Probing the Association between Cognition, Suicidal Behavior and Tryptophan Metabolism in a Sample of Individuals Living with Bipolar Disorder: A Secondary Analysis
Abstract
:1. Introduction
1.1. Bipolar Disorder
1.2. Suicidal Behavior and Bipolar Disorder
1.3. Cognitive Functioning, TRP Metabolism and Suicide Risk
2. Materials and Methods
2.1. Study Sample
2.2. Recruitment Process
2.3. Psychometric Assessments
2.4. Laboratory Analysis
2.5. Statistical Analysis
3. Results
3.1. Plasma TRP Metabolites BD vs. Controls Comparison
3.2. Comparison of Cognitive Performances of LSA vs. Non-LSA
4. Discussion
4.1. Suicide as a Target for Prevention
4.2. Preliminary Results from Our Cohort: Possible Future Directions
4.3. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferrari, A.J.; Stockings, E.; Khoo, J.P.; Erskine, H.E.; Degenhardt, L.; Vos, T.; Whiteford, H.A. The prevalence and burden of bipolar disorder: Findings from the Global Burden of Disease Study 2013. Bipolar Disord. 2016, 18, 440–450. [Google Scholar] [CrossRef]
- Chesney, E.; Goodwin, G.M.; Fazel, S. Risks of all-cause and suicide mortality in mental disorders: A meta-review. World Psychiatry 2014, 13, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Staudt Hansen, P.; Frahm Laursen, M.; Grontved, S.; Puggard Vogt Straszek, S.; Licht, R.W.; Nielsen, R.E. Increasing mortality gap for patients diagnosed with bipolar disorder-A nationwide study with 20 years of follow-up. Bipolar Disord. 2019, 21, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, B.I.; Baune, B.T.; Bond, D.J.; Chen, P.H.; Eyler, L.; Fagiolini, A.; Gomes, F.; Hajek, T.; Hatch, J.; McElroy, S.L.; et al. Call to action regarding the vascular-bipolar link: A report from the Vascular Task Force of the International Society for Bipolar Disorders. Bipolar Disord. 2020, 22, 440–460. [Google Scholar] [CrossRef] [PubMed]
- Leboyer, M.; Soreca, I.; Scott, J.; Frye, M.; Henry, C.; Tamouza, R.; Kupfer, D.J. Can bipolar disorder be viewed as a multi-system inflammatory disease? J. Affect. Disord. 2012, 141, 1–10. [Google Scholar] [CrossRef]
- Plans, L.; Barrot, C.; Nieto, E.; Rios, J.; Schulze, T.G.; Papiol, S.; Mitjans, M.; Vieta, E.; Benabarre, A. Association between completed suicide and bipolar disorder: A systematic review of the literature. J. Affect. Disord. 2019, 242, 111–122. [Google Scholar] [CrossRef]
- Moutier, C.Y.; Pisani, A.R.; Stahl, S.M. Suicide Prevention; National Institutes of Health: Bethesda, MD, USA, 2021. [Google Scholar]
- Gole, L.H.; Frierson, R.L. Suicide Risk Assessment and Management; The American Psychiatric Association Publishing: Washington, DC, USA, 2020. [Google Scholar]
- Richard-Devantoy, S.; Berlim, M.T.; Jollant, F. A meta-analysis of neuropsychological markers of vulnerability to suicidal behavior in mood disorders. Psychol. Med. 2014, 44, 1663–1673. [Google Scholar] [CrossRef]
- Richard-Devantoy, S.; Ding, Y.; Turecki, G.; Jollant, F. Attentional bias toward suicide-relevant information in suicide attempters: A cross-sectional study and a meta-analysis. J. Affect. Disord. 2016, 196, 101–108. [Google Scholar] [CrossRef]
- Richard-Devantoy, S.; Ding, Y.; Lepage, M.; Turecki, G.; Jollant, F. Cognitive inhibition in depression and suicidal behavior: A neuroimaging study. Psychol. Med. 2016, 46, 933–944. [Google Scholar] [CrossRef]
- Comparelli, A.; Corigliano, V.; Montalbani, B.; Nardella, A.; De Carolis, A.; Stampatore, L.; Bargagna, P.; Forcina, F.; Lamis, D.; Pompili, M. Building a neurocognitive profile of suicidal risk in severe mental disorders. BMC Psychiatry 2022, 22, 628. [Google Scholar] [CrossRef]
- Weinberg-Wolf, H.; Fagan, N.A.; Anderson, G.M.; Tringides, M.; Dal Monte, O.; Chang, S.W.C. The effects of 5-hydroxytryptophan on attention and central serotonin neurochemistry in the rhesus macaque. Neuropsychopharmacology 2018, 43, 1589–1598. [Google Scholar] [CrossRef] [PubMed]
- Gendle, M.H.; Golding, A.C. Oral administration of 5-hydroxytryptophan (5-HTP) impairs decision making under ambiguity but not under risk: Evidence from the Iowa Gambling Task. Hum. Psychopharmacol. 2010, 25, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Evers, E.A.; van der Veen, F.M.; Jolles, J.; Deutz, N.E.; Schmitt, J.A. Acute tryptophan depletion improves performance and modulates the BOLD response during a Stroop task in healthy females. Neuroimage 2006, 32, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Sobczak, S.; Riedel, W.J.; Booij, I.; Aan Het Rot, M.; Deutz, N.E.; Honig, A. Cognition following acute tryptophan depletion: Difference between first-degree relatives of bipolar disorder patients and matched healthy control volunteers. Psychol. Med. 2002, 32, 503–515. [Google Scholar] [CrossRef]
- Gallagher, P.; Massey, A.E.; Young, A.H.; McAllister-Williams, R.H. Effects of acute tryptophan depletion on executive function in healthy male volunteers. BMC Psychiatry 2003, 3, 10. [Google Scholar] [CrossRef]
- Coccaro, E.F. Impulsive aggression and central serotonergic system function in humans: An example of a dimensional brain-behavior relationship. Int. Clin. Psychopharmacol. 1992, 7, 3–12. [Google Scholar] [CrossRef]
- de Boer, S.F.; Koolhaas, J.M. 5-HT1A and 5-HT1B receptor agonists and aggression: A pharmacological challenge of the serotonin deficiency hypothesis. Eur. J. Pharmacol. 2005, 526, 125–139. [Google Scholar] [CrossRef]
- Comai, S.; Bertazzo, A.; Vachon, J.; Daigle, M.; Toupin, J.; Cote, G.; Turecki, G.; Gobbi, G. Tryptophan via serotonin/kynurenine pathways abnormalities in a large cohort of aggressive inmates: Markers for aggression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016, 70, 8–16. [Google Scholar] [CrossRef]
- Platzer, M.; Dalkner, N.; Fellendorf, F.T.; Birner, A.; Bengesser, S.A.; Queissner, R.; Kainzbauer, N.; Pilz, R.; Herzog-Eberhard, S.; Hamm, C.; et al. Tryptophan breakdown and cognition in bipolar disorder. Psychoneuroendocrinology 2017, 81, 144–150. [Google Scholar] [CrossRef]
- Almulla, A.F.; Thipakorn, Y.; Vasupanrajit, A.; Tunvirachaisakul, C.; Oxenkrug, G.; Al-Hakeim, H.K.; Maes, M. The Tryptophan Catabolite or Kynurenine Pathway in a Major Depressive Episode with Melancholia, Psychotic Features and Suicidal Behaviors: A Systematic Review and Meta-Analysis. Cells 2022, 11, 3112. [Google Scholar] [CrossRef]
- Messaoud, A.; Rym, M.; Wahiba, D.; Neffati, F.; Najjar, M.F.; Gobbi, G.; Manchia, M.; Valtorta, F.; Lotfi, G.; Comai, S. Investigation of the Relationship among Cortisol, Pro-inflammatory Cytokines, and the Degradation of Tryptophan into Kynurenine in Patients with Major Depression and Suicidal Behavior. Curr. Top. Med. Chem. 2022, 22, 2119–2125. [Google Scholar] [PubMed]
- Fellendorf, F.T.; Manchia, M.; Squassina, A.; Pisanu, C.; Dall’Acqua, S.; Sut, S.; Nasini, S.; Congiu, D.; Reininghaus, E.Z.; Garzilli, M.; et al. Is Poor Lithium Response in Individuals with Bipolar Disorder Associated with Increased Degradation of Tryptophan along the Kynurenine Pathway? Results of an Exploratory Study. J. Clin. Med. 2022, 11, 2517. [Google Scholar] [CrossRef]
- Pisanu, C.; Squassina, A.; Paribello, P.; Dall’Acqua, S.; Sut, S.; Nasini, S.; Bertazzo, A.; Congiu, D.; Meloni, A.; Garzilli, M.; et al. Investigation of Genetic Variants Associated with Tryptophan Metabolite Levels via Serotonin and Kynurenine Pathways in Patients with Bipolar Disorder. Metabolites 2022, 12, 1127. [Google Scholar] [CrossRef]
- Manchia, M.; Squassina, A.; Pisanu, C.; Congiu, D.; Garzilli, M.; Guiso, B.; Suprani, F.; Paribello, P.; Pulcinelli, V.; Iaselli, M.N.; et al. Investigating the relationship between melatonin levels, melatonin system, microbiota composition and bipolar disorder psychopathology across the different phases of the disease. Int. J. Bipolar Disord. 2019, 7, 27. [Google Scholar] [CrossRef]
- First, M.B.; Williams, J.B.; Karg, R.S.; Spitzer, R.L. User’s Guide for the SCID-5-CV Structured Clinical Interview for DSM-5® Disorders: Clinical Version; The American Psychiatric Association Publishing: Washington, DC, USA, 2016. [Google Scholar]
- Steinberg, L.; Sharp, C.; Stanford, M.S.; Tharp, A.T. New tricks for an old measure: The development of the Barratt Impulsiveness Scale-Brief (BIS-Brief). Psychol. Assess. 2013, 25, 216–226. [Google Scholar] [CrossRef]
- Thompson, E. Hamilton Rating Scale for Anxiety (HAM-A). Occup. Med. (Lond.) 2015, 65, 601. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Busner, J.; Targum, S.D. The clinical global impressions scale: Applying a research tool in clinical practice. Psychiatry (Edgmont) 2007, 4, 28–37. [Google Scholar]
- Bauer, I.E.; Keefe, R.S.; Sanches, M.; Suchting, R.; Green, C.E.; Soares, J.C. Evaluation of cognitive function in bipolar disorder using the Brief Assessment of Cognition in Affective Disorders (BAC-A). J. Psychiatr. Res. 2015, 60, 81–86. [Google Scholar] [CrossRef]
- Keefe, R.S.; Goldberg, T.E.; Harvey, P.D.; Gold, J.M.; Poe, M.P.; Coughenour, L. The Brief Assessment of Cognition in Schizophrenia: Reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophr. Res. 2004, 68, 283–297. [Google Scholar] [CrossRef]
- Rossetti, M.G.; Bonivento, C.; Garzitto, M.; Caletti, E.; Perlini, C.; Piccin, S.; Lazzaretti, M.; Marinelli, V.; Sala, M.; Abbiati, V.; et al. The brief assessment of cognition in affective disorders: Normative data for the Italian population. J. Affect. Disord. 2019, 252, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Young, R.C.; Biggs, J.T.; Ziegler, V.E.; Meyer, D.A. A rating scale for mania: Reliability, validity and sensitivity. Br. J. Psychiatry 1978, 133, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Kessler, R.C.; Bauer, M.S.; Bishop, T.M.; Bossarte, R.M.; Castro, V.M.; Demler, O.V.; Gildea, S.M.; Goulet, J.L.; King, A.J.; Kennedy, C.J.; et al. Evaluation of a Model to Target High-risk Psychiatric Inpatients for an Intensive Postdischarge Suicide Prevention Intervention. JAMA Psychiatry 2023, 80, 230–240. [Google Scholar] [CrossRef]
- Manchia, M.; Paribello, P. Precision psychiatry for suicide prevention. Eur. Neuropsychopharmacol. 2023, 69, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Ott, C.V.; Knorr, U.; Jespersen, A.; Obenhausen, K.; Roen, I.; Purdon, S.E.; Kessing, L.V.; Miskowiak, K.W. Norms for the Screen for Cognitive Impairment in Psychiatry and cognitive trajectories in bipolar disorder. J. Affect. Disord. 2021, 281, 33–40. [Google Scholar] [CrossRef]
- Team, R. RStudio: Integrated Development for R. RStudio; PBC: Boston, MA, USA, 2020. [Google Scholar]
- Team, J. JASP (Version 0.17.1) [Computer Software]. 2023. Available online: https://jasp-stats.org/ (accessed on 1 March 2023).
- Lavigne, K.M.; Sauve, G.; Raucher-Chene, D.; Guimond, S.; Lecomte, T.; Bowie, C.R.; Menon, M.; Lal, S.; Woodward, T.S.; Bodnar, M.D.; et al. Remote cognitive assessment in severe mental illness: A scoping review. Schizophrenia 2022, 8, 14. [Google Scholar] [CrossRef]
- Gao, K.; Mu, C.L.; Farzi, A.; Zhu, W.Y. Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain. Adv. Nutr. 2020, 11, 709–723. [Google Scholar] [CrossRef]
- Paribello, P.; Carpiniello, B.; Manchia, M. Gut Microbiota Research in Bipolar Disorder and Possible Implications for Precision Psychiatry: A Systematic Review. Psychiatry Int. 2022, 3, 114–121. [Google Scholar] [CrossRef]
- Bowland, G.B.; Weyrich, L.S. The Oral-Microbiome-Brain Axis and Neuropsychiatric Disorders: An Anthropological Perspective. Front. Psychiatry 2022, 13, 810008. [Google Scholar] [CrossRef]
- Ahrens, A.P.; Sanchez-Padilla, D.E.; Drew, J.C.; Oli, M.W.; Roesch, L.F.W.; Triplett, E.W. Saliva microbiome, dietary, and genetic markers are associated with suicidal ideation in university students. Sci. Rep. 2022, 12, 14306. [Google Scholar] [CrossRef]
Healthy Controls (n = 48) | Non-LSA (n = 33) | LSA (n = 17) | LSA vs. Non-LSA | HC vs. LSA | HC vs. Non-LSA | |
---|---|---|---|---|---|---|
Gender—n (%) | ||||||
Female | 30 (62) | 19 (57) | 12 (70) | 0.3 § | 0.5 § | 0.6 § |
Male | 18 (37) | 14 (42) | 5 (29) | |||
Physical activity—n (%) | ||||||
No | 19 (39) | 24 (72) | 11 (64) | 0.55 § | 0.07 § | 0.003 § |
Yes | 29 (60) | 9 (27) | 6 (35) | |||
Cigarette smoking—n (%) | ||||||
No | 33 (69) | 9 (27) | 4 (23) | 0.5 § | 1.0 § | <0.001 § |
Yes | 9 (19) | 14 (42) | 10 (59) | |||
Ex-smoker | 6 (12) | 9 (27) | 3 (18) | |||
BMI mean-median-SD | 23.6-23.3-3.4 | 26.4-25.0-6.2 | 24.6-25.5-4.0 | 0.4 ^ | 0.2 ^ | 0.04 ^ |
Age at T0—years (mean-median-SD) | 52-53-8 | 51-53-8.5 | 50-49-8.8 | 0.33 ^ | 0.42 ^ | 0.31 ^ |
TRP (μg/mL) mean-median-SD | 11.0-10.9-1.7 | 9.4-9.8-1.6 | 9.6-9.8-1.6 | 0.7 ^ | 0.0065 ^ | <0.001 ^ |
5-HTP (ng/mL) mean-median-SD | 69.9-60.7-34.4 | 85.7-84.2-25.4 | 91.2-92.6-35.4 | 0.7 ^ | 0.0059 ^ | 0.001 ^ |
5-HT (ng/mL) mean-median-SD | 260.7-241.9-167.9 | 288.7-269.9-141.2 | 363.3-380.1-204.8 | 0.29 ^ | 0.063 ^ | 0.28 ^ |
KYN (μg/mL) mean-median-SD | 0.383-0.376-0.140 | 0.343-0.330-0.109 | 0.350-0.360-0.083 | 0.53 ^ | 0.53 ^ | 0.17 ^ |
3-HK (ng/mL) mean-median-SD | 44.4-42.4-13.5 | 42.8-42.2-3.2 | 41.9-41.8-1.6 | 0.36 ^ | 0.34 ^ | 0.65 ^ |
QA (ng/mL) mean-median-SD | 158.7-154.5-45.9 | 141.2-142.6-14.5 | 145.6-141.2-15.7 | 0.6 ^ | 0.2 ^ | 0.015 ^ |
KYNA (ng/mL) mean-median-SD | 10.2-8.3-8.0 | 8.3-8.4-4.1 | 10.2-9.9-5.5 | 0.13 ^ | 0.48 ^ | 0.67 ^ |
5-HTP/TRP*1000 ratio mean-median-SD | 6.4-5.7-3.2 | 9.3-9.5-3.1 | 9.5-9.2-3.3 | 0.8 ^ | <0.001 ^ | <0.001 ^ |
KYN/TRP*1000 ratio mean-median-SD | 34.8-34.0-11.9 | 37.8-32.9-14.3 | 38.0-33.7-14.4 | 0.9 ^ | 0.47 ^ | 0.6 ^ |
QA/KYNA ratio mean-median-SD | 22.5-20.7-14.0 | 23.1-17.4-17.8 | 24.9-13.6-25.6 | 0.17 ^ | 0.28 ^ | 0.8 ^ |
Variable | Females | Males | χ2/Mann–Whitney p |
---|---|---|---|
Gender—n (%) | 30 (67) | 15 (33) | 0.36 |
Socioeconomic level—n (%) | |||
Low | 11 (37) | 5 (33) | 0.95 |
Average | 11 (37) | 6 (40) | |
High | 8 (26) | 4 (27) | |
Marital status—n (%) | |||
Single | 8 (27) | 7 (47) | 0.21 |
Married | 5 (17) | 4 (32) | |
Divorced | 11 (37) | 3 (16) | |
Widow | 1 (3) | 0 (0) | |
In stable relationship | 5 (16) | 1 (6) | |
Education—n (%) | |||
≤11 years | 7 (23) | 6 (40) | 0.18 |
11–13 years | 14 (47) | 7 (47) | |
+13 years | 9 (30) | 2 (13) | |
Lifetime history of suicide ideation (LSI)—n (%) | |||
No | 13 (43) | 10 (67) | 0.10 |
Yes | 17 (57) | 5 (33) | |
Lifetime history of attempted suicide (LSA)—n (%) | |||
No | 18 (60) | 11 (73) | 0.36 |
Yes | 12 (40) | 4 (27) | |
HDRS total-median score | 5.0 | 2.0 | 0.19 |
YMRS total-median score | 0 | 0 | 0.45 |
CGI-S-median score | 2 | 3 | 0.043 |
BIS-median score | 69 | 68 | 0.21 |
BAC-A-EIS 45 subjects, (%) subsample with performances in the pathological range | |||
Color naming, mean-median and SD (% abnormal results-equivalent score-ES 0) | 46.9-48.4-9.7 (13.3) | 46.9-46.8-6.3 (6.6) | 0.78 |
Neutral color, mean-median score and SD (% abnormal results-equivalent score-ES 0) | 41.9-44.1-8.7 (13.3) | 42.0-42.2-5.1 (0.0) | 0.27 |
Affective color words, mean-median score and SD (% abnormal results-equivalent score-ES 0) | 40.2-41.8-9.4 (16.6) | 42.2-42.8-4.8 (6.6) | 0.43 |
Neutral words-mean, median and SD (% abnormal results-equivalent score-ES 0) | 52.3-55.1-15.8 (13.3) | 60.1-62.7-12.4 (13.3) | 0.20 |
LSA | χ2/Mann–Whitney p | ||
---|---|---|---|
Family history of suicide attempts (FHSA) | No | Yes | |
No | 26 | 14 | 0.76 |
Yes | 7 | 3 | |
Total duration of illness (months, median) | 24 | 28 | 0.24 |
Total time spent in major depressive episode (months, median) | 16 | 21 | 0.54 |
Total time spent in (hypo)mania (months, median) | 6 | 9 | 0.86 |
Number of total (hypo)mania episodes (median) | 4 | 4 | 0.78 |
Number for total major depressive episode (median) | 3 | 6 | 0.039 |
Age at first attempt (y.o.) | |||
Median | 31.0 | ||
Mean | 34.0 | ||
Youngest at 1st attempt | 21.0 | ||
Oldest at 1st attempt | 53.0 | ||
Polarity of mood at 1st attempt (n = 17) | |||
Mania | 2 | ||
Major Depressive Episode | 11 | ||
Mixed | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paribello, P.; Squassina, A.; Pisanu, C.; Meloni, A.; Dall’Acqua, S.; Sut, S.; Nasini, S.; Bertazzo, A.; Congiu, D.; Garzilli, M.; et al. Probing the Association between Cognition, Suicidal Behavior and Tryptophan Metabolism in a Sample of Individuals Living with Bipolar Disorder: A Secondary Analysis. Brain Sci. 2023, 13, 693. https://doi.org/10.3390/brainsci13040693
Paribello P, Squassina A, Pisanu C, Meloni A, Dall’Acqua S, Sut S, Nasini S, Bertazzo A, Congiu D, Garzilli M, et al. Probing the Association between Cognition, Suicidal Behavior and Tryptophan Metabolism in a Sample of Individuals Living with Bipolar Disorder: A Secondary Analysis. Brain Sciences. 2023; 13(4):693. https://doi.org/10.3390/brainsci13040693
Chicago/Turabian StyleParibello, Pasquale, Alessio Squassina, Claudia Pisanu, Anna Meloni, Stefano Dall’Acqua, Stefania Sut, Sofia Nasini, Antonella Bertazzo, Donatella Congiu, Mario Garzilli, and et al. 2023. "Probing the Association between Cognition, Suicidal Behavior and Tryptophan Metabolism in a Sample of Individuals Living with Bipolar Disorder: A Secondary Analysis" Brain Sciences 13, no. 4: 693. https://doi.org/10.3390/brainsci13040693
APA StyleParibello, P., Squassina, A., Pisanu, C., Meloni, A., Dall’Acqua, S., Sut, S., Nasini, S., Bertazzo, A., Congiu, D., Garzilli, M., Guiso, B., Suprani, F., Pulcinelli, V., Iaselli, M. N., Pinna, I., Somaini, G., Arru, L., Corrias, C., Pinna, F., ... Manchia, M. (2023). Probing the Association between Cognition, Suicidal Behavior and Tryptophan Metabolism in a Sample of Individuals Living with Bipolar Disorder: A Secondary Analysis. Brain Sciences, 13(4), 693. https://doi.org/10.3390/brainsci13040693