CrossRef]
- Boucard, G.K.; Albinet, C.T.; Bugaiska, A.; Bouquet, C.A.; Clarys, D.; Audiffren, M. Impact of Physical Activity on Executive Functions in Aging: A Selective Effect on Inhibition Among Old Adults. J. Sport Exerc. Psychol. 2012, 34, 808–827. [Google Scholar] [CrossRef]
- Ogrodnik, M.; Karsan, S.; Heisz, J.J. Mental Health in Adults with ADHD: Examining the Relationship with Cardiorespiratory Fitness. J. Atten. Disord. 2023, 10870547231158383. [Google Scholar] [CrossRef]
- Warburton, D.E.; Jamnik, V.; Bredin, S.S.; Shephard, R.J.; Gledhill, N. The 2020 physical activity readiness ques-tionnaire for everyone (PAR-Q+) and electronic physical activity readiness medical examination (ePARmed-X+): 2020 PAR-Q+. Health Fit. J. Can. 2019, 12, 58–61. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Adler, L.A.; Faraone, S.V.; Spencer, T.J.; Michelson, D.; Reimherr, F.W.; Glatt, S.J.; Marchant, B.K.; Biederman, J. The Reliability and Validity of Self- and Investigator Ratings of ADHD in Adults. J. Atten. Disord. 2008, 11, 711–719. [Google Scholar] [CrossRef]
- Conners, C.K.; Erhardt, D.; Epstein, J.N.; Parker, J.D.; Sitarenios, G.; Sparrow, E. Self-ratings of ADHD symptoms in adults I: Factor structure and normative data. J. Atten. Disord. 1999, 3, 141–151. [Google Scholar] [CrossRef]
- Balke, B. A Simple Field Test for the Assessment of Physical Fitness; Civil Aeromedical Research Institute: Oklahoma City, OK, USA, 1963; Volume 6, pp. 1–8. [Google Scholar]
- Du, H.; Newton, P.J.; Salamonson, Y.; Carrieri-Kohlman, V.L.; Davidson, P.M. A Review of the Six-Minute Walk Test: Its Implication as a Self-Administered Assessment Tool. Eur. J. Cardiovasc. Nurs. 2009, 8, 2–8. [Google Scholar] [CrossRef] [Green Version]
- Stienen, M.N.; Gautschi, O.P.; Staartjes, V.E.; Maldaner, N.; Sosnova, M.; Ho, A.L.; Veeravagu, A.; Desai, A.; Zygourakis, C.C.; Park, J.; et al. Reliability of the 6-minute walking test smartphone application. J. Neurosurg. Spine 2019, 31, 786–793. [Google Scholar] [CrossRef]
- Mitchell, K.; Graff, M.; Hedt, C.; Simmons, J. Reliability and validity of a smartphone pulse rate application for the assessment of resting and elevated pulse rate. Physiother. Theory Pract. 2016, 32, 494–499. [Google Scholar] [CrossRef]
- Habibi, E.; Dehghan, H.; Moghiseh, M.; Hasanzadeh, A. Study of the relationship between the aerobic capacity (VO2 max) and the rating of perceived exertion based on the measurement of heart beat in the metal industries Esfahan. J. Educ. Health Promot. 2014, 3, 25–30. [Google Scholar] [CrossRef]
- Burr, J.F.; Bredin, S.S.D.; Faktor, M.D.; Warburton, D.E.R. The 6-Minute Walk Test as a Predictor of Objectively Measured Aerobic Fitness in Healthy Working-Aged Adults. Physician Sportsmed. 2011, 39, 133–139. [Google Scholar] [CrossRef]
- Marashi, M.Y.; Nicholson, E.; Ogrodnik, M.; Fenesi, B.; Heisz, J.J. A mental health paradox: Mental health was both a motivator and barrier to physical activity during the COVID-19 pandemic. PLoS ONE 2021, 16, e0239244. [Google Scholar] [CrossRef]
- Millisecond Software, LLC. Millisecond Test Library. Millisecond. Available online: https://www.millisecond.com/download/library?acid=18&gclid=CjwKCAiA_vKeBhAdEiwAFb_nrXDyNkh19gtO_tXKDoviay5tJZJuWxID-C305xBFqk-Rqvx9XzDUpBoCB6cQAvD_BwE (accessed on 3 February 2023).
