Cortical Location of Language Function May Differ between Languages While White Matter Pathways Are Similar in Brain Lesion Patients
Abstract
:1. Introduction
2. Methods
2.1. Patients
2.2. Magnetic Resonance Imaging and Diffusion Tensor Imaging
2.3. Cortical Analysis: nrTMS Language Mapping
2.4. Subcortical Analysis: nrTMS-Based DTI Pathway Tractography
2.5. Data Analysis
3. Results
3.1. Patient and Mapping Characteristics
3.2. Cortical Analysis: Error Rates
3.3. Subcortical Analysis: Pathway Tractography
3.4. Correlations between Error Rates and Pathway Volumes
4. Discussion
4.1. Cortical Differences and Subcortical Similarity
4.2. Concordance with Previous Literature
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, E.F.; Raygor, K.P.; Berger, M.S. Contemporary model of language organization: An overview for neurosurgeons. J. Neurosurg. 2015, 122, 250–261. [Google Scholar] [CrossRef] [Green Version]
- Duffau, H.; Moritz-Gasser, S.; Mandonnet, E. A re-examination of neural basis of language processing: Proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming. Brain Lang. 2014, 131, 1–10. [Google Scholar] [CrossRef]
- Friederici, A.D. The brain basis of language processing: From structure to function. Physiol. Rev. 2011, 91, 1357–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, L. How many language families are there in the world? ASJU 2018, 52, 133–152. [Google Scholar] [CrossRef]
- Hickok, G.; Poeppel, D. The cortical organization of speech processing. Nat. Rev. Neurosci. 2007, 8, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Friederici, A.D.; Gierhan, S.M. The language network. Curr. Opin. Neurobiol. 2013, 23, 250–254. [Google Scholar] [CrossRef]
- Shekari, E.; Goudarzi, S.; Shahriari, E.; Joghataei, M.T. Extreme capsule is a bottleneck for ventral pathway. IBRO Neurosci. Rep. 2021, 10, 42–50. [Google Scholar] [CrossRef]
- De Witt Hamer, P.C.; Hendriks, E.J.; Mandonnet, E.; Barkhof, F.; Zwinderman, A.H.; Duffau, H. Resection probability maps for quality assessment of glioma surgery without brain location bias. PLoS ONE 2013, 8, e73353. [Google Scholar] [CrossRef]
- Desmurget, M.; Bonnetblanc, F.; Duffau, H. Contrasting acute and slow-growing lesions: A new door to brain plasticity. Brain 2007, 130, 898–914. [Google Scholar] [CrossRef] [Green Version]
- Herbet, G.; Maheu, M.; Costi, E.; Lafargue, G.; Duffau, H. Mapping neuroplastic potential in brain-damaged patients. Brain 2016, 139, 829–844. [Google Scholar] [CrossRef]
- Ius, T.; Angelini, E.; Thiebaut de Schotten, M.; Mandonnet, E.; Duffau, H. Evidence for potentials and limitations of brain plasticity using an atlas of functional resectability of WHO grade II gliomas: Towards a “minimal common brain”. Neuroimage 2011, 56, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Picart, T.; Herbet, G.; Moritz-Gasser, S.; Duffau, H. Iterative Surgical Resections of Diffuse Glioma With Awake Mapping: How to Deal With Cortical Plasticity and Connectomal Constraints? Neurosurgery 2019, 85, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Sanai, N.; Berger, M.S. Glioma extent of resection and its impact on patient outcome. Neurosurgery 2008, 62, 753–764. [Google Scholar] [CrossRef] [Green Version]
- Krieg, S.M.; Sollmann, N.; Hauck, T.; Ille, S.; Foerschler, A.; Meyer, B.; Ringel, F. Functional language shift to the right hemisphere in patients with language-eloquent brain tumors. PLoS ONE 2013, 8, e75403. [Google Scholar] [CrossRef] [Green Version]
