Neuropsychological Activations and Networks While Performing Visual and Kinesthetic Motor Imagery
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Instruments and Paradigm
2.2.1. Questionnaire upon Mental Imagery (QMI)
2.2.2. Experimental Paradigm
2.3. Data Acquisition and Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeannerod, M. Mental imagery in the motor context. Neuropsychologia 1995, 33, 1419–1432. [Google Scholar] [CrossRef]
- Jeannerod, M. Neural simulation of action: A unifying mechanism for motor cognition. Neuroimage 2001, 14, S103–S109. [Google Scholar] [CrossRef] [PubMed]
- Dahm, S.F.; Rieger, M. Is there symmetry in motor imagery? Exploring different versions of the mental chronometry paradigm. Atten. Percept. Psychophys. 2016, 78, 1794–1805. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.J.; Jeon, E.J.; Kim, J.S.; Chung, C.K. Characterization of kinesthetic motor imagery compared with visual motor imageries. Sci. Rep. 2021, 11, 3751. [Google Scholar] [CrossRef] [PubMed]
- Stinear, C.M.; Byblow, W.D.; Steyvers, M.; Levin, O.; Swinnen, S.P. Kinesthetic, but not visual, motor imagery modulates corticomotor excitability. Exp. Brain Res. 2006, 168, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Moran, A.; Guillot, A.; MacIntyre, T.; Collet, C. Re-imagining motor imagery: Building bridges between cognitive neuroscience and sport psychology. Br. J. Psychol. 2012, 103, 224–247. [Google Scholar] [CrossRef] [PubMed]
- Klein, I.; Dubois, J.; Mangin, J.F.; Kherif, F.; Flandin, G.; Poline, J.B.; Le Bihan, D. Retinotopic organization of visual mental images as revealed by functional magnetic resonance imaging. Cogn. Brain Res. 2004, 22, 26–31. [Google Scholar] [CrossRef]
- Dijkstra, N.; Bosch, S.E.; van Gerven, M.A. Shared neural mechanisms of visual perception and imagery. Trends Cogn. Sci. 2019, 23, 423–434. [Google Scholar] [CrossRef] [Green Version]
- Pearson, J. The human imagination: The cognitive neuroscience of visual mental imagery. Nat. Rev. Neurosci. 2019, 20, 624–634. [Google Scholar] [CrossRef]
- Chen, W.; Kato, T.; Zhu, X.H.; Ogawa, S.; Tank, D.W.; Ugurbil, K. Human primary visual cortex and lateral geniculate nucleus activation during visual imagery. Neuroreport 1998, 9, 3669–3674. [Google Scholar] [CrossRef]
- Ragni, F.; Tucciarelli, R.; Andersson, P.; Lingnau, A. Decoding stimulus identity in occipital, parietal and inferotemporal cortices during visual mental imagery. Cortex 2020, 127, 371–387. [Google Scholar] [CrossRef]
- Park, S.; Serences, J.T. Relative precision of top-down attentional modulations is lower in early visual cortex compared to mid-and high-level visual areas. J. Neurophysiol. 2022, 127, 504–518. [Google Scholar] [CrossRef] [PubMed]
- Ganis, G.; Thompson, W.L.; Kosslyn, S.M. Brain areas underlying visual mental imagery and visual perception: An fMRI study. Cogn. Brain Res. 2004, 20, 226–241. [Google Scholar] [CrossRef] [PubMed]
- Korivand, S.; Jalili, N.; Gong, J. Experiment protocols for brain-body imaging of locomotion: A systematic review. Front. Neurosci. 2023, 17, 1051500. [Google Scholar] [CrossRef]
- Boyne, P.; Doren, S.; Scholl, V.; Staggs, E.; Whitesel, D.; Maloney, T.; Vannest, J. Functional magnetic resonance brain imaging of imagined walking to study locomotor function after stroke. Clin. Neurophysiol. 2021, 132, 167–177. [Google Scholar] [CrossRef]
- Jahn, K.; Deutschländer, A.; Stephan, T.; Strupp, M.; Wiesmann, M.; Brandt, T. Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage 2004, 22, 1722–1731. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S.; Kashyap, R.; Abualait, T.; Annabel Chen, S.H.; Yoo, W.K.; Bashir, S. The role of primary motor cortex: More than movement execution. J. Mot. Behav. 2021, 53, 258–274. [Google Scholar] [CrossRef]
- Barhoun, P.; Fuelscher, I.; Do, M.; He, J.L.; Cerins, A.; Bekkali, S.; Hyde, C. The role of the primary motor cortex in motor imagery: A theta burst stimulation study. Psychophysiology 2022, 59, e14077. [Google Scholar] [CrossRef]
- Dechent, P.; Merboldt, K.D.; Frahm, J. Is the human primary motor cortex involved in motor imagery? Cogn. Brain Res. 2004, 19, 138–144. [Google Scholar] [CrossRef]
- Sharma, N.; Jones, P.S.; Carpenter, T.A.; Baron, J.C. Mapping the involvement of BA 4a and 4p during motor imagery. Neuroimage 2008, 41, 92–99. [Google Scholar] [CrossRef]
- Orlandi, A.; Arno, E.; Proverbio, A.M. The effect of expertise on kinesthetic motor imagery of complex actions. Brain Topogr. 2020, 33, 238–254. [Google Scholar] [CrossRef]
- Sacco, K.; Cauda, F.; Cerliani, L.; Mate, D.; Duca, S.; Geminiani, G. Motor imagery of walking following training in locomotor attention. The effect of ‘the tango lesson’. Neuroimage 2006, 32, 1441–1449. [Google Scholar] [CrossRef] [PubMed]
- Chepurova, A.; Hramov, A.; Kurkin, S. Motor imagery: How to assess, improve its performance, and apply it for psychosis diagnostics. Diagnostics 2022, 12, 949. [Google Scholar] [CrossRef]
- Guillot, A.; Collet, C.; Nguyen, V.A.; Malouin, F.; Richards, C.; Doyon, J. Brain activity during visual versus kinesthetic imagery: An fMRI study. Hum. Brain Mapp. 2009, 30, 2157–2172. [Google Scholar] [CrossRef]
- Kilintari, M.; Narayana, S.; Babajani-Feremi, A.; Rezaie, R.; Papanicolaou, A.C. Brain activation profiles during kinesthetic and visual imagery: An fMRI study. Brain Res. 2006, 1646, 249–261. [Google Scholar] [CrossRef] [Green Version]
- Chholak, P.; Niso, G.; Maksimenko, V.A.; Kurkin, S.A.; Frolov, N.S.; Pitsik, E.N.; Pisarchik, A.N. Visual and kinesthetic modes affect motor imagery classification in untrained subjects. Sci. Rep. 2019, 9, 9838. [Google Scholar] [CrossRef] [Green Version]
- Mulder, T.; Zijlstra, S.; Zijlstra, W.; Hochstenbach, J. The role of motor imagery in learning a totally novel movement. Exp. Brain Res. 2004, 154, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Mitani, K.; Rathnayake, N.; Rathnayake, U.; Dang, T.L.; Hoshino, Y. Brain activity associated with the planning process during the long-time learning of the tower of hanoi (ToH) task: A pilot study. Sensors 2022, 22, 8283. [Google Scholar] [CrossRef] [PubMed]
- Newman, S.D.; Carpenter, P.A.; Varma, S.; Just, M.A. Frontal and parietal participation in problem solving in the Tower of London: fMRI and computational modeling of planning and high-level perception. Neuropsychologia 2003, 41, 1668–1682. [Google Scholar] [CrossRef] [PubMed]
- Spiers, H.J.; Maguire, E.A. Neural substrates of driving behaviour. Neuroimage 2007, 36, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Griesbauer, E.M.; Manley, E.; Wiener, J.M.; Spiers, H.J. London taxi drivers: A review of neurocognitive studies and an exploration of how they build their cognitive map of London. Hippocampus 2022, 32, 3–20. [Google Scholar] [CrossRef]
- Zhang, T.; Gao, J.S.; Çukur, T.; Gallant, J.L. Voxel-based state space modeling recovers task-related cognitive states in naturalistic fmri experiments. Front. Neurosci. 2021, 14, 565976. [Google Scholar] [CrossRef]
- Sheehan, P.W. A shortened form of Betts’ questionnaire upon mental imagery. J. Clin. Psychol. 1967, 23, 386–389. [Google Scholar] [CrossRef] [PubMed]
- Park, M.J.; Park, S.H. Effect of Positive Mental Imagery Stimuli on Anhedonic Depressive Symptoms. Korean J. Clin. Psychol. 2022, 41, 1–10. [Google Scholar] [CrossRef]
- Engelkamp, J.; Zimmer, H.D. Imagery and Action: Differential Encoding of Verbs and Nouns; Routledge: New York, NY, USA, 1990; pp. 151–168. [Google Scholar]
- Kim, J.; Lee, G.; Kwon, M.; Kwon, E. The difference of brain activation during visual and kinesthetic imagery on the golf putting. Korean J. Sport Sci. 2010, 21, 1346–1354. [Google Scholar]
- Gerardin, E.; Sirigu, A.; Lehéricy, S.; Poline, J.B.; Gaymard, B.; Marsault, C.; Agid, Y.; Le Bihan, D. Partially overlapping neural networks for real and imagined hand movements. Cereb. Cortex 2000, 10, 1093–1104. [Google Scholar] [CrossRef]
- Savaki, H.E.; Raos, V. Action perception and motor imagery: Mental practice of action. Prog. Neurobiol. 2019, 175, 107–125. [Google Scholar] [CrossRef]
- Giannopulu, I.; Mizutani, H. Neural kinesthetic contribution to motor imagery of body parts: Tongue, hands, and feet. Front. Hum. Neurosci. 2021, 15, 602723. [Google Scholar] [CrossRef]
- Solodkin, A.; Hlustik, P.; Chen, E.E.; Small, S.L. Fine modulation in network activation during motor execution and motor imagery. Cereb. Cortex 2004, 14, 1246–1255. [Google Scholar] [CrossRef] [PubMed]
- Amemiya, K.; Morita, T.; Hirose, S.; Ikegami, T.; Hirashima, M.; Naito, E. Neurological and behavioral features of locomotor imagery in the blind. Brain Imaging Behav. 2021, 15, 656–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, W.H.; Kim, E.; Seo, H.G.; Oh, B.M.; Nam, H.S.; Kim, Y.J.; Bang, M.S. Target-oriented motor imagery for grasping action: Different characteristics of brain activation between kinesthetic and visual imagery. Sci. Rep. 2019, 9, 12770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Regions | Visual Motor Imagery > Fixation | Kinesthetic Motor Imagery > Fixation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
p < 0.01, 10 Voxel | p < 0.01, 10 Voxel | ||||||||||
x | y | z | t | Z 4 | x | y | z | t | Z | ||
Frontal lobe | −4 | 10 | 66 | 9.9 | 3.8 | ||||||
L 1 Superior Frontal Gyrus | BA6 3 | −16 | 28 | 32 | 11 | 3.8 | −58 | 10 | 36 | 9.9 | 3.8 |
L Medial Frontal Gyrus | BA9 | −12 | 38 | 32 | 10 | 3.8 | |||||
L Medial Frontal Gyrus | BA9 | −4 | 12 | 46 | 7.8 | 3.5 | |||||
L Medial Frontal Gyrus | BA6 | −32 | 56 | 8 | 6.1 | 3.1 | |||||
L Middle Frontal Gyrus | BA10 | ||||||||||
R 2 Inferior Frontal Gyrus | BA47 | 26 | 22 | −18 | 8.4 | 3.5 | |||||
R Medial Frontal Gyrus | BA6 | 4 | −18 | 70 | 7.4 | 3.4 | |||||
R Medial Frontal Gyrus | BA9 | 18 | 30 | 24 | 5 | 2.9 | |||||
R Precentral Gyrus | BA4 | 58 | −12 | 32 | 6.3 | 3.2 | |||||
Temporal lobe | |||||||||||
L Fusiform Gyrus | BA20 | −38 | −24 | −28 | 8.2 | 3.5 | |||||
L Middle Temporal Gyrus | BA38 | −38 | 10 | −38 | 7.7 | 3.4 | |||||
L Middle Temporal Gyrus | BA21 | −62 | −36 | −6 | 5.4 | 3.0 | |||||
L Superior Temporal Gyrus | BA22 | −46 | 4 | −4 | 5.6 | 3.0 | |||||
R Inferior Temporal Gyrus | BA20 | 48 | −12 | −32 | 7.6 | 3.4 | |||||
R Superior Temporal Gyrus | BA22 | 58 | −36 | 14 | 6.2 | 3.2 | |||||
R Superior Temporal Gyrus | BA22 | 68 | −32 | 14 | 5.7 | 3.0 | |||||
Parietal lobe | |||||||||||
L Inferior Parietal Lobule | BA40 | −58 | −42 | 44 | 7.8 | 3.5 | |||||
L Inferior Parietal Lobule | BA40 | −48 | −50 | 48 | 5.2 | 2.9 | |||||
L Inferior Parietal Lobule | BA40 | −62 | −40 | 26 | 7.0 | 3.3 | |||||
L Supramarginal Gyrus | BA40 | −44 | −44 | 34 | 28 | 4.9 | −66 | −44 | 32 | 5.7 | 3.1 |
L Precuneus | BA31 | −16 | −70 | 24 | 6.6 | 3.2 | |||||
L Precuneus | BA19 | −18 | −82 | 40 | 4.6 | 2.8 | −26 | −82 | 38 | 6.9 | 3.3 |
L Postcentral Gyrus | BA2 | −46 | −36 | 62 | 5.3 | 3.0 | |||||
L Postcentral Gyrus | BA5 | −30 | −48 | 70 | 4.7 | 2.8 | |||||
R Superior Parietal Lobule | BA7 | 28 | −52 | 56 | 5.5 | 3.0 | |||||
R Superior Parietal Lobule | BA7 | 26 | −54 | 64 | 5.1 | 2.9 | |||||
R Postcentral Gyrus | BA5 | 36 | −46 | 70 | 4.5 | 2.7 | |||||
R Postcentral Gyrus | BA3 | 68 | −12 | 24 | 6.9 | 3.3 | |||||
R Postcentral Gyrus | BA2 | 52 | −22 | 52 | 6.2 | 3.2 | |||||
R Postcentral Gyrus | BA40 | 50 | −32 | 48 | 5 | 2.9 | |||||
R Inferior Parietal Lobule | BA40 | 46 | −38 | 38 | 4.8 | 2.8 | |||||
Posterior lobe | |||||||||||
L Cerebellar Tonsil | −32 | −48 | −44 | 18 | 4.4 | ||||||
L Cerebellar Tonsil | −30 | −40 | −44 | 8.3 | 3.5 | ||||||
L Inferior Semi-Lunar Lobule | −18 | −72 | −44 | 5.3 | 2.9 | ||||||
L Inferior Semi-Lunar Lobule | −32 | −64 | −42 | 7.8 | 3.4 | ||||||
L Cerebellar Tonsil | −18 | −30 | −34 | 5.6 | 3 | ||||||
R Inferior Semi-Lunar Lobule | 6 | −68 | −46 | 8.2 | 3.5 | 30 | −62 | −40 | 6.8 | 3.3 | |
R Inferior Semi-Lunar Lobule | 36 | −88 | −38 | 4.7 | 2.8 | ||||||
Occipital lobe | |||||||||||
L Cuneus | −28 | −98 | 0 | 6.2 | 3.2 | ||||||
L Middle Occipital Gyrus | BA18 | −28 | −82 | −2 | 11 | 3.9 | |||||
L Middle Occipital Gyrus | BA19 | −62 | −66 | −6 | 5.2 | 2.9 | |||||
R Inferior Temporal Gyrus | 54 | −68 | 2 | 18.2 | 4.5 | ||||||
R Middle Occipital Gyrus | BA18 | 24 | −86 | −2 | 8.3 | 3.5 | |||||
R Middle Occipital Gyrus | BA19 | 46 | −76 | 18 | 22 | 4.6 | |||||
R Fusiform Gyrus | BA19 | 32 | −80 | −10 | 8.2 | 3.5 | |||||
Limbic lobe | |||||||||||
L Anterior Cingulate | BA32 | −12 | 34 | 14 | 8.7 | 3.6 | |||||
L Cingulate Gyrus | BA24 | −18 | −4 | 44 | 7.4 | 3.4 | |||||
L Parahippocampal Gyrus | BA30 | −20 | −44 | 4 | 6.4 | 3.2 | |||||
R Cingulate Gyrus | BA32 | 12 | 22 | 42 | 25 | 4.8 | |||||
R Parahippocampal Gyrus | BA19 | 22 | −52 | 0 | 11 | 3.9 | |||||
R Parahippocampal Gyrus | BA34 | 12 | −6 | −12 | 6.5 | 3.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, S.; Kim, J.; Kim, T. Neuropsychological Activations and Networks While Performing Visual and Kinesthetic Motor Imagery. Brain Sci. 2023, 13, 983. https://doi.org/10.3390/brainsci13070983
Kwon S, Kim J, Kim T. Neuropsychological Activations and Networks While Performing Visual and Kinesthetic Motor Imagery. Brain Sciences. 2023; 13(7):983. https://doi.org/10.3390/brainsci13070983
Chicago/Turabian StyleKwon, Sechang, Jingu Kim, and Teri Kim. 2023. "Neuropsychological Activations and Networks While Performing Visual and Kinesthetic Motor Imagery" Brain Sciences 13, no. 7: 983. https://doi.org/10.3390/brainsci13070983
APA StyleKwon, S., Kim, J., & Kim, T. (2023). Neuropsychological Activations and Networks While Performing Visual and Kinesthetic Motor Imagery. Brain Sciences, 13(7), 983. https://doi.org/10.3390/brainsci13070983