- Millisecond. User Manual: Inquisit Color Word Stroop with Keyboard Responding. Available online: https://www.millisecond.com/download/library/v6/stroop/stroop/stroop_keyboard/stroop_keyboard/stroopwithcontrolkeyboard.manual (accessed on 16 August 2022).
- Millisecond. User Manual: Inquisit Wisconsin Card Sort Test. Available online: https://www.millisecond.com/download/library/v6/cardsort/wcst/wcst/wcst.manual (accessed on 17 February 2022).
- Millisecond. User Manual: Inquisit Automated Operation Span. Available online: https://www.millisecond.com/download/library/v6/cardsort/wcst/wcst/wcst.manual (accessed on 17 February 2022).
- Achttien, R.; Van Lieshout, J.; Wensing, M.; Van Der Sanden, M.N.; Staal, J.B. Symptoms of depression are associated with physical inactivity but not modified by gender or the presence of a cardiovascular disease; a cross-sectional study. BMC Cardiovasc. Disord. 2019, 19, 95. [Google Scholar] [CrossRef]
- Diaz-Canestro, C.; Pentz, B.; Sehgal, A.; Montero, D. Sex differences in cardiorespiratory fitness are explained by blood volume and oxygen carrying capacity. Cardiovasc. Res. 2022, 118, 334–343. [Google Scholar] [CrossRef]
- Strand, L.B.; Laugsand, L.E.; Wisløff, U.; Nes, B.M.; Vatten, L.; Janszky, I. Insomnia Symptoms and Cardiorespiratory Fitness in Healthy Individuals: The Nord-Trøndelag Health Study (HUNT). Sleep 2013, 36, 99–108. [Google Scholar] [CrossRef]
- Benitez, A.; Gunstad, J. Poor Sleep Quality Diminishes Cognitive Functioning Independent of Depression and Anxiety in Healthy Young Adults. Clin. Neuropsychol. 2012, 26, 214–223. [Google Scholar] [CrossRef]
- De Frias, C.M.; Nilsson, L.-G.; Herlitz, A. Sex Differences in Cognition are Stable Over a 10-Year Period in Adulthood and Old Age. Aging Neuropsychol. Cogn. 2006, 13, 574–587. [Google Scholar] [CrossRef]
- Knight, M.J.; Lyrtzis, E.; Baune, B.T. The association of cognitive deficits with mental and physical Quality of Life in Major Depressive Disorder. Compr. Psychiatry 2020, 97, 152147. [Google Scholar] [CrossRef]
- Lovibond, S.H.; Lovibond, P.F. Psychology Foundation of Australia. Manual for the Depression Anxiety Stress Scales, 2nd ed.; Psychology Foundation of Australia: Sydney, Australia, 1995. [Google Scholar]
- Jones, P.R. A note on detecting statistical outliers in psychophysical data. Atten. Percept. Psychophys. 2019, 81, 1189–1196. [Google Scholar] [CrossRef] [Green Version]
- Homack, S. A meta-analysis of the sensitivity and specificity of the Stroop Color and Word Test with children. Arch. Clin. Neuropsychol. 2004, 19, 725–743. [Google Scholar] [CrossRef] [Green Version]
- Romine, C.B.; Lee, D.; Wolfe, M.E.; Homack, S.; George, C.; Riccio, C.A. Wisconsin Card Sorting Test with children: A meta-analytic study of sensitivity and specificity. Arch. Clin. Neuropsychol. 2004, 19, 1027–1041. [Google Scholar] [CrossRef] [Green Version]
- Bailey, H. Computer-paced versus experimenter-paced working memory span tasks: Are they equally reliable and valid? Learn. Individ. Differ. 2012, 22, 875–881. [Google Scholar] [CrossRef]
- Unsworth, N.; Heitz, R.P.; Schrock, J.C.; Engle, R.W. An automated version of the operation span task. Behav. Res. Methods 2005, 37, 498–505. [Google Scholar] [CrossRef] [Green Version]