- Southwell, D.G.; Hervey-Jumper, S.L.; Perry, D.W.; Berger, M.S. Intraoperative mapping during repeat awake craniotomy reveals the functional plasticity of adult cortex. J. Neurosurg. 2016, 124, 1460–1469. [Google Scholar] [CrossRef] [Green Version]
- Berger, M.S.; Deliganis, A.V.; Dobbins, J.; Keles, G.E. The effect of extent of resection on recurrence in patients with low grade cerebral hemisphere gliomas. Cancer 1994, 74, 1784–1791. [Google Scholar] [CrossRef]
- De Witt Hamer, P.C.; Robles, S.G.; Zwinderman, A.H.; Duffau, H.; Berger, M.S. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: A meta-analysis. J Clin Oncol 2012, 30, 2559–2565. [Google Scholar] [CrossRef] [Green Version]
- Garrett, M.C.; Pouratian, N.; Liau, L.M. Use of language mapping to aid in resection of gliomas in eloquent brain regions. Neurosurg. Clin. N. Am. 2012, 23, 497–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haglund, M.M.; Berger, M.S.; Shamseldin, M.; Lettich, E.; Ojemann, G.A. Cortical localization of temporal lobe language sites in patients with gliomas. Neurosurgery 1994, 34, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Ojemann, G.; Ojemann, J.; Lettich, E.; Berger, M. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J. Neurosurg. 1989, 71, 316–326. [Google Scholar] [CrossRef]
- Ojemann, G.A.; Whitaker, H.A. Language localization and variability. Brain Lang. 1978, 6, 239–260. [Google Scholar] [CrossRef] [PubMed]
- Ille, S.; Sollmann, N.; Butenschoen, V.M.; Meyer, B.; Ringel, F.; Krieg, S.M. Resection of highly language-eloquent brain lesions based purely on rTMS language mapping without awake surgery. Acta Neurochir Wien 2016, 158, 2265–2275. [Google Scholar] [CrossRef]
- Krieg, S.M.; Sollmann, N.; Hauck, T.; Ille, S.; Meyer, B.; Ringel, F. Repeated mapping of cortical language sites by preoperative navigated transcranial magnetic stimulation compared to repeated intraoperative DCS mapping in awake craniotomy. BMC Neurosci. 2014, 15, 20. [Google Scholar] [CrossRef] [Green Version]
- Picht, T.; Krieg, S.M.; Sollmann, N.; Rösler, J.; Niraula, B.; Neuvonen, T.; Savolainen, P.; Lioumis, P.; Mäkelä, J.P.; Deletis, V.; et al. A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery. Neurosurgery 2013, 72, 808–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarapore, P.E.; Findlay, A.M.; Honma, S.M.; Mizuiri, D.; Houde, J.F.; Berger, M.S.; Nagarajan, S.S. Language mapping with navigated repetitive TMS: Proof of technique and validation. Neuroimage 2013, 82, 260–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negwer, C.; Beurskens, E.; Sollmann, N.; Maurer, S.; Ille, S.; Giglhuber, K.; Kirschke, J.S.; Ringel, F.; Meyer, B.; Krieg, S.M. Loss of Subcortical Language Pathways Correlates with Surgery-Related Aphasia in Patients with Brain Tumor: An Investigation via Repetitive Navigated Transcranial Magnetic Stimulation-Based Diffusion Tensor Imaging Fiber Tracking. World Neurosurg. 2018, 111, e806–e818. [Google Scholar] [CrossRef]
- Negwer, C.; Ille, S.; Hauck, T.; Sollmann, N.; Maurer, S.; Kirschke, J.S.; Ringel, F.; Meyer, B.; Krieg, S.M. Visualization of subcortical language pathways by diffusion tensor imaging fiber tracking based on rTMS language mapping. Brain Imaging Behav. 2017, 11, 899–914. [Google Scholar] [CrossRef]
- Raffa, G.; Bährend, I.; Schneider, H.; Faust, K.; Germanò, A.; Vajkoczy, P.; Picht, T. A Novel Technique for Region and Linguistic Specific nTMS-based DTI Fiber Tracking of Language Pathways in Brain Tumor Patients. Front. Neurosci. 2016, 10, 552. [Google Scholar] [CrossRef] [Green Version]
- Illes, J.; Francis, W.S.; Desmond, J.E.; Gabrieli, J.D.; Glover, G.H.; Poldrack, R.; Lee, C.J.; Wagner, A.D. Convergent cortical representation of semantic processing in bilinguals. Brain Lang. 1999, 70, 347–363. [Google Scholar] [CrossRef]
- Lucas, T.H., 2nd; McKhann, G.M., 2nd; Ojemann, G.A. Functional separation of languages in the bilingual brain: A comparison of electrical stimulation language mapping in 25 bilingual patients and 117 monolingual control patients. J. Neurosurg. 2004, 101, 449–457. [Google Scholar] [CrossRef]
- Pouratian, N.; Bookheimer, S.Y.; O’Farrell, A.M.; Sicotte, N.L.; Cannestra, A.F.; Becker, D.; Toga, A.W. Optical imaging of bilingual cortical representations. Case report. J. Neurosurg. 2000, 93, 676–681. [Google Scholar] [CrossRef]
- Roux, F.E.; Trémoulet, M. Organization of language areas in bilingual patients: A cortical stimulation study. J. Neurosurg. 2002, 97, 857–864. [Google Scholar] [CrossRef]
- Calabrese, P.; Neufeld, H.; Falk, A.; Markowitsch, H.J.; Muller, C.; Heuser, L.; Gehlen, W.; Durwen, H.F. Word generation in bilinguals--fMRI study with implications for language and memory processes. Fortschr. Neurol. Psychiatr. 2001, 69, 42–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chee, M.W.; Hon, N.; Lee, H.L.; Soon, C.S. Relative language proficiency modulates BOLD signal change when bilinguals perform semantic judgments. Blood oxygen level dependent. Neuroimage 2001, 13, 1155–1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chee, M.W.; Tan, E.W.; Thiel, T. Mandarin and English single word processing studied with functional magnetic resonance imaging. J. Neurosci. 1999, 19, 3050–3056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehaene, S.; Dupoux, E.; Mehler, J.; Cohen, L.; Paulesu, E.; Perani, D.; van de Moortele, P.F.; Lehericy, S.; Le Bihan, D. Anatomical variability in the cortical representation of first and second language. Neuroreport 1997, 8, 3809–3815. [Google Scholar] [CrossRef] [PubMed]
- Tussis, L.; Sollmann, N.; Boeckh-Behrens, T.; Meyer, B.; Krieg, S.M. The cortical distribution of first and second language in the right hemisphere of bilinguals—An exploratory study by repetitive navigated transcranial magnetic stimulation. Brain Imaging Behav. 2020, 14, 1034–1049. [Google Scholar] [CrossRef] [PubMed]
- Tussis, L.; Sollmann, N.; Boeckh-Behrens, T.; Meyer, B.; Krieg, S.M. Identifying cortical first and second language sites via navigated transcranial magnetic stimulation of the left hemisphere in bilinguals. Brain Lang. 2017, 168, 106–116. [Google Scholar] [CrossRef]
- Fernández-Coello, A.; Havas, V.; Juncadella, M.; Sierpowska, J.; Rodríguez-Fornells, A.; Gabarrós, A. Age of language acquisition and cortical language organization in multilingual patients undergoing awake brain mapping. J. Neurosurg. 2017, 126, 1912–1923. [Google Scholar] [CrossRef] [Green Version]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Rossi, S.; Hallett, M.; Rossini, P.M.; Pascual-Leone, A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 2009, 120, 2008–2039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krieg, S.M.; Lioumis, P.; Mäkelä, J.P.; Wilenius, J.; Karhu, J.; Hannula, H.; Savolainen, P.; Lucas, C.W.; Seidel, K.; Laakso, A.; et al. Protocol for motor and language mapping by navigated TMS in patients and healthy volunteers; workshop report. Acta Neurochir 2017, 159, 1187–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohnert, K. Bilingual children with primary language impairment: Issues, evidence and implications for clinical actions. J. Commun. Disord. 2010, 43, 456–473. [Google Scholar] [CrossRef] [Green Version]
- Baro, V.; Caliri, S.; Sartori, L.; Facchini, S.; Guarrera, B.; Zangrossi, P.; Anglani, M.; Denaro, L.; d’Avella, D.; Ferreri, F.; et al. Preoperative Repetitive Navigated TMS and Functional White Matter Tractography in a Bilingual Patient with a Brain Tumor in Wernike Area. Brain Sci. 2021, 11, 557. [Google Scholar] [CrossRef]
- Jeltema, H.R.; Ohlerth, A.K.; de Wit, A.; Wagemakers, M.; Rofes, A.; Bastiaanse, R.; Drost, G. Comparing navigated transcranial magnetic stimulation mapping and “gold standard” direct cortical stimulation mapping in neurosurgery: A systematic review. Neurosurg. Rev. 2021, 44, 1903–1920. [Google Scholar] [CrossRef]
- Muir, M.; Patel, R.; Traylor, J.; de Almeida Bastos, D.C.; Prinsloo, S.; Liu, H.L.; Noll, K.; Wefel, J.; Tummala, S.; Kumar, V.; et al. Validation of Non-invasive Language Mapping Modalities for Eloquent Tumor Resection: A Pilot Study. Front. Neurosci. 2022, 16, 833073. [Google Scholar] [CrossRef]
- Vitikainen, A.M.; Makela, E.; Lioumis, P.; Jousmaki, V.; Makela, J.P. Accelerometer-based automatic voice onset detection in speech mapping with navigated repetitive transcranial magnetic stimulation. J. Neurosci. Methods 2015, 253, 70–77. [Google Scholar] [CrossRef]
- Chang, W.H.; Pei, Y.C.; Wei, K.C.; Chao, Y.P.; Chen, M.H.; Yeh, H.A.; Jaw, F.S.; Chen, P.Y. Intraoperative linguistic performance during awake brain surgery predicts postoperative linguistic deficits. J. Neurooncol 2018, 139, 215–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gisbert-Munoz, S.; Quinones, I.; Amoruso, L.; Timofeeva, P.; Geng, S.; Boudelaa, S.; Pomposo, I.; Gil-Robles, S.; Carreiras, M. MULTIMAP: Multilingual picture naming test for mapping eloquent areas during awake surgeries. Behav. Res. Methods 2021, 53, 918–927. [Google Scholar] [CrossRef]
- Verst, S.M.; de Castro, I.; Scappini-Junior, W.; de Melo, M.N.; de Oliveira, J.R.; de Almeida, S.S.; Alvarez, N.R.C.; Sucena, A.C.B.; Barros, M.R.; Marrone, C.D.; et al. Methodology for creating and validating object naming and semantic tests used by Verst-Maldaun Language Assessment during awake craniotomies. Clin. Neurol. Neurosurg. 2021, 202, 106485. [Google Scholar] [CrossRef]
- Corina, D.P.; Gibson, E.K.; Martin, R.; Poliakov, A.; Brinkley, J.; Ojemann, G.A. Dissociation of action and object naming: Evidence from cortical stimulation mapping. Hum. Brain Mapp. 2005, 24, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Corina, D.P.; Loudermilk, B.C.; Detwiler, L.; Martin, R.F.; Brinkley, J.F.; Ojemann, G. Analysis of naming errors during cortical stimulation mapping: Implications for models of language representation. Brain Lang. 2010, 115, 101–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sollmann, N.; Kubitscheck, A.; Maurer, S.; Ille, S.; Hauck, T.; Kirschke, J.S.; Ringel, F.; Meyer, B.; Krieg, S.M. Preoperative language mapping by repetitive navigated transcranial magnetic stimulation and diffusion tensor imaging fiber tracking and their comparison to intraoperative stimulation. Neuroradiology 2016, 58, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Ille, S.; Engel, L.; Kelm, A.; Meyer, B.; Krieg, S.M. Language-Eloquent White Matter Pathway Tractography and the Course of Language Function in Glioma Patients. Front. Oncol. 2018, 8, 572. [Google Scholar] [CrossRef]
- Miles, J.; Shevlin, M. Applying regression and correlation: A guide for students and researchers; Sage: Newcastle upon Tyne, UK, 2001. [Google Scholar]
- Malik-Moraleda, S.; Ayyash, D.; Gallee, J.; Affourtit, J.; Hoffmann, M.; Mineroff, Z.; Jouravlev, O.; Fedorenko, E. An investigation across 45 languages and 12 language families reveals a universal language network. Nat. Neurosci. 2022, 25, 1014–1019. [Google Scholar] [CrossRef]
- Ibrahim, R. Selective deficit of second language: A case study of a brain-damaged Arabic-Hebrew bilingual patient. Behav. Brain Funct. 2009, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Duffau, H. Lessons from brain mapping in surgery for low-grade glioma: Insights into associations between tumour and brain plasticity. Lancet Neurol. 2005, 4, 476–486. [Google Scholar] [CrossRef]
- Sanai, N.; Mirzadeh, Z.; Berger, M.S. Functional outcome after language mapping for glioma resection. N. Engl. J. Med. 2008, 358, 18–27. [Google Scholar] [CrossRef]
- Joyce, A.A. Turkish origin for Indo-European languages. Nature 2012. [Google Scholar] [CrossRef]
Frequency n (%) | Mean | SD | Range | |
---|---|---|---|---|
Age | 44.32 | 14.99 | 24–85 | |
Gender | ||||
Female | 15 (37.50) | |||
Male | 25 (62.50) | |||
Language Groups | ||||
Indo-European | 33 (52.38) | |||
Balto-Slavic | 24 (38.10) | |||
Chinese | 2 (3.17) | |||
Arabic | 4 (6.35) | |||
Brain Lesion | ||||
Arteriovenous Malformation | 5 | |||
Cavernoma | 4 | |||
Astrocytoma WHO ° I | 3 | |||
Astrocytoma WHO ° II | 3 | |||
Astrocytoma WHO ° III | 7 | |||
Oligodendroglioma WHO ° II | 1 | |||
Oligodendroglioma WHO ° III | 2 | |||
Glioblastoma WHO ° IV | 9 | |||
Ganglioglioma | 1 | |||
Metastasis | 4 | |||
No Operation | 1 | |||
Motor Threshold | 33.81 | 7.69 | 17–59 | |
Number of Stimulations | 143.55 | 12.07 | 108–185 | |
Percentage of Baseline Pictures | 66.49 | 17.73 | 15–100 | |
Inter-Picture Interval | 2801.59 | 341.56 | 2500–3500 | |
Display Time | 933.33 | 300.26 | 700–1500 |
Frequency n (%) | ||||
---|---|---|---|---|
Indo-European (n = 33) | Balto-Slavic (n = 24) | Arabic (n = 4) | Chinese (n = 2) | |
Language | ||||
Russian | - | 15 (62.50) | ||
Croatian | - | 4 (16.66) | ||
Serbic | - | 1 (4.17) | ||
Polish | - | 1 (4.17) | ||
Bulgarian | - | 1 (4.17) | ||
Czech | - | 1 (4.17) | ||
Lithuanian | - | 1 (4.17) | ||
German | 17 (51.52) | - | ||
English | 1 (3.03) | - | ||
Finnish | 1 (3.03) | - | ||
Swedish | 1 (3.03) | - | ||
Albanian | 2 (6.06) | - | ||
French | 2 (6.06) | - | ||
Hungarian | 1 (3.03) | - | ||
Romanian | 2 (6.06) | - | ||
Portuguese | 1 (3.03) | - | ||
Turkish | 1 (3.03) | - | ||
Armenic | 2 (6.06) | - | ||
Greek | 2 (6.06) | - | ||
Arabic | 4 (100) | |||
Chinese | 2 (100) | |||
Brain Lesion | ||||
Arteriovenous Malformation | 5 | 1 | 1 | - |
Cavernoma | 5 | 2 | - | - |
Astrocytoma WHO I | 1 | 2 | - | - |
Astrocytoma WHO II | 2 | 3 | - | - |
Astrocytoma WHO III | 7 | 5 | 1 | - |
Oligodendroglioma WHO II | - | 1 | - | - |
Oligodendroglioma WHO III | 5 | - | - | 2 |
Glioblastoma WHO IV | 3 | 7 | 1 | - |
Ganglioglioma | - | - | 1 | - |
Metastasis | 5 | 2 | - | - |
No Operation | - | 1 | - | - |
Brain Lesion Location | ||||
Left frontal | 11 | 9 | 1 | 2 |
Left fronto-temporal | - | 2 | - | - |
Left fronto-temoro-insular | 1 | 1 | - | - |
Left temporal | 4 | 1 | 1 | - |
Left temporo-occipital | - | 1 | - | - |
Left parieto-temporal | - | - | 1 | - |
Left temporo-insular | - | 2 | - | - |
Left temporo-mesial | - | 2 | - | - |
Left parietal | 6 | 1 | 1 | - |
Left occipital | 2 | - | - | - |
Left central | 6 | - | - | - |
Left insular | 2 | 2 | - | - |
Left corona radiata | - | 1 | - | - |
Left intraventricular | - | 1 | - | - |
Left limbic | - | 1 | - | - |
Bilateral frontal | 1 | - | - | - |
Patient | Language 1 | Language 2 | Language 3 |
---|---|---|---|
1 | German | Croatian | - |
2 | German | Croatian | - |
3 | German | Croatian | - |
4 | English | Finnish | Swedish |
5 | German | Albanian | - |
6 | German | French | - |
7 | German | Serbic | - |
8 | German | Russian | - |
9 | German | French | - |
10 | Polish | Russian | - |
11 | German | Croatian | - |
12 | German | Albanian | - |
13 | German | Chinese | - |
14 | German | Chinese | - |
15 | German | Portuguese | - |
16 | German | Czech | - |
17 | German | Turkish | - |
18 | German | Greek | - |
19 | German | Greek | - |
Balto-Slavic | Indo-European | Arabic | Chinese | Bilingual Individuals | |
---|---|---|---|---|---|
Error Rates | 24 | 25 | 4 | 2 | 18 |
DTI FT | 23 | 25 | - | - | 19 |
(1) Balto-Slavic and Indo-European Languages | (2) Languages of Bilingual Patients | |||||
---|---|---|---|---|---|---|
FA = 0.10 | FA = 0.15 | |||||
Pathway | U | p | U | p | Z | p |
IFOF | 284.00 | 0.942 | 274.00 | 0.778 | −0.568 | 0.570 |
SLF/AF | 189.00 | 0.042 * | 226.50 | 0.206 | −0.057 | 0.955 |
FAT | 241.50 | 0.248 | 264.50 | 0.544 | −1.841 | 0.066 |
Total | 263.00 | 0.613 | 287.00 | 0.992 | −0.785 | 0.433 |
IFOF % | 251.50 | 0.456 | 246.50 | 0.392 | −0.544 | 0.586 |
SLF/AF % | 204.00 | 0.085 | 252.00 | 0.462 | −0.827 | 0.408 |
FAT % | 241.00 | 0.243 | 264.00 | 0.535 | −0.365 | 0.715 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boerner, C.; Schroeder, A.; Meyer, B.; Krieg, S.M.; Ille, S. Cortical Location of Language Function May Differ between Languages While White Matter Pathways Are Similar in Brain Lesion Patients. Brain Sci. 2023, 13, 1141. https://doi.org/10.3390/brainsci13081141
Boerner C, Schroeder A, Meyer B, Krieg SM, Ille S. Cortical Location of Language Function May Differ between Languages While White Matter Pathways Are Similar in Brain Lesion Patients. Brain Sciences. 2023; 13(8):1141. https://doi.org/10.3390/brainsci13081141
Chicago/Turabian StyleBoerner, Corinna, Axel Schroeder, Bernhard Meyer, Sandro M. Krieg, and Sebastian Ille. 2023. "Cortical Location of Language Function May Differ between Languages While White Matter Pathways Are Similar in Brain Lesion Patients" Brain Sciences 13, no. 8: 1141. https://doi.org/10.3390/brainsci13081141
APA StyleBoerner, C., Schroeder, A., Meyer, B., Krieg, S. M., & Ille, S. (2023). Cortical Location of Language Function May Differ between Languages While White Matter Pathways Are Similar in Brain Lesion Patients. Brain Sciences, 13(8), 1141. https://doi.org/10.3390/brainsci13081141