A Review of Formulations, Boundary Value Problems and Solutions for Numerical Computation of Transcranial Magnetic Stimulation Fields
Abstract
:1. Introduction
2. Scope and Contributions
3. Field Theory of TMS
3.1. Maxwell Equations and Their Representation Using Vector and Scalar Potentials
3.2. Poisson MQS -Formulation
- The wavelength of the excitation field is significantly higher than the size of the head. For TMS pulses with a duration of ms corresponding to a frequency of kHz, the corresponding wavelength is m, which is much higher than the head dimensions;
- Diminishment of the capacitive effects in the brain tissue: Resulting from continuity conditions of electric currents in the interface between materials with different electric conductivities [45], the electric charges accumulate in this area, which could provoke capacitive effects. However, under this quasistatic approximation, induced charges are considered to move freely inside the brain, not allowing for static accumulation of charges that could generate capacitive effects. Furthermore, polarization effects are not considered;
- Neglecting the skin-effect: A time-varying magnetic field induces electric currents that oppose the magnetic field. The amplitude of the induced current is proportional to the electric conductivity. Consequently, when a magnetic field enters a medium with an electric conductivity other than zero, it decays as it penetrates in the medium. However, the electric conductivity of brain tissue is low ( S/m), and together with the paramagnetic magnetic properties of these tissues, m [62], which confirms this approximation.
3.3. Laplace MQS Formulation
3.4. MQS A- Formulation
3.5. TMS Full Maxwell Equation Formulation and the Darwin Model
3.6. Boundary Value Problems of TMS
4. Solutions of TMS Field BVPs
4.1. Solution of MQS- BVP
4.1.1. Solutions Using FEM
4.1.2. Weighted Residual Galerkin Method
4.2. Solution of MQS -V BVP
4.2.1. Solution Using FDM
- For , ; therefore, ;
- For , is obtained from Equation (90) using the explicit interactive method in an isotropic grid () as follows:
- The same procedure is applied to compute and ;
- The values of and are used to compute the electric field using Equation (6). For the next time instant, the value of is replaced in step 2, and the process is repeated.
4.2.2. Solution Using FEM (Galerkin Method)
4.2.3. Solution of the Darwin Model BVP
4.2.4. Solution of the Darwin Model BVP Using FEM
4.3. Analytical and Semianalytical Solutions
5. Implementation of Numerical Solutions
Review of Solutions and Implementations Presented in the Literature
6. Overview of Some of the Main TMS Simulation Results
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
for Maxwell Equations | |
Electric field | |
Electric flux density | |
Magnetic field | |
Magnetic flux density | |
Magnetic potential vector | |
Electric scalar potential | |
Electric charge density | |
Vector of external (excitation) current density | |
Vector of induced current density | |
Vector of displacement current density | |
Electric conductivity | |
Electric permittivity of free space | |
Material electric permittivity | |
Magnetic permeability of free space | |
Material magnetic permeability | |
Frequency of the excitation current | |
Complex number imaginary unit | |
for Numerical Methods | |
Electric scalar potential | |
Electric scalar potential vector of element e | |
Electric scalar potential vector for all elements in the domain | |
Nodal current density with the component | |
Current density vector of the element e | |
J | Current density vector of all the elements in the domain |
Nodal magnetic potential of the component | |
Magnetic potential vector for the element e | |
Magnetic potential k-component for all elements in the domain |
References
- Merton, P.A.; Morton, H.B. Stimulation of the cerebral cortex in the intact human subject. Nature 1980, 285, 227. [Google Scholar] [CrossRef]