- Marx, I.; Hübner, T.; Herpertz, S.C.; Berger, C.; Reuter, E.; Kircher, T.; Herpertz-Dahlmann, B.; Konrad, K. Cross-sectional evaluation of cognitive functioning in children, adolescents and young adults with ADHD. J. Neural Transm. 2010, 117, 403–419. [Google Scholar] [CrossRef]
- Barkley, R.A.; Murphy, K.R. The Nature of Executive Function (EF) Deficits in Daily Life Activities in Adults with ADHD and Their Relationship to Performance on EF Tests. J. Psychopathol. Behav. Assess. 2011, 33, 137–158. [Google Scholar] [CrossRef]
- de Oliveira, C.T.; Dias, A.C.G. Difficulties and coping strategies of college students with ADHD symptoms. Rev. Psicol. Teor. E Prática 2017, 19, 281–291. [Google Scholar]
- Sedgwick, J.A. University students with attention deficit hyperactivity disorder (ADHD): A literature review. Ir. J. Psychol. Med. 2018, 35, 221–235. [Google Scholar] [CrossRef] [Green Version]
- Milioni, A.L.V.; Chaim, T.M.; Cavallet, M.; de Oliveira, N.M.; Annes, M.; Dos Santos, B.; Louzã, M.; Da Silva, M.A.; Miguel, C.S.; Serpa, M.H.; et al. High IQ May “Mask” the Diagnosis of ADHD by Compensating for Deficits in Executive Functions in Treatment-Naïve Adults with ADHD. J. Atten. Disord. 2017, 21, 455–464. [Google Scholar] [CrossRef]
- Baggio, S.; Hasler, R.; Deiber, M.-P.; Heller, P.; Buadze, A.; Giacomini, V.; Perroud, N. Associations of executive and functional outcomes with full-score intellectual quotient among ADHD adults. Psychiatry Res. 2020, 294, 113521. [Google Scholar] [CrossRef]
- Diamond, A.; Lee, K. Interventions Shown to Aid Executive Function Development in Children 4 to 12 Years Old. Science 2011, 333, 959–964. [Google Scholar] [CrossRef] [Green Version]
- McAuley, T.; Crosbie, J.; Charach, A.; Schachar, R. The persistence of cognitive deficits in remitted and unremitted ADHD: A case for the state-independence of response inhibition. J. Child Psychol. Psychiatry 2014, 55, 292–300. [Google Scholar] [CrossRef] [Green Version]
- Kamijo, K.; Khan, N.; Pontifex, M.; Scudder, M.R.; Drollette, E.S.; Raine, L.B.; Evans, E.M.; Castelli, D.M.; Hillman, C.H. The Relation of Adiposity to Cognitive Control and Scholastic Achievement in Preadolescent Children. Obesity 2012, 20, 2406–2411. [Google Scholar] [CrossRef]
- Song, T.-F.; Chi, L.; Chu, C.-H.; Chen, F.-T.; Zhou, C.; Chang, Y.-K. Obesity, Cardiovascular Fitness, and Inhibition Function: An Electrophysiological Study. Front. Psychol. 2016, 7, 1124. [Google Scholar] [CrossRef] [Green Version]
- Hillman, C.H.; Erickson, K.I.; Kramer, A.F. Be smart, exercise your heart: Exercise effects on brain and cognition. Nat. Rev. Neurosci. 2008, 9, 58–65. [Google Scholar] [CrossRef]
- Vecchio, L.M.; Meng, Y.; Xhima, K.; Lipsman, N.; Hamani, C.; Aubert, I. The Neuroprotective Effects of Exercise: Maintaining a Healthy Brain Throughout Aging. Brain Plast. 2018, 4, 17–52. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.; Liu, L.; Wang, Y.; Li, H.; Pan, M.; Zhao, M.; Huang, F.; Wang, Y.; He, Y.; Liao, X.; et al. Alterations of cerebral perfusion and functional brain connectivity in medication-naïve male adults with attention-deficit/hyperactivity disorder. CNS Neurosci. Ther. 2020, 26, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Allom, V.; Mullan, B.; Hagger, M. Does inhibitory control training improve health behaviour? A meta-analysis. Health Psychol. Rev. 2016, 10, 168–186. [Google Scholar] [CrossRef] [Green Version]
