Age-Related Changes to Multisensory Integration and Audiovisual Speech Perception
Abstract
:1. Multisensory Integration
2. Temporal Precision in Multisensory Integration
3. How Do We Measure Audiovisual Integration?
4. Attentional Modulation of Audiovisual Integration
5. Multisensory Integration, Attentional Control, and Falls
6. Neurobiology of Multisensory Integration
7. Oscillatory Alpha Activity in Multisensory Integration
8. Oscillatory Alpha Activity in Balance Maintenance and Fall Risk
9. Concluding Remarks and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Talsma, D.; Senkowski, D.; Soto-Faraco, S.; Woldorff, M.G. The multifaceted interplay between attention and multisensory integration. Trends Cogn. Sci. 2010, 14, 400–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vroomen, J.; Keetels, M. Perception of intersensory synchrony: A tutorial review. Atten. Percept. Psychophys. 2010, 72, 871–884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillock, A.R.; Powers, A.R.; Wallace, M.T. Binding of sights and sounds: Age-related changes in multisensory temporal processing. Neuropsychologia 2011, 49, 461–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zampini, M.; Guest, S.; Shore, D.I.; Spence, C. Audio-visual simultaneity judgments. Percept. Psychophys. 2005, 67, 531–544. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, R.A.; Zemtsov, R.K.; Wallace, M.T. Individual differences in the multisensory temporal binding window predict susceptibility to audiovisual illusions. J. Exp. Psychol. Hum. Percept. Perform. 2012, 38, 1517–1529. [Google Scholar] [CrossRef] [Green Version]
- Parise, C.V.; Harrar, V.; Ernst, M.O.; Spence, C. Cross-correlation between Auditory and Visual Signals Promotes Multisensory Integration. Multisensory Res. 2013, 26, 307–316. [Google Scholar] [CrossRef] [Green Version]
- de Dieuleveult, A.L.; Siemonsma, P.C.; van Erp, J.B.F.; Brouwer, A.-M. Effects of Aging in Multisensory Integration: A Systematic Review. Front. Aging Neurosci. 2017, 9, 80. [Google Scholar] [CrossRef] [Green Version]
- Higgen, F.L.; Heine, C.; Krawinkel, L.; Göschl, F.; Engel, A.K.; Hummel, F.C.; Xue, G.; Gerloff, C. Crossmodal Congruency Enhances Performance of Healthy Older Adults in Visual-Tactile Pattern Matching. Front. Aging Neurosci. 2020, 12, 74. [Google Scholar] [CrossRef] [Green Version]
- Cavazzana, A.; Röhrborn, A.; Garthus-Niegel, S.; Larsson, M.; Hummel, T.; Croy, I. Sensory-specific impairment among older people. An investigation using both sensory thresholds and subjective measures across the five senses. PLoS ONE 2018, 13, e0202969. [Google Scholar] [CrossRef] [Green Version]
- Fischer, M.E.; Cruickshanks, K.J.; Klein, B.E.; Klein, R.; Schubert, C.R.; Wiley, T.L. Multiple sensory impairment and quality of life. Ophthalmic Epidemiol. 2009, 16, 346–353. [Google Scholar] [CrossRef] [Green Version]
- Bucks, R.S.; Ashworth, D.L.; Wilcock, G.K.; Siegfried, K. Assessment of activities of daily living in dementia: Development of the Bristol Activities of Daily Living Scale. Age Ageing 1996, 25, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Slade, K.; Plack, C.J.; Nuttall, H.E. The Effects of Age-Related Hearing Loss on the Brain and Cognitive Function. Trends Neurosci. 2020, 43, 810–821. [Google Scholar] [CrossRef]
- Weissgerber, T.; Müller, C.; Stöver, T.; Baumann, U. Age differences in speech perception in noise and sound local-ization in individuals with subjective normal hearing. Front. Psychol. 2022, 13, 845285. [Google Scholar] [CrossRef]
- Office for Health Improvement and Disparities. (2022, February). Falls: Applying All Our Health. Gov.uk. Available online: https://www.gov.uk/government/publications/falls-applying-all-our-health/falls-applying-all-our-health (accessed on 2 March 2022).
- Park, H.; Nannt, J.; Kayser, C. Sensory- and memory-related drivers for altered ventriloquism effects and aftereffects in older adults. Cortex 2021, 135, 298–310. [Google Scholar] [CrossRef]
- Laurienti, P.J.; Burdette, J.H.; Maldjian, J.A.; Wallace, M.T. Enhanced multisensory integration in older adults. Neurobiol. Aging 2006, 27, 1155–1163. [Google Scholar] [CrossRef]
- Laurienti, P.J.; Kraft, R.A.; Maldjian, J.A.; Burdette, J.H.; Wallace, M.T. Semantic congruence is a critical factor in multisensory behavioral performance. Exp. Brain Res. 2004, 158, 405–414. [Google Scholar] [CrossRef]
- Jones, S.A.; Beierholm, U.; Meijer, D.; Noppeney, U. Older adults sacrifice response speed to preserve multisensory integration performance. Neurobiol. Aging 2019, 84, 148–157. [Google Scholar] [CrossRef]
- Meredith, M.A.; Stein, B.E. Interactions Among Converging Sensory Inputs in the Superior Colliculus. Science 1983, 221, 389–391. [Google Scholar] [CrossRef] [Green Version]
- Peiffer, A.M.; Mozolic, J.L.; Hugenschmidt, C.E.; Laurienti, P.J. Age-related multisensory enhancement in a simple audiovisual detection task. Neuroreport 2007, 18, 1077–1081. [Google Scholar] [CrossRef]
- Mahoney, J.R.; Li, P.C.C.; Oh-Park, M.; Verghese, J.; Holtzer, R. Multisensory integration across the senses in young and old adults. Brain Res. 2011, 1426, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.Z.; Yan, D. Ageing and hearing loss. J. Pathol. A J. Pathol. Soc. Great Br. Irel. 2007, 211, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Klein, B.E.; Moss, S.E.; Klein, R.; Lee, K.E.; Cruickshanks, K.J. Associations of visual function with physical outcomes and limitations 5 years later in an older population: The Beaver Dam eye study. Ophthalmology 2003, 110, 644–650. [Google Scholar] [CrossRef] [PubMed]
- American Optometric Association. (n.d). Adult Vision: 41 to 60 Years of Age. Available online: https://www.aoa.org/healthy-eyes/eye-health-for-life/adult-vision-41-to-60-years-of-age?sso=y (accessed on 6 June 2022).
- Mozolic, J.L.; Hugenschmidt, C.E.; Peiffer, A.M.; Laurienti, P.J. Multisensory integration and aging. In The Neural Bases of Multisensory Processes; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2012. [Google Scholar]
- Baraldi, G.D.S.; Almeida, L.C.D.; Borges, A.C.D.C. Hearing loss in aging. Rev. Bras. Otorrinolaringol. 2007, 73, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Trelle, A.N.; Henson, R.N.; Simons, J.S. Neural evidence for age-related differences in representational quality and strategic retrieval processes. Neurobiol. Aging 2019, 84, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Hirst, R.J.; Setti, A.; Kenny, R.A.; Newell, F.N. Age-related sensory decline mediates the Sound-Induced Flash Illusion: Evidence for reliability weighting models of multisensory perception. Sci. Rep. 2019, 9, 19347. [Google Scholar] [CrossRef] [Green Version]
- Meredith, M.A.; Stein, B.E.; Caruso, V.C.; Pages, D.S.; Sommer, M.A.; Groh, J.M.; Krüger, H.M.; Collins, T.; Englitz, B.; Cavanagh, P.; et al. Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. J. Neurophysiol. 1986, 56, 640–662. [Google Scholar] [CrossRef] [Green Version]
- Miller, J. Divided attention: Evidence for coactivation with redundant signals. Cogn. Psychol. 1982, 14, 247–279. [Google Scholar] [CrossRef]
- Miller, J. Statistical facilitation and the redundant signals effect: What are race and coactivation models? Attention, Perception, Psychophys. 2016, 78, 516–519. [Google Scholar] [CrossRef] [Green Version]
- Wallace, M.T.; Stevenson, R.A. The construct of the multisensory temporal binding window and its dysregulation in developmental disabilities. Neuropsychologia 2014, 64, 105–123. [Google Scholar] [CrossRef] [Green Version]
- McGovern, D.P.; Burns, S.; Hirst, R.J.; Newell, F.N. Perceptual training narrows the temporal binding window of audiovisual integration in both younger and older adults. Neuropsychologia 2022, 173, 108309. [Google Scholar] [CrossRef]
- Mégevand, P.; Molholm, S.; Nayak, A.; Foxe, J.J. Recalibration of the Multisensory Temporal Window of Integration Results from Changing Task Demands. PLoS ONE 2013, 8, e71608. [Google Scholar] [CrossRef] [Green Version]
- Pöppel, E.; Schill, K.; von Steinbüchel, N. Multistable states in intrahemispheric learning of a sensorimotor task. Neuroreport Int. J. Rapid Commun. Res. Neurosci. 1990, 1, 69–72. [Google Scholar] [CrossRef]
- Vatakis, A.; Spence, C. Audiovisual synchrony perception for music, speech, and object actions. Brain Res. 2006, 1111, 134–142. [Google Scholar] [CrossRef]
- Vatakis, A.; Spence, C. Crossmodal binding: Evaluating the “unity assumption” using audiovisual speech stimuli. Percept. Psychophys. 2007, 69, 744–756. [Google Scholar] [CrossRef]
- Van Wassenhove, V.; Grant, K.W.; Poeppel, D. Temporal window of integration in auditory-visual speech perception. Neuropsychologia 2007, 45, 598–607. [Google Scholar] [CrossRef]
- Basharat, A.; Adams, M.S.; Staines, W.; Barnett-Cowan, M. Simultaneity and Temporal Order Judgments Are Coded Differently and Change With Age: An Event-Related Potential Study. Front. Integr. Neurosci. 2018, 12, 15. [Google Scholar] [CrossRef]
- Noel, J.-P.; De Niear, M.; Van der Burg, E.; Wallace, M.T. Audiovisual Simultaneity Judgment and Rapid Recalibration throughout the Lifespan. PLoS ONE 2016, 11, e0161698. [Google Scholar] [CrossRef] [Green Version]
- Bedard, G.; Barnett-Cowan, M. Impaired timing of audiovisual events in the elderly. Exp. Brain Res. 2016, 234, 331–340. [Google Scholar] [CrossRef]
- Setti, A.; Stapleton, J.; Leahy, D.; Walsh, C.; Kenny, R.A.; Newell, F.N. Improving the efficiency of multisensory integration in older adults: Audio-visual temporal discrimination training reduces susceptibility to the sound-induced flash illusion. Neuropsychologia 2014, 61, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Diederich, A.; Colonius, H.; Schomburg, A. Assessing age-related multisensory enhancement with the time-window-of-integration model. Neuropsychologia 2008, 46, 2556–2562. [Google Scholar] [CrossRef]
- Brooks, C.J.; Chan, Y.M.; Anderson, A.J.; McKendrick, A.M. Audiovisual Temporal Perception in Aging: The Role of Multisensory Integration and Age-Related Sensory Loss. Front. Hum. Neurosci. 2018, 12, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shams, L.; Ma, W.J.; Beierholm, U. Sound-induced flash illusion as an optimal percept. Neuroreport 2005, 16, 1923–1927. [Google Scholar] [CrossRef] [PubMed]
- Setti, A.; Burke, K.E.; Kenny, R.A.; Newell, F.N. Is inefficient multisensory processing associated with falls in older people? Exp. Brain Res. 2011, 209, 375–384. [Google Scholar] [CrossRef] [PubMed]
- DeLoss, D.J.; Pierce, R.S.; Andersen, G.J. Multisensory integration, aging, and the sound-induced flash illusion. Psychol. Aging 2013, 28, 802–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Boer-Schellekens, L.; Vroomen, J. Multisensory integration compensates loss of sensitivity of visual temporal order in the elderly. Exp. Brain Res. 2014, 232, 253–262. [Google Scholar] [CrossRef]
- Parker, J.L.; Robinson, C.W. Changes in multisensory integration across the life span. Psychol. Aging 2018, 33, 545–558. [Google Scholar] [CrossRef]
- Basharat, A.; Mahoney, J.R.; Barnett-Cowan, M. Temporal Metrics of Multisensory Processing Change in the Elderly. Multisensory Res. 2019, 32, 715–744. [Google Scholar] [CrossRef]
- Matsuno, T.; Tomonaga, M. Stream/bounce perception and the effect of depth cues in chimpanzees (Pan troglodytes). Atten. Percept. Psychophys. 2011, 73, 1532–1545. [Google Scholar] [CrossRef] [Green Version]
- Sekuler, R.; Sekuler, A.B.; Lau, R. Sound alters visual motion perception. Nature 1997, 385, 308. [Google Scholar] [CrossRef]
- Donohue, S.E.; Green, J.J.; Woldorff, M.G. The effects of attention on the temporal integration of multisensory stimuli. Front. Integr. Neurosci. 2015, 9, 32. [Google Scholar] [CrossRef]
- Watanabe, K.; Shimojo, S. When Sound Affects Vision: Effects of Auditory Grouping on Visual Motion Perception. Psychol. Sci. 2001, 12, 109–116. [Google Scholar] [CrossRef]
- Bushara, K.O.; Hanakawa, T.; Immisch, I.; Toma, K.; Kansaku, K.; Hallett, M. Neural correlates of cross-modal binding. Nat. Neurosci. 2003, 6, 190–195. [Google Scholar] [CrossRef]
- Maniglia, M.; Grassi, M.; Casco, C.; Campana, G. The origin of the audiovisual bounce inducing effect: A TMS study. Neuropsychologia 2012, 50, 1478–1482. [Google Scholar] [CrossRef]
- Mcgurk, H.; Macdonald, J. Hearing lips and seeing voices. Nature 1976, 264, 746–748. [Google Scholar] [CrossRef]
- Kraus, N.; Slater, J. Music and language: Relations and disconnections. Handb. Clin. Neurol. 2015, 129, 207–222. [Google Scholar]
- Sekiyama, K.; Soshi, T.; Sakamoto, S. Enhanced audiovisual integration with aging in speech perception: A height-ened McGurk effect in older adults. Front. Psychol. 2014, 5, 323. [Google Scholar] [CrossRef]
- Setti, A.; Burke, K.E.; Kenny, R.; Newell, F.N. Susceptibility to a multisensory speech illusion in older persons is driven by perceptual processes. Front. Psychol. 2013, 4, 575. [Google Scholar] [CrossRef] [Green Version]
- Thompson, L.A.; Malloy, D. Attention Resources and Visible Speech Encoding in Older and Younger Adults. Exp. Aging Res. 2004, 30, 241–252. [Google Scholar] [CrossRef]
- Massaro, D.W. Perceiving Talking Faces: From Speech Perception to a Behavioral Principle; Mit Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Diaz, M.T.; Yalcinbas, E. The neural bases of multimodal sensory integration in older adults. Int. J. Behav. Dev. 2021, 45, 409–417. [Google Scholar] [CrossRef]
- Campbell, J.; Sharma, A. Frontal Cortical Modulation of Temporal Visual Cross-Modal Re-organization in Adults with Hearing Loss. Brain Sci. 2020, 10, 498. [Google Scholar] [CrossRef]
- Glick, H.; Sharma, A. Cross-modal plasticity in developmental and age-related hearing loss: Clinical implications. Hear. Res. 2017, 343, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Bavelier, D.; Hirshorn, E.A. I see where you’re hearing: How cross-modal plasticity may exploit homologous brain structures. Nat. Neurosci. 2010, 13, 1309–1311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stropahl, M.; Debener, S. Auditory cross-modal reorganization in cochlear implant users indicates audio-visual integration. NeuroImage Clin. 2017, 16, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Oosterhuis, E.J.; Slade, K.; May, P.J.C.; Nuttall, H.E. Toward an Understanding of Healthy Cognitive Aging: The Importance of Lifestyle in Cognitive Reserve and the Scaffolding Theory of Aging and Cognition. J. Gerontol. Ser. B 2023, 78, 777–788. [Google Scholar] [CrossRef] [PubMed]
- Puschmann, S.; Daeglau, M.; Stropahl, M.; Mirkovic, B.; Rosemann, S.; Thiel, C.M.; Debener, S. Hearing-impaired listeners show increased audiovisual benefit when listening to speech in noise. NeuroImage 2019, 196, 261–268. [Google Scholar] [CrossRef]
- Rosemann, S.; Thiel, C.M. Audio-visual speech processing in age-related hearing loss: Stronger integration and increased frontal lobe recruitment. NeuroImage 2018, 175, 425–437. [Google Scholar] [CrossRef]
- Basu Mallick, D.; FMagnotti, J.; SBeauchamp, M. Variability and stability in the McGurk effect: Contributions of participants, stimuli, time, and response type. Psychon. Bull. Rev. 2015, 22, 1299–1307. [Google Scholar] [CrossRef] [Green Version]
- Dully, J.; McGovern, D.P.; O’connell, R.G. The impact of natural aging on computational and neural indices of perceptual decision making: A review. Behav. Brain Res. 2018, 355, 48–55. [Google Scholar] [CrossRef]
- Sommers, M.S.; Tye-Murray, N.; Spehar, B. Auditory-Visual Speech Perception and Auditory-Visual Enhancement in Normal-Hearing Younger and Older Adults. Ear Hear. 2005, 26, 263–275. [Google Scholar] [CrossRef]
- Van Engen, K.J.; Dey, A.; Sommers, M.S.; Peelle, J.E. Audiovisual speech perception: Moving beyond McGurk. J. Acoust. Soc. Am. 2022, 152, 3216–3225. [Google Scholar] [CrossRef]
- Alsius, A.; Paré, M.; Munhall, K.G. Forty Years After Hearing Lips and Seeing Voices: The McGurk Effect Revisited. Multisensory Res. 2018, 31, 111–144. [Google Scholar] [CrossRef]
- Getz, L.M.; Toscano, J.C. Rethinking the McGurk effect as a perceptual illusion. Atten. Percept. Psychophys. 2021, 83, 2583–2598. [Google Scholar] [CrossRef]
- Massaro, D.W. The McGurk effect: Auditory visual speech perception’s piltdown man. In Proceedings of the 14th International Conference on Auditory-Visual Speech Processing 2017, Stockholm, Sweden, 25–26 August 2017. [Google Scholar]
- Peelle, J.E.; Spehar, B.; Jones, M.S.; McConkey, S.; Myerson, J.; Hale, S.; Sommers, M.S.; Tye-Murray, N. Increased Connectivity among Sensory and Motor Regions during Visual and Audiovisual Speech Perception. J. Neurosci. 2022, 42, 435–442. [Google Scholar] [CrossRef]
- Tye-Murray, N.; Spehar, B.; Myerson, J.; Hale, S.; Sommers, M. Lipreading and audiovisual speech recognition across the adult lifespan: Implications for audiovisual integration. Psychol. Aging 2016, 31, 380–389. [Google Scholar] [CrossRef]
- Begau, A.; Klatt, L.I.; Schneider, D.; Wascher, E.; Getzmann, S. The role of informational content of visual speech in an audiovisual cocktail party: Evidence from cortical oscillations in young and old participants. Eur. J. Neurosci. 2022, 56, 5215–5234. [Google Scholar] [CrossRef]
- van Wassenhove, V.; Grant, K.W.; Poeppel, D. Visual speech speeds up the neural processing of auditory speech. Proc. Natl. Acad. Sci. USA 2005, 102, 1181–1186. [Google Scholar] [CrossRef]
- Stevenson, R.A.; Nelms, C.E.; Baum, S.H.; Zurkovsky, L.; Barense, M.D.; Newhouse, P.A.; Wallace, M.T. Deficits in audiovisual speech perception in normal aging emerge at the level of whole-word recognition. Neurobiol. Aging 2015, 36, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Winneke, A.H.; Phillips, N.A. Does audiovisual speech offer a fountain of youth for old ears? An event-related brain potential study of age differences in audiovisual speech perception. Psychol. Aging 2011, 26, 427–438. [Google Scholar] [CrossRef] [Green Version]
- Begau, A.; Klatt, L.I.; Wascher, E.; Schneider, D.; Getzmann, S. Do congruent lip movements facilitate speech pro-cessing in a dynamic audiovisual multi-talker scenario? An ERP study with older and younger adults. Behav. Brain Res. 2021, 412, 113436. [Google Scholar] [CrossRef]
- Tye-Murray, N.; Sommers, M.; Spehar, B.; Myerson, J.; Hale, S. Aging, Audiovisual Integration, and the Principle of Inverse Effectiveness. Ear Hear. 2010, 31, 636–644. [Google Scholar] [CrossRef] [Green Version]
- Gordon, M.S.; Allen, S. Audiovisual Speech in Older and Younger Adults: Integrating a Distorted Visual Signal With Speech in Noise. Exp. Aging Res. 2009, 35, 202–219. [Google Scholar] [CrossRef] [PubMed]
- Dey, A.; Sommers, M.S. Age-related differences in inhibitory control predict audiovisual speech perception. Psychol. Aging 2015, 30, 634–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sommers, M.S.; Spehar, B.; Tye-Murray, N.; Myerson, J.; Hale, S. Age Differences in the Effects of Speaking Rate on Auditory, Visual, and Auditory-Visual Speech Perception. Ear Hear. 2020, 41, 549–560. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, J.R.; Cotton, K.; Verghese, J. Multisensory Integration Predicts Balance and Falls in Older Adults. J. Gerontol. Ser. A 2019, 74, 1429–1435. [Google Scholar] [CrossRef] [PubMed]
- Hirst, R.J.; Setti, A.; De Looze, C.; Kenny, R.A.; Newell, F.N. Multisensory integration precision is associated with better cognitive performance over time in older adults: A large-scale exploratory study. Aging Brain 2022, 2, 100038. [Google Scholar] [CrossRef]
- Mozolic, J.L.; Hugenschmidt, C.E.; Peiffer, A.M.; Laurienti, P.J. Modality-specific selective attention attenuates multisensory integration. Exp. Brain Res. 2008, 184, 39–52. [Google Scholar] [CrossRef]
- Posner, M.I.; Driver, J. The neurobiology of selective attention. Curr. Opin. Neurobiol. 1992, 2, 165–169. [Google Scholar] [CrossRef]
- Talsma, D.; Doty, T.J.; Woldorff, M.G. Selective Attention and Audiovisual Integration: Is Attending to Both Modalities a Prerequisite for Early Integration? Cereb. Cortex 2006, 17, 679–690. [Google Scholar] [CrossRef] [Green Version]
- Fairhall, S.L.; Macaluso, E. Spatial attention can modulate audiovisual integration at multiple cortical and subcortical sites. Eur. J. Neurosci. 2009, 29, 1247–1257. [Google Scholar] [CrossRef]
- Roberts, K.L.; Allen, H.A. Perception and Cognition in the Ageing Brain: A Brief Review of the Short- and Long-Term Links between Perceptual and Cognitive Decline. Front. Aging Neurosci. 2016, 8, 39. [Google Scholar] [CrossRef]
- Talsma, D. Predictive coding and multisensory integration: An attentional account of the multisensory mind. Front. Integr. Neurosci. 2015, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.; Nielsen, M.; LaBrec, A.; Bean, C. Sensory Inhibition Is Related to Variable Speech Perception in Noise in Adults With Normal Hearing. J. Speech Lang. Hear. Res. 2020, 63, 1595–1607. [Google Scholar] [CrossRef]
- Cherry, E.C. Some experiments on the recognition of speech, with one and with two ears. J. Acoust. Soc. Am. 1953, 25, 975–979. [Google Scholar] [CrossRef]
- Schneider, B.A.; Pichora-Fuller, K.; Daneman, M. Effects of Senescent Changes in Audition and Cognition on Spoken Language Comprehension. In The Aging Auditory System; Springer: Berlin/Heidelberg, Germany, 2010; pp. 167–210. [Google Scholar] [CrossRef]
- Getzmann, S.; Golob, E.J.; Wascher, E. Focused and divided attention in a simulated cocktail-party situation: ERP evidence from younger and older adults. Neurobiol. Aging 2016, 41, 138–149. [Google Scholar] [CrossRef]
- Fabiani, M.; Low, K.A.; Wee, E.; Sable, J.J.; Gratton, G. Reduced Suppression or Labile Memory? Mechanisms of Inefficient Filtering of Irrelevant Information in Older Adults. J. Cogn. Neurosci. 2006, 18, 637–650. [Google Scholar] [CrossRef]
- Gazzaley, A.; Cooney, J.W.; McEvoy, K.; Knight, R.T.; D’Esposito, M. Top-down Enhancement and Suppression of the Magnitude and Speed of Neural Activity. J. Cogn. Neurosci. 2005, 17, 507–517. [Google Scholar] [CrossRef]
- Gazzaley, A.; Clapp, W.; Kelley, J.; McEvoy, K.; Knight, R.T.; D’Esposito, M. Age-related top-down suppression deficit in the early stages of cortical visual memory processing. Proc. Natl. Acad. Sci. USA 2008, 105, 13122–13126. [Google Scholar] [CrossRef]
- Stothart, G.; Kazanina, N. Auditory perception in the aging brain: The role of inhibition and facilitation in early processing. Neurobiol. Aging 2016, 47, 23–34. [Google Scholar] [CrossRef]
- Alain, C.; Woods, D.L. Age-related changes in processing auditory stimuli during visual attention: Evidence for deficits in inhibitory control and sensory memory. Psychol. Aging 1999, 14, 507. [Google Scholar] [CrossRef]
- Wild-Wall, N.; Falkenstein, M. Age-dependent impairment of auditory processing under spatially focused and divided attention: An electrophysiological study. Biol. Psychol. 2010, 83, 27–36. [Google Scholar] [CrossRef]
- Hasher, L.; Lustig, C.; Zacks, R. Inhibitory Mechanisms and the Control of Attention. Var. Work. Mem. 2007, 19, 227–249. [Google Scholar] [CrossRef]
- Borghini, G.; Candini, M.; Filannino, C.; Hussain, M.; Walsh, V.; Romei, V.; Zokaei, N.; Cappelletti, M. Alpha Oscillations Are Causally Linked to Inhibitory Abilities in Ageing. J. Neurosci. 2018, 38, 4418–4429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasher, L.; Zacks, R.T. Working memory, comprehension, and aging: A review and a new view. Psychol. Learn. Motiv. 1988, 22, 193–225. [Google Scholar]
- Pichora-Fuller, M.K.; Alain, C.; Schneider, B.A. Older adults at the cocktail party. In The Auditory System at the Cocktail Party; Springer: Berlin/Heidelberg, Germany, 2017; pp. 227–259. [Google Scholar]
- Getzmann, S.; Klatt, L.I.; Schneider, D.; Begau, A.; Wascher, E. EEG correlates of spatial shifts of attention in a dynamic multi-talker speech perception scenario in younger and older adults. Hear. Res. 2020, 398, 108077. [Google Scholar] [CrossRef] [PubMed]
- Hugenschmidt, C.E.; Mozolic, J.L.; Laurienti, P.J. Suppression of multisensory integration by modality-specific attention in aging. Neuroreport 2009, 20, 349–353. [Google Scholar] [CrossRef]
- Guerreiro, M.J.S.; Anguera, J.A.; Mishra, J.; Van Gerven, P.W.M.; Gazzaley, A. Age-equivalent Top–Down Modulation during Cross-modal Selective Attention. J. Cogn. Neurosci. 2014, 26, 2827–2839. [Google Scholar] [CrossRef]
- Guerreiro, M.J.S.; Adam, J.J.; Van Gerven, P.W.M. Aging and response interference across sensory modalities. Psychon. Bull. Rev. 2014, 21, 836–842. [Google Scholar] [CrossRef]
- Guerreiro, M.J.; Eck, J.; Moerel, M.; Evers, E.A.; Van Gerven, P.W. Top-down modulation of visual and auditory cortical processing in aging. Behav. Brain Res. 2015, 278, 226–234. [Google Scholar] [CrossRef]
- Lim, S.K.; Kong, S. Prevalence, physical characteristics, and fall risk in older adults with and without possible sarcopenia. Aging Clin. Exp. Res. 2022, 34, 1365–1371. [Google Scholar] [CrossRef]
- Callis, N. Falls prevention: Identification of predictive fall risk factors. Appl. Nurs. Res. 2016, 29, 53–58. [Google Scholar] [CrossRef]
- Reed-Jones, R.J.; Solis, G.R.; Lawson, K.A.; Loya, A.M.; Cude-Islas, D.; Berger, C.S. Vision and falls: A multidisciplinary review of the contributions of visual impairment to falls among older adults. Maturitas 2013, 75, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Campos, J.; Ramkhalawansingh, R.; Pichora-Fuller, M.K. Hearing, self-motion perception, mobility, and aging. Hear. Res. 2018, 369, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xu, W.; Zhu, Y.; Tian, E.; Kong, W. Impaired Multisensory Integration Predisposes the Elderly People to Fall: A Systematic Review. Front. Neurosci. 2020, 14, 411. [Google Scholar] [CrossRef] [PubMed]
- Hupfeld, K.; McGregor, H.; Hass, C.; Pasternak, O.; Seidler, R. Sensory system-specific associations between brain structure and balance. Neurobiol. Aging 2022, 119, 102–116. [Google Scholar] [CrossRef]
- Osoba, M.Y.; Rao, A.K.; Agrawal, S.K.; Lalwani, A.K. Balance and gait in the elderly: A contemporary review. Laryngoscope Investig. Otolaryngol. 2019, 4, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Hickok, G.; Rogalsky, C.; Matchin, W.; Basilakos, A.; Cai, J.; Pillay, S.; Ferrill, M.; Mickelsen, S.; Anderson, S.; Love, T.; et al. Neural networks supporting audiovisual integration for speech: A large-scale lesion study. Cortex 2018, 103, 360–371. [Google Scholar] [CrossRef]
- Lajoie, Y.; Teasdale, N.; Bard, C.; Fleury, M. Attentional demands for static and dynamic equilibrium. Exp. Brain Res. 1993, 97, 139–144. [Google Scholar] [CrossRef]
- Stapleton, J.; Setti, A.; Doheny, E.P.; Kenny, R.A.; Newell, F.N. A standing posture is associated with increased susceptibility to the sound-induced flash illusion in fall-prone older adults. Exp. Brain Res. 2014, 232, 423–434. [Google Scholar] [CrossRef]
- Scheliga, S.; Kellermann, T.; Lampert, A.; Rolke, R.; Spehr, M.; Habel, U. Neural correlates of multisensory integration in the human brain: An ALE meta-analysis. Rev. Neurosci. 2023, 34, 223–245. [Google Scholar] [CrossRef]
- Gao, C.; Green, J.J.; Yang, X.; Oh, S.; Kim, J.; Shinkareva, S.V. Audiovisual integration in the human brain: A coordinate-based meta-analysis. Cereb. Cortex 2023, 33, 5574–5584. [Google Scholar] [CrossRef]
- Beauchamp, M.S. See me, hear me, touch me: Multisensory integration in lateral occipital-temporal cortex. Curr. Opin. Neurobiol. 2005, 15, 145–153. [Google Scholar] [CrossRef]
- Straube, B.; Wroblewski, A.; Jansen, A.; He, Y. The connectivity signature of co-speech gesture integration: The superior temporal sulcus modulates connectivity between areas related to visual gesture and auditory speech processing. NeuroImage 2018, 181, 539–549. [Google Scholar] [CrossRef]
- Rennig, J.; Beauchamp, M.S. Intelligibility of audiovisual sentences drives multivoxel response patterns in human superior temporal cortex. NeuroImage 2022, 247, 118796. [Google Scholar] [CrossRef]
- Beauchamp, M.S.; Lee, K.E.; Haxby, J.V.; Martin, A. Parallel Visual Motion Processing Streams for Manipulable Objects and Human Movements. Neuron 2002, 34, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Wright, T.M.; Pelphrey, K.A.; Allison, T.; McKeown, M.; McCarthy, G. Polysensory Interactions along Lateral Temporal Regions Evoked by Audiovisual Speech. Cereb. Cortex 2003, 13, 1034–1043. [Google Scholar] [CrossRef]
- Ross, L.A.; Molholm, S.; Butler, J.S.; Del Bene, V.A.; Foxe, J.J. Neural correlates of multisensory enhancement in audiovisual narrative speech perception: A fMRI investigation. NeuroImage 2022, 263, 119598. [Google Scholar] [CrossRef]
- Callan, D.E.; Jones, J.A.; Munhall, K.; Callan, A.M.; Kroos, C.; Vatikiotis-Bateson, E. Neural processes underlying perceptual enhancement by visual speech gestures. Neuroreport 2003, 14, 2213–2218. [Google Scholar] [CrossRef]
- Sekiyama, K.; Kanno, I.; Miura, S.; Sugita, Y. Auditory-visual speech perception examined by fMRI and PET. Neurosci. Res. 2003, 47, 277–287. [Google Scholar] [CrossRef]
- Amedi, A.; Von Kriegstein, K.; van Atteveldt, N.; Beauchamp, M.S.; Naumer, M.J. Functional imaging of human crossmodal identification and object recognition. Exp. Brain Res. 2005, 166, 559–571. [Google Scholar] [CrossRef]
- Miceli, G.; Bartolomeo, P.; Navarro, V. Cross-modal integration and plasticity in the superior temporal cortex. Handb. Clin. Neurol. 2022, 187, 127–143. [Google Scholar]
- Calvert, G.A.; Campbell, R.; Brammer, M.J. Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex. Curr. Biol. 2000, 10, 649–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bushara, K.O.; Grafman, J.; Hallett, M. Neural Correlates of Auditory–Visual Stimulus Onset Asynchrony Detection. J. Neurosci. 2001, 21, 300–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, P.R.; Alain, C.; McIntosh, A.R. Individual Differences in Multisensory Processing Are Related to Broad Differences in the Balance of Local versus Distributed Information. J. Cogn. Neurosci. 2022, 34, 846–863. [Google Scholar] [CrossRef] [PubMed]
- Powers, A.R.; Hevey, M.A.; Wallace, M.T. Neural Correlates of Multisensory Perceptual Learning. J. Neurosci. 2012, 32, 6263–6274. [Google Scholar] [CrossRef]
- Szycik, G.R.; Stadler, J.; Tempelmann, C.; Münte, T.F. Examining the McGurk illusion using high-field 7 Tesla functional MRI. Front. Hum. Neurosci. 2012, 6, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beauchamp, M.S.; Nath, A.R.; Pasalar, S. fMRI-guided transcranial magnetic stimulation reveals that the superior temporal sulcus is a cortical locus of the McGurk effect. J. Neurosci. 2010, 30, 2414–2417. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, R.A.; Altieri, N.A.; Kim, S.; Pisoni, D.B.; James, T.W. Neural processing of asynchronous audiovisual speech perception. NeuroImage 2010, 49, 3308–3318. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, R.A.; VanDerKlok, R.M.; Pisoni, D.B.; James, T.W. Discrete neural substrates underlie complementary audiovisual speech integration processes. NeuroImage 2011, 55, 1339–1345. [Google Scholar] [CrossRef] [Green Version]
- Tóth, B.; Farkas, D.; Urbán, G.; Szalárdy, O.; Orosz, G.; Hunyadi, L.; Hajdu, B.; Kovács, A.; Szabó, B.T.; Shestopalova, L.B.; et al. Attention and speech-processing related functional brain networks activated in a multi-speaker environment. PLoS ONE 2019, 14, e0212754. [Google Scholar] [CrossRef]
- Donoghue, T.; Schaworonkow, N.; Voytek, B. Methodological considerations for studying neural oscillations. Eur. J. Neurosci. 2022, 55, 3502–3527. [Google Scholar] [CrossRef]
- Wang, X.-J.; Lee, J.J.; Schmit, B.D.; Bellet, J.; Chen, C.-Y.; Hafed, Z.M.; Hoseini, M.S.; Pobst, J.; Clawson, W.; Shew, W.; et al. Neurophysiological and Computational Principles of Cortical Rhythms in Cognition. Physiol. Rev. 2010, 90, 1195–1268. [Google Scholar] [CrossRef] [Green Version]
- Keil, J.; Senkowski, D. Neural Oscillations Orchestrate Multisensory Processing. Neurosci. 2018, 24, 609–626. [Google Scholar] [CrossRef]
- Siegel, M.; Donner, T.H.; Engel, A.K. Spectral fingerprints of large-scale neuronal interactions. Nat. Rev. Neurosci. 2012, 13, 121–134. [Google Scholar] [CrossRef]
- Lange, J.; Keil, J.; Schnitzler, A.; van Dijk, H.; Weisz, N. The role of alpha oscillations for illusory perception. Behav. Brain Res. 2014, 271, 294–301. [Google Scholar] [CrossRef]
- Kelly, S.P.; Lalor, E.C.; Reilly, R.B.; Foxe, J.J. Increases in Alpha Oscillatory Power Reflect an Active Retinotopic Mechanism for Distracter Suppression During Sustained Visuospatial Attention. J. Neurophysiol. 2006, 95, 3844–3851. [Google Scholar] [CrossRef]
- Keller, A.S.; Payne, L.; Sekuler, R. Characterizing the roles of alpha and theta oscillations in multisensory attention. Neuropsychologia 2017, 99, 48–63. [Google Scholar] [CrossRef] [Green Version]
- Romei, V.; Gross, J.; Thut, G. On the Role of Prestimulus Alpha Rhythms over Occipito-Parietal Areas in Visual Input Regulation: Correlation or Causation? J. Neurosci. 2010, 30, 8692–8697. [Google Scholar] [CrossRef] [Green Version]
- Keil, J.; Senkowski, D. Individual Alpha Frequency Relates to the Sound-Induced Flash Illusion. Multisensory Res. 2017, 30, 565–578. [Google Scholar] [CrossRef]
- Foxe, J.J.; Snyder, A.C. The Role of Alpha-Band Brain Oscillations as a Sensory Suppression Mechanism during Selective Attention. Front. Psychol. 2011, 2, 154. [Google Scholar] [CrossRef] [Green Version]
- Klimesch, W.; Sauseng, P.; Hanslmayr, S. EEG alpha oscillations: The inhibition–timing hypothesis. Brain Res. Rev. 2007, 53, 63–88. [Google Scholar] [CrossRef]
- Thut, G.; Nietzel, A.; Brandt, S.A.; Pascual-Leone, A. α-Band Electroencephalographic Activity over Occipital Cortex Indexes Visuospatial Attention Bias and Predicts Visual Target Detection. J. Neurosci. 2006, 26, 9494–9502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rihs, T.A.; Michel, C.M.; Thut, G. A bias for posterior α-band power suppression versus enhancement during shifting versus maintenance of spatial attention. NeuroImage 2009, 44, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Rihs, T.A.; Michel, C.M.; Thut, G. Mechanisms of selective inhibition in visual spatial attention are indexed by α-band EEG synchronization. Eur. J. Neurosci. 2007, 25, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Sauseng, P.; Klimesch, W.; Stadler, W.; Schabus, M.; Doppelmayr, M.; Hanslmayr, S.; Gruber, W.R.; Birbaumer, N. A shift of visual spatial attention is selectively associated with human EEG alpha activity. Eur. J. Neurosci. 2005, 22, 2917–2926. [Google Scholar] [CrossRef]
- Foxe, J.J.; Simpson, G.V.; Ahlfors, S.P. Parieto-occipital ∼1 0Hz activity reflects anticipatory state of visual attention mechanisms. Neuroreport 1998, 9, 3929–3933. [Google Scholar] [CrossRef]
- Worden, M.S.; Foxe, J.J.; Wang, N.; Simpson, G.V. Anticipatory biasing of visuospatial attention indexed by retinotopically specific α-bank electroencephalography increases over occipital cortex. J. Neurosci. 2000, 20, RC63. [Google Scholar] [CrossRef] [Green Version]
- Posner, M.I.; Snyder, C.R.; Davidson, B.J. Attention and the detection of signals. J. Exp. Psychol. Gen. 1980, 109, 160. [Google Scholar] [CrossRef]
- O’Sullivan, A.E.; Lim, C.Y.; Lalor, E. Look at me when I’m talking to you: Selective attention at a multisensory cocktail party can be decoded using stimulus reconstruction and alpha power modulations. Eur. J. Neurosci. 2019, 50, 3282–3295. [Google Scholar] [CrossRef]
- Tune, S.; Wöstmann, M.; Obleser, J. Probing the limits of alpha power lateralisation as a neural marker of selective attention in middle-aged and older listeners. Eur. J. Neurosci. 2018, 48, 2537–2550. [Google Scholar] [CrossRef]
- Zanto, T.P.; Gazzaley, A. Attention and Ageing; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Stern, Y.; Arenaza-Urquijo, E.M.; Bartrés-Faz, D.; Belleville, S.; Cantilon, M.; Chetelat, G. Reserve, Resilience and Pro-tective Factors PIA Empirical Definitions and Conceptual Frameworks Workgroup. Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimer’s Dement. 2020, 16, 1305–1311. [Google Scholar] [CrossRef]
- Jensen, O.; Mazaheri, A. Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition. Front. Hum. Neurosci. 2010, 4, 186. [Google Scholar] [CrossRef] [Green Version]
- Ruhnau, P.; Hauswald, A.; Weisz, N. Investigating ongoing brain oscillations and their influence on conscious perception–network states and the window to consciousness. Front. Psychol. 2014, 5, 1230. [Google Scholar] [CrossRef] [Green Version]
- Cecere, R.; Rees, G.; Romei, V. Individual Differences in Alpha Frequency Drive Crossmodal Illusory Perception. Curr. Biol. 2015, 25, 231–235. [Google Scholar] [CrossRef] [Green Version]
- Maurer, C.; Mergner, T.; Bolha, B.; Hlavacka, F. Vestibular, visual, and somatosensory contributions to human control of upright stance. Neurosci. Lett. 2000, 281, 99–102. [Google Scholar] [CrossRef]
- Jacobs, J.V.; Horak, F.B. Cortical control of postural responses. J. Neural Transm. 2007, 114, 1339–1348. [Google Scholar] [CrossRef] [Green Version]
- Ozdemir, R.A.; Contreras-Vidal, J.L.; Paloski, W.H. Cortical control of upright stance in elderly. Mech. Ageing Dev. 2018, 169, 19–31. [Google Scholar] [CrossRef]
- Edwards, A.E.; Guven, O.; Furman, M.D.; Arshad, Q.; Bronstein, A.M. Electroencephalographic correlates of continuous postural tasks of increasing difficulty. Neuroscience 2018, 395, 35–48. [Google Scholar] [CrossRef]
- Hülsdünker, T.; Mierau, A.; Neeb, C.; Kleinöder, H.; Strüder, H. Cortical processes associated with continuous balance control as revealed by EEG spectral power. Neurosci. Lett. 2015, 592, 1–5. [Google Scholar] [CrossRef]
- Sipp, A.R.; Gwin, J.T.; Makeig, S.; Ferris, D.P.; Malcolm, B.R.; Foxe, J.J.; Butler, J.S.; Molholm, S.; De Sanctis, P.; Peterson, S.M.; et al. Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response. J. Neurophysiol. 2013, 110, 2050–2060. [Google Scholar] [CrossRef] [Green Version]
- Ray, W.J.; Cole, H.W. EEG Alpha Activity Reflects Attentional Demands, and Beta Activity Reflects Emotional and Cognitive Processes. Science 1985, 228, 750–752. [Google Scholar] [CrossRef]
- Scurry, A.N.; Lovelady, Z.; Lemus, D.M.; Jiang, F. Impoverished inhibitory control exacerbates multisensory impairments in older fallers. Front. Aging Neurosci. 2021, 13, 700787. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pepper, J.L.; Nuttall, H.E. Age-Related Changes to Multisensory Integration and Audiovisual Speech Perception. Brain Sci. 2023, 13, 1126. https://doi.org/10.3390/brainsci13081126
Pepper JL, Nuttall HE. Age-Related Changes to Multisensory Integration and Audiovisual Speech Perception. Brain Sciences. 2023; 13(8):1126. https://doi.org/10.3390/brainsci13081126
Chicago/Turabian StylePepper, Jessica L., and Helen E. Nuttall. 2023. "Age-Related Changes to Multisensory Integration and Audiovisual Speech Perception" Brain Sciences 13, no. 8: 1126. https://doi.org/10.3390/brainsci13081126
APA StylePepper, J. L., & Nuttall, H. E. (2023). Age-Related Changes to Multisensory Integration and Audiovisual Speech Perception. Brain Sciences, 13(8), 1126. https://doi.org/10.3390/brainsci13081126