- Barker, A.T.; Jalinous, R.; Freeston, I.L. Non-invasive magnetic stimulation of human motor cortex. Lancet 1985, 1, 1106–1107. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Pascual-Leone, A. Transcranial magnetic stimulation in neurology. Lancet Neurol. 2003, 2, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Paulus, W.; Peterchev, A.V.; Ridding, M. Transcranial electric and magnetic stimulation: Technique and paradigms. Handb. Clin. Neurol. 2013, 116, 329–342. [Google Scholar] [PubMed]
- Gershon, A.A.; Dannon, P.N.; Grunhaus, L. Transcranial magnetic stimulation in the treatment of depression. Am. J. Psychiatry 2003, 160, 835–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simons, W.; Dierick, M. Transcranial magnetic stimulation as a therapeutic tool in psychiatry. World J. Biol. Psychiatry 2005, 6, 6–25. [Google Scholar] [CrossRef]
- Hallett, M. Transcranial magnetic stimulation and the human brain. Nature 2000, 406, 147–150. [Google Scholar] [CrossRef]
- Burt, T.; Lisanby, S.H.; Sackeim, H.A. Neuropsychiatric applications of transcranial magnetic stimulation: A meta analysis. Int. J. Neuropsychopharmacol. 2002, 5, 73–103. [Google Scholar] [CrossRef] [Green Version]
- Kahkonen, S.; Ilmoniemi, R.J. Transcranial magnetic stimulation: Applications for neuropsychopharmacology. J. Psychopharmacol. 2004, 18, 257–261. [Google Scholar] [CrossRef]
- Maymandi, H.; Perez Benitez, J.L.; Gallegos-Funes, F.; Perez Benitez, J.A. A novel monitor for practical brain-computer interface applications based on visual evoked potential. Brain-Comput. Interfaces 2021, 8, 1–13. [Google Scholar] [CrossRef]
- Kawala-Sterniuk, A.; Browarska, N.; Al-Bakri, A.; Pelc, M.; Zygarlicki, J.; Sidikova, M.; Martinek, R.; Gorzelanczyk, E.J. Summary of over Fifty Years with Brain-Computer Interfaces—A Review. Brain Sci. 2021, 11, 43. [Google Scholar] [CrossRef]
- Erbay, M.F.; Zayman, E.P.; Erbay, L.; Ünal, S. Evaluation of Transcranial Magnetic Stimulation Efficiency in Major Depressive Disorder Patients: A Magnetic Resonance Spectroscopy Study. Psychiatry Investig. 2019, 16, 745–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Shen, M.R.; Deng, Z.-D.; Smith, J.E.; Tharayil, J.J.; Gurrey, C.J.; Gomez, L.J.; Peterchev, A.V. Redesigning existing transcranial magnetic stimulation coils to reduce energy: Application to low field magnetic stimulation. J. Neural Eng. 2018, 15, 036022. [Google Scholar] [CrossRef] [PubMed]
- Yunokuchi, K.; Koyoshi, R.; Wang, G.; Yoshino, T.; Tamari, Y.; Hosaka, H.; Saito, M. Estimation of focus of electric field in an inhomogenous medium exposed by pulsed magnetic field. In Proceedings of the IEEE 1st Joint BMES/EMBS Conference Serving Humanity and Advancing Technology, Atlanta, GA, USA, 13–16 October 1999. [Google Scholar]
- Wilson, S.A.; Thickbroom, G.W.; Mastaglia, F.L. Transcranial magnetic stimulation mapping of the motor cortex in normal subjects. The representation of two intrinsic hand muscles. J. Neurol. Sci. 1993, 118, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Thielscher, A.; Kammer, T. Electric field properties of two commercial Figure-8 coils in TMS: Calculation of focality and efficiency. Clin. Neurophysiol. 2004, 115, 1697–1708. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.-D.; Lisanby, S.H.; Peterchev, A.V. Electric field depth-focality tradeoff in transcranial magnetic stimulation: Simulation comparison of 50 coil designs. Brain Stimul. 2013, 6, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Cohen, L.G.; Roth, B.J.; Nilsson, J.; Dang, N.; Panizza, M.; Bandinelli, S.; Friauf, W.; Hallett, M. Effects of coil design on delivery of focal magnetic stimulation. Technical considerations. Electroencephalogr. Clin. Neurophysiol. 1990, 75, 350–362. [Google Scholar] [CrossRef]
- Toschi, N.; Welt, T.; Guerrisi, M.; Keck, M.E. Transcranial magnetic stimulation in heterogeneous brain tissue: Clinical impact on focality, reproducibility and true sham stimulation. J. Psychiatr. Res. 2009, 43, 255–264. [Google Scholar] [CrossRef]