- Pan, C.-Y.; Chang, Y.-K.; Tsai, C.-L.; Chu, C.-H.; Cheng, Y.-W.; Sung, M.-C. Effects of Physical Activity Intervention on Motor Proficiency and Physical Fitness in Children with ADHD: An Exploratory Study. J. Atten. Disord. 2017, 21, 783–795. [Google Scholar] [CrossRef]
- Fritz, K.; O’Connor, P.J. Cardiorespiratory Fitness and Leisure Time Physical Activity are Low in Young Men with Elevated Symptoms of Attention Deficit Hyperactivity Disorder. Exerc. Med. 2018, 2. [Google Scholar] [CrossRef] [Green Version]
- Boonstra, A.M.; Kooij, J.J.S.; Oosterlaan, J.; Sergeant, J.A.; Buitelaar, J.K. To act or not to act, that’s the problem: Primarily inhibition difficulties in adult ADHD. Neuropsychology 2010, 24, 209–221. [Google Scholar] [CrossRef]
- Xue, Y.; Yang, Y.; Huang, T. Effects of chronic exercise interventions on executive function among children and adolescents: A systematic review with meta-analysis. Br. J. Sport. Med. 2019, 53, 1397–1404. [Google Scholar] [CrossRef]
- Arrondo, G.; Solmi, M.; Dragioti, E.; Eudave, L.; Ruiz-Goikoetxea, M.; Ciaurriz-Larraz, A.M.; Magallon, S.; Carvalho, A.F.; Cipriani, A.; Fusar-Poli, P.; et al. Associations between mental and physical conditions in children and adolescents: An umbrella review. Neurosci. Biobehav. Rev. 2022, 137, 104662. [Google Scholar] [CrossRef]
- Cook, B.G.; Li, D.; Heinrich, K.M. Obesity, Physical Activity, and Sedentary Behavior of Youth with Learning Disabilities and ADHD. J. Learn. Disabil. 2015, 48, 563–576. [Google Scholar] [CrossRef]
- Lackland, D.T.; Voeks, J.H. Metabolic Syndrome and Hypertension: Regular Exercise as Part of Lifestyle Management. Curr. Hypertens. Rep. 2014, 16, 492. [Google Scholar] [CrossRef]
- Çak, H.T.; Kültür, S.E.; Gökler, B.; Öktem, F.; Taşkıran, C. The Behavior Rating Inventory of Executive Function and Continuous Performance Test in Preschoolers with Attention Deficit Hyperactivity Disorder. Psychiatry Investig. 2017, 14, 260–270. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Guerrero, L.; Martín, C.D.; Mairena, M.A.; Di Martino, A.; Wang, J.; Mendelsohn, A.L.; Dreyer, B.; Isquith, P.K.; Gioia, G.; Petkova, E.; et al. Response-Time Variability Is Related to Parent Ratings of Inattention, Hyperactivity, and Executive Function. J. Atten. Disord. 2011, 15, 572–582. [Google Scholar] [CrossRef] [Green Version]
- Goulden, L.G.; Silver, C.H. Concordance of the Children’s Executive Functions Scale with Established Tests and Parent Rating Scales. J. Psychoeduc. Assess. 2009, 27, 439–451. [Google Scholar] [CrossRef]
- Slobodin, O.; Davidovitch, M. Gender Differences in Objective and Subjective Measures of ADHD Among Clinic-Referred Children. Front. Hum. Neurosci. 2019, 13, 441. [Google Scholar] [CrossRef] [Green Version]
- Boonstra, A.M.; Oosterlaan, J.; Sergeant, J.A.; Buitelaar, J.K. Executive functioning in adult ADHD: A meta-analytic review. Psychol. Med. 2005, 35, 1097–1108. [Google Scholar] [CrossRef] [Green Version]
- Krieger, V.; Amador-Campos, J.A. Assessment of executive function in ADHD adolescents: Contribution of performance tests and rating scales. Child Neuropsychol. 2018, 24, 1063–1087. [Google Scholar] [CrossRef] [Green Version]
- Fuermaier, A.B.M.; Tucha, L.; Koerts, J.; Aschenbrenner, S.; Kaunzinger, I.; Hauser, J.; Weisbrod, M.; Lange, K.W.; Tucha, O. Cognitive impairment in adult ADHD—Perspective matters! Neuropsychology 2015, 29, 45–58. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, E.; Hutchison, S.M.; Müller, U.; Kerns, K.A.; Iarocci, G. Assessment of executive function in young children with and without ASD using parent ratings and computerized tasks of executive function. Clin. Neuropsychol. 2017, 31, 1283–1305. [Google Scholar] [CrossRef]
- Barkley, R.A.; Murphy, K.R. Impairment in occupational functioning and adult ADHD: The predictive utility of executive function (EF) ratings versus EF tests. Arch. Clin. Neuropsychol. 2010, 25, 157–173. [Google Scholar] [CrossRef] [Green Version]
- Kooij, S.J.; Bejerot, S.; Blackwell, A.; Caci, H.; Casas-Brugué, M.; Carpentier, P.J.; Edvinsson, D.; Fayyad, J.; Foeken, K.; Fitzgerald, M.; et al. European consensus statement on diagnosis and treatment of adult ADHD: The European Network Adult ADHD. BMC Psychiatry 2010, 10, 67. [Google Scholar] [CrossRef] [Green Version]
- Jiang, K.; Xu, Y.; Li, Y.; Li, L.; Yang, M.; Xue, P. How aerobic exercise improves executive function in ADHD children: A resting-state fMRI study. Int. J. Dev. Neurosci. 2022, 82, 295–302. [Google Scholar] [CrossRef]
- Turrell, G.; Lynch, J.W.; Kaplan, G.A.; Everson, S.A.; Helkala, E.-L.; Kauhanen, J.; Salonen, J.T. Socioeconomic Position Across the Lifecourse and Cognitive Function in Late Middle Age. J. Gerontol. Ser. B 2002, 57, S43–S51. [Google Scholar] [CrossRef]
- Hackman, D.A.; Gallop, R.; Evans, G.W.; Farah, M.J. Socioeconomic status and executive function: Developmental trajectories and mediation. Dev. Sci. 2015, 18, 686–702. [Google Scholar] [CrossRef]
- Lawson, G.M.; Hook, C.J.; Farah, M.J. A meta-analysis of the relationship between socioeconomic status and executive function performance among children. Dev. Sci. 2018, 21, e12529. [Google Scholar] [CrossRef]
- Zhang, M.; Gale, S.; Erickson, L.D.; Brown, B.L.; Woody, P.; Hedges, D.W. Cognitive function in older adults according to current socioeconomic status. Aging Neuropsychol. Cogn. 2015, 22, 534–543. [Google Scholar] [CrossRef]
- Hickingbotham, M.R.; Wong, C.J.; Bowling, A.B. Barriers and facilitators to physical education, sport, and physical activity program participation among children and adolescents with psychiatric disorders: A systematic review. Transl. Behav. Med. 2021, 11, 1739–1750. [Google Scholar] [CrossRef]
Characteristic | ADHD | Control | ||
---|---|---|---|---|
N (%) | N (%) | |||
Sex | ||||
Female | 26 (72) | 28 (78) | ||
Male | 10 (28) | 8 (22) | ||
Intersex | - | - | ||
Gender | ||||
Woman | 23 (64) | 27 (75) | ||
Man | 11 (30) | 8 (22) | ||
Non-binary | 2 (6) | 1 (3) | ||
Two-spirit | - | - | ||
Race | ||||
Caucasian | 19 (53) | 16 (44) | ||
East/Southeast Asian | 5 (14) | 8 (22) | ||
South Asian | 4 (11) | 7 (19) | ||
Multiracial | 4 (11) | 3 (10) | ||
Middle Eastern | 2 (5) | 2 (5) | ||
Black | 1 (3) | - | ||
Latino | 1 (3) | - | ||
Indigenous | - | - | ||
Highest level of education | ||||
Less than secondary | - | 1 (3) | ||
Secondary | 21 (58) | 26 (72) | ||
More than secondary | 15 (42) | 9 (25) |
Outcomes | ADHD Mean (±SD) | Control Mean (±SD) | p-Value |
---|---|---|---|
CAARS Scores | 79.86 (7.00) | 49.14 (8.29) | <0.001 *** |
DASS Z Score | 0.41 (0.98) | −0.41 (0.60) | <0.001 *** |
Estimated CRF | 41.55 (5.23) | 42.35 (2.97) | 0.43 |
Stroop Task | |||
Overall Accuracy | 0.95 (0.04) | 0.96 (.03) | 0.47 |
Incongruent Accuracy | 0.92 (0.08) | 0.93 (0.07) | 0.82 |
Accuracy Interference | −0.05 (0.08) | −0.06 (0.07) | 0.68 |
Reaction Time Interference | 223.2 (155.17) | 284.63 (209.20) | 0.17 |
WCST | |||
Percent Perseverative Errors | 31.82 (18.34) | 35.71 (21.63) | 0.41 |
Percent Correct | 71.96 (11.25) | 71.26 (11.28) | 0.79 |
OSPAN | 37.81 (18.54) | 39.89 (21.13) | 0.66 |
DV | R2 | b | SE b | 95% CIs | p | |
---|---|---|---|---|---|---|
Stroop | ||||||
0.16 | 0.07 | |||||
Overall Accuracy | Estimated CRF | 0.01 | 0.003 | (0.00, 0.01) | <0.05 * | |
Group | 0.13 | 0.10 | (−0.08, 0.33) | 0.21 | ||
Interaction | −0.003 | 0.002 | (−0.01, 0.001) | 0.22 | ||
0.11 | 0.26 | |||||
Incongruent Accuracy | Estimated CRF | 0.02 | 0.01 | (0.004, 0.03) | 0.01 * | |
Group | 0.47 | 0.21 | (0.05, 0.89) | 0.03 * | ||
Interaction | −0.01 | 0.01 | (−0.02, −0.001) | 0.03 * | ||
0.07 | 0.57 | |||||
Accuracy Interference | Estimated CRF | 0.01 | 0.01 | (−0.001, 0.03) | 0.06 | |
Group | 0.38 | 0.22 | (−0.05, 0.82) | 0.08 | ||
Interaction | −0.01 | 0.01 | (−0.02, 0.001) | 0.07 | ||
0.10 | 0.34 | |||||
RT Interference | Estimated CRF | 8.08 | 17.30 | (−26.47, 42.64) | 0.64 | |
Group | 36.11 | 526.41 | (−1015.52, 1087.74) | 0.95 | ||
Interaction | 0.14 | 12.46 | (−24.76, 25.04) | 0.99 | ||
WCST | ||||||
0.04 | 0.82 | |||||
Percent Perseverative Error | Estimated CRF | 0.02 | 1.83 | (−3.64, 3.67) | 0.99 | |
Group | 11.25 | 57.21 | (−103.01, 125.52) | 0.84 | ||
Interaction | −0.21 | 1.35 | (−2.91, 2.49) | 0.88 | ||
0.08 | 0.46 | |||||
Percent Correct | Estimated CRF | 0.01 | 0.01 | (−0.01, 0.03) | 0.58 | |
Group | 0.17 | 0.31 | (−0.45, 0.80) | 0.58 | ||
Interaction | −0.005 | 0.01 | (−0.02, 0.01) | 0.52 | ||
OSPAN | ||||||
0.03 | 0.94 | |||||
OSPAN | Estimated CRF | −0.50 | 1.82 | (−4.14, 3.14) | 0.79 | |
Group | −5.73 | 57.03 | (−119.63, 108.17) | 0.92 | ||
Interaction | 0.23 | 1.35 | (−2.46, 2.92) | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogrodnik, M.; Karsan, S.; Cirone, V.; Heisz, J.J. Exploring the Relationship between Cardiorespiratory Fitness and Executive Functioning in Adults with ADHD. Brain Sci. 2023, 13, 673. https://doi.org/10.3390/brainsci13040673
Ogrodnik M, Karsan S, Cirone V, Heisz JJ. Exploring the Relationship between Cardiorespiratory Fitness and Executive Functioning in Adults with ADHD. Brain Sciences. 2023; 13(4):673. https://doi.org/10.3390/brainsci13040673
Chicago/Turabian StyleOgrodnik, Michelle, Sameena Karsan, Victoria Cirone, and Jennifer J. Heisz. 2023. "Exploring the Relationship between Cardiorespiratory Fitness and Executive Functioning in Adults with ADHD" Brain Sciences 13, no. 4: 673. https://doi.org/10.3390/brainsci13040673
APA StyleOgrodnik, M., Karsan, S., Cirone, V., & Heisz, J. J. (2023). Exploring the Relationship between Cardiorespiratory Fitness and Executive Functioning in Adults with ADHD. Brain Sciences, 13(4), 673. https://doi.org/10.3390/brainsci13040673