- Mills, K.R.; Boniface, S.J.; Schubert, M. Magnetic brain stimulation with a double coil: The importance of coil orientation. Electroencephalogr. Clin. Neurophysiol. 1992, 85, 17–21. [Google Scholar] [CrossRef]
- Salinas, F.S.; Lancaster, J.L.; Fox, P.T. Detailed 3D models of the induced electric field of transcranial magnetic stimulation coils. Phys. Med. Biol. 2007, 52, 2879–2892. [Google Scholar] [CrossRef]
- Thielscher, A.; Opitz, A.; Windhoff, M. Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation. Neuroimage 2010, 54, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Knecht, S.; Sommer, J.; Deppe, M.; Steinstrater, O. Scalp position and efficacy of transcranial magnetic stimulation. Clin. Neurophysiol. 2005, 116, 1988–1993. [Google Scholar] [CrossRef] [PubMed]
- Sparing, R.; Buelte, D.; Meister, I.G.; Paus, T.; Fink, G.R. Transcranial magnetic stimulation and the challenge of coil placement: A comparison of conventional and stereotaxic neuronavigational strategies. Hum. Brain Mapp. 2008, 29, 82–96. [Google Scholar] [CrossRef]
- Maccabee, P.J.; Nagarajan, S.S.; Amassian, V.E.; Dur, D.M.; Szabo, A.Z.; Ahad, A.B.; Cracco, R.Q.; Lai, K.S.; Eberle, L.P. Influence of pulse sequence, polarity and amplitude on magnetic stimulation of human and porcine peripheral nerve. J. Physiol. 1998, 513, 571–585. [Google Scholar] [CrossRef] [PubMed]
- Peterchev, A.V.; Jalinous, R.; Lisanby, S.H. A transcranial magnetic stimulator inducing near-rectangular pulses with controllable pulse width (cTMS). IEEE Trans Biomed. Eng. 2008, 55, 257–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casula, E.P.; Rocchi, L.; Hannah, R.; Rothwell, J.C. Effects of pulse width, waveform and current direction in the cortex: A combined cTMS-EEG study. Brain Stimul. 2018, 11, 1063–1070. [Google Scholar] [CrossRef] [Green Version]
- Geddes, L.A. Optimal stimulus duration for extracranial cortical stimulation. Neurosurgery 1987, 20, 94–99. [Google Scholar] [CrossRef]
- Taylor, J.L.; Loo, C.K. Stimulus waveform influences the efficacy of repetitive transcranial magnetic stimulation. J. Affect. Disord. 2007, 97, 271–276. [Google Scholar] [CrossRef]
- Foster, K.R.; Schwan, H.P. Dielectric properties of tissues. In Biological Effects of Electromagnetic Fields; CRC Press: Boca Raton, FL, USA, 1996; pp. 25–102. [Google Scholar]
- Geddes, L.A.; Baker, L.E. The specific resistance of biological material: A compendium of data for the biomedical engineer and physiologist. Med. Biol. Eng. 1967, 5, 271–293. [Google Scholar] [CrossRef]
- Pethig, R.; Kell, D.B. The passive electrical properties of biological systems: Their significance in physiology, biophysics, and biotechnology. Phys. Med. Biol. 1987, 32, 933–970. [Google Scholar] [CrossRef] [Green Version]
- Martinsen, O.G.; Grimmes, S.; Schwan, H.P. Interface phenomena and dielectric properties of biological tissue. In Encyclopedia of Surface and Colloid Science; Marcel Dekker: New York, NY, USA, 2002. [Google Scholar]
- Gabriel, S.; Lau, R.; Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251–2269. [Google Scholar] [CrossRef] [Green Version]
- Roth, B.J. Mechanisms for electrical stimulation of excitable tissue. Crit. Rev. Biomed. Eng. 1994, 22, 253–305. [Google Scholar] [PubMed]
- Rossi, S.; Hallett, M.; Rossini, P.M.; Pascual-Leone, A. The Safety of TMS Consensus Group, Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 2009, 120, 2008–2039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterchev, A.V.; Wagner, T.A.; Miranda, P.C.; Nitsche, M.A.; Paulus, W.; Lisanby, S.H.; Pascual-Leone, A.; Bikson, M. Fundamentals of transcranial electric and magnetic stimulation dose: Definition, selection, and reporting practices. Brain Stimul. 2012, 5, 435–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goetz, S.M.; Deng, Z.D. The development and modelling of devices and paradigms for transcranial magnetic stimulation. Int. Rev. Psychiatry 2017, 29, 115–145. [Google Scholar] [CrossRef] [Green Version]
- Silva, S.; Basser, P.; Miranda, P. Elucidating the mechanisms and loci of neuronal excitation by transcranial magnetic stimulation using a finite element model of a cortical sulcus. Clin. Neurophysiol. 2008, 119, 2405–2413. [Google Scholar] [CrossRef] [Green Version]
- Ruohonen, J.; Ilmoniemi, R.J. Physical principles for transcranial magnetic stimulation. In Handbook of Transcranial Magnetic Stimulation; Arnold: London, UK, 2002; pp. 18–30. [Google Scholar]
- Heller, L.; van Hulsteyn, D.B. Brain stimulation using electromagnetic sources: Theoretical aspects. Biophys. J. 1992, 63, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Roth, B.J.; Basser, P.J. A Model of the Stimulation of a nerve fiber by Electromagnetic Induction. IEEE Trans. Biomed. Eng. 1990, 37, 588–597. [Google Scholar] [CrossRef]
- Roth, B.J.; Saypol, J.M.; Hallett, M.; Cohen, L.G. A theoretical calculation of the electric field induced in the cortex during magnetic stimulation. Muscle Nerve 1991, 81, 47–56. [Google Scholar] [CrossRef]
- Abdeen, M.A.; Stuchly, M.A. Modeling of magnetic field stimulation of bent neurons. IEEE Trans. Biomed. Eng. 1994, 41, 1092–1095. [Google Scholar] [CrossRef]
- Jackson, J.D. Classical Electrodynamics; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Plonus, M.A. Applied Electromagnetics; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Davey, K.; Cheng, C.H.; Epstein, C.M. Prediction of magnetically induced electric fields in biological tissue. IEEE Trans. Biomed. Eng. 1991, 38, 418422. [Google Scholar] [CrossRef] [PubMed]
- Eaton, H. Electric field induced in a spherical volume conductor from arbitrary coils: Application to magnetic stimulation and MEG. Med. Biol. Eng. Comput. 1992, 30, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Esselle, K.P.; Stuchly, M.A. Neural Stimulation with Magnetic Fields: Analysis of Induced Electric Fields. IEEE Trans. Biomed. Eng. 1992, 39, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Grandori, F.; Ravazzani, P. Magnetic-stimulation of the motor cortex-Theoretical considerations. IEEE Trans. Biomed. Eng. 1991, 38, 180–191. [Google Scholar] [CrossRef]
- Durand, D.; Ferguson, A.S.; Dalbasti, T. Effects of surface boundary on neuronal magnetic stimulation. IEEE Trans. Biomed. Eng. 1992, 37, 588–597. [Google Scholar] [CrossRef]
- Kim, D.H.; Sykulski, J.K.; Loukaides, N.; Georghiou, G.E. Numerical investigation of the electric field distribution induced in the brain by transcranial magnetic stimulation. IEE Proc. Sci. Meas. Technol. 2004, 151, 479–483. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, T.; Silny, J.; Buchner, H. Current density threshold for the stimulation of neurons in the motor cortex area. Bioelectromagnetics 2002, 23, 421–428. [Google Scholar] [CrossRef]
- Krasteva, V.T.; Papazov, S.P.; Daskalov, I.K. Magnetic stimulation for non-homogeneous biological structures. Biomed. Eng. 2002, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Miranda, P.C.; Hallett, M.; Basser, P.J. The electric field induced in the brain by magnetic stimulation: A 3-D finite-element analysis of the effect of tissue heterogeneity and anisotropy. IEEE Trans. Biomed. Eng. 2003, 50, 1074–1085. [Google Scholar] [CrossRef]
- Bungert, A.; Antunes, A.; Espenhahn, S.; Thielscher, A. Where does TMS stimulate the motor cortex? Combining electrophysiological measurements and realistic field estimates to reveal the affected cortex position. Cereb. Cortex 2017, 27, 5083–5094. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Tames, J.; Laakso, I.; Hirata, A. Review on biophysical modelling and simulation studies for transcranial magnetic stimulation. Phys. Med. Biol. 2020, 65, 24TR03. [Google Scholar] [CrossRef] [PubMed]
- Petrov, P.I.; Mandija, S.; Sommer, I.E.; Van Den Berg, C.A.; Neggers, S.F. How much detail is needed in modeling a transcranial magnetic stimulation figure-8 coil: Measurements and brain simulations. PLoS ONE 2017, 12, e0178952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Deng, Z.-D.; Oathes, D.; Fan, Y. Computation of transcranial magnetic stimulation electric fields using self-supervised deep learning. NeuroImage 2022, 264, 119705. [Google Scholar] [CrossRef] [PubMed]
- Taha, H. Implementation of Darwin’s Model by the Finite Element Method in Order to Model Electrical Machines at Intermediate Frequencies. Ph.D. Thesis, Université de Lille, Lille, France, 2021. [Google Scholar]
- Larsson, J. Electromagnetics from a quasistatic perspective. Am. J. Phys. 2006, 75, 230–239. [Google Scholar] [CrossRef] [Green Version]
- Salvador, R.N.B.F. Numerical Modelling in Transcranial Magnetic Stimulation. Ph.D. Thesis, Universidade de Lisboa, Lisboa, Portugal, 2009. [Google Scholar]
- LeVeque, R.J. Finite Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2007. [Google Scholar]
- Gholami, A.; Malhotra, D.; Sundar, H.; Biros, G. FFT, FMM, or multigrid? A comparative study of state-of-the-art Poisson solvers for uniform and nonuniform grids in the unit cube. SIAM J. Sci. Comput. 2016, 38, C280–C306. [Google Scholar] [CrossRef] [Green Version]
- Toschi, N.; Welt, T.; Guerrisi, M.; Keck, M.E. A reconstruction of the conductive phenomena elicited by transcranial magnetic stimulation in heterogeneous brain tissue. Phys. Medica 2008, 24, 80–86. [Google Scholar] [CrossRef]
- Cerri, G.; Leo, R.D.; Moglie, F.; Schiavoni, A. An accurate 3-D model for magnetic stimulation of the brain cortex. J. Med. Eng. Technol. 1995, 19, 7–16. [Google Scholar] [CrossRef]
- Woolfson, M.M.; Pert, G.J. An introduction to Computer Simulation; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Polycarpou, A.C. Introduction to the Finite Element Method in Electromagnetics; Synthesis Lectures on Computational Electromagnetics Series; Morgan & Claypool Publishers: San Rafael, CA, USA, 2022. [Google Scholar]
- Jin, J.-M. The Finite Element Method in Electromagnetics, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Webb, J.P. Application of the finite-element method to electromagnetic and electrical topics. Rep. Prog. Phys. 1995, 58, 1673–1712. [Google Scholar] [CrossRef]
- Ueno, S.; Tashiro, T.; Harada, K. Localized stimulation of neural tissues in the brain by means of a paired configuration of time-varying magnetic fields. J. Appl. Phys. 1988, 64, 5862–5864. [Google Scholar] [CrossRef] [Green Version]
- Branston, N.M.; Tofts, P.S. Analysis of the distribution of currents induced by a changing magnetic field in a volume conductor. Phys. Med. Biol. 1991, 36, 161–168. [Google Scholar] [CrossRef]
- Gomez, L.J.; Yucel, A.C.; Hernandez-Garcia, L.; Taylor, S.F.; Michielssen, E. Uncertainty quantification in transcranial magnetic stimulation via high dimensional model representation. IEEE Trans Biomed. Eng. 2015, 62, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Güllmar, D.; Haueisen, J.; Reichenbach, J.R. Influence of anisotropic electrical conductivity in white matter tissue on the EEG/MEG forward and inverse solution.A high-resolution whole head simulation study. Neuroimage 2010, 51, 145–163. [Google Scholar] [CrossRef] [PubMed]
- Opitz, A.; Windhoff, M.; Heidemann, R.M.; Turner, R.; Thielscher, A. How the brain tissue shapes the electric field induced by transcranial magnetic stimulation. NeuroImage 2011, 58, 849–859. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.X.; Yu, H.Y.; Liu, Z.W. Numerical Investigation of the Magnetic and Electric Field Distributions Produced by Biconical Transcranial Magnetic Stimulation Coil for Optimal Design. IEEE Trans. Magn. 2018, 54, 11. [Google Scholar] [CrossRef]
- Kamitani, Y.; Bhalodia, V.M.; Kubota, Y.; Shimojo, S. A model of magnetic stimulation of neocortical neurons. Neurocomputing 2001, 38, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Seo, H.; Jun, S.C. Relation between the electric field and activation of cortical neurons in transcranial electrical stimulation. Brain Stimul. 2019, 12, 275–289. [Google Scholar] [CrossRef]
- Romero, M.C.; Davare, M.; Armendariz, M.; Janssen, P. Neural effects of transcranial magnetic stimulation at the single-cell level. Nat. Commun. 2019, 10, 2642. [Google Scholar] [CrossRef] [Green Version]
- Laakso, I.; Murakami, T.; Hirata, A.; Ugawa, Y. Where and what TMS activates: Experiments and modeling. Brain Stimul. 2018, 11, 166–174. [Google Scholar] [CrossRef]
- Aberra, A.S.; Wang, B.; Grill, W.M.; Peterchev, A.V. Simulation of transcranial magnetic stimulation in head model with morphologically-realistic cortical neurons. Brain Stimul. 2020, 13, 175–189. [Google Scholar] [CrossRef] [Green Version]
- Htet, A.T.; Saturnino, G.B.; Burnham, E.H.; Noetscher, G.; Nummenmaa, A.; Makarov, S.N. Comparative performance of the finite element method and the boundary element fast multipole method for problems mimicking transcranial magnetic stimulation (TMS). J. Neural. Eng. 2019, 16, 024001. [Google Scholar] [CrossRef] [Green Version]
- Wagner, T.A.; Zahn, M.; Grodzinsky, A.J.; Pascual-Leone, A.P. Three-dimensional head model simulation of transcranial magnetic stimulation. IEEE Trans. Biomed. Eng. 2004, 51, 1586–1598. [Google Scholar] [CrossRef] [PubMed]
- Tofts, P.S. The distribution of induced currents in magnetic stimulation of the nervous system. Phys. Med. Biol. 1990, 35, 1119–1128. [Google Scholar] [CrossRef]
- Saturnino, G.B.; Madsen, K.H.; Thielscher, A. Electric field simulations for transcranial brain stimulation using FEM: An efficient implementation and error analysis. J. Neural. Eng. 2019, 16, 066032. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Mogul, D.J. A structurally detailed finite element human head model for simulation of transcranial magnetic stimulation. J. Neurosci. Meth. 2009, 179, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Granula, B.; Porzig, K.; Toepfer, H.; Gacanovic, M. A Comparison between an A-V and V Formulation in Transcranial Magnetic Stimulation. In Proceedings of the 2013 COMSOL Conference, Rotterdam, The Netherlands, 23–25 October 2013. [Google Scholar]
- Roth, B.J.; Cohen, L.G.; Hallett, M.; Friauf, W.; Basser, A.P.J. A Theoretical Calculation of the Electric Field Induced by Magnetic Stimulation of a Peripheral Nerve. Muscle Nerve 1990, 13, 734–741. [Google Scholar] [CrossRef] [PubMed]
- Janssen, A.M.; Rampersad, S.M.; Lucka, F.; Lanfer, B.; Lew, S.; Aydin; Wolters, C.H.; Stegeman, D.F.; Oostendorp, T.F. The influence of sulcus width on simulated electric fields induced by transcranial magnetic stimulation. Phys. Med. Biol. 2013, 58, 4881–4896. [Google Scholar] [CrossRef] [Green Version]
- Windhoff, M.; Opitz, A.; Thielscher, A. Electric Field Calculations in Brain Stimulation Based on Finite Elements: An Optimized Processing Pipeline for the Generation and Usage of Accurate Individual Head Models. Hum. Brain Mapp. 2013, 34, 923–935. [Google Scholar] [CrossRef]
- Laakso, I.; Hirata, A. Fast multigrid-based computation of the induced electric field for transcranial magnetic stimulation. Phys. Med. Biol. 2012, 57, 7753–7765. [Google Scholar] [CrossRef]
- Yamamoto, K.; Takiyama, Y.; Saitoh, Y.; Sekino, M. Numerical Analyses of Transcranial Magnetic Stimulation Based on Individual Brain Models by Using a Scalar-Potential Finite-Difference Method. IEEE Trans. Magn. 2016, 52, 7. [Google Scholar] [CrossRef]
- Gomez, L.J.; Dannhauer, M.; Koponen, L.M.; Peterchev, A.V. Conditions for numerically accurate TMS electric field simulation. Brain Stimul. 2020, 13, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Thielscher, A.; Antunes, A.; Saturnino, G.B. Field modeling for transcranial magnetic stimulation: A useful tool to understand the physiological effects of TMS? In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 222–225. [Google Scholar]
- Wang, W.; Eisenberg, S.R. A Three-Dimensional Finite Element Method for Computing Magnetically Induced Currents in Tissues. IEEE Trans. Magn. 1994, 30, 6. [Google Scholar]
- Salvador, R.; Mekonnen, A.; Ruffini, G.; Miranda, P.C. Modeling the electric field induced in a high resolution realistic head model during transcranial current stimulation. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 2073–2076. [Google Scholar]
- Miranda, P.C.; Correia, L.; Salvador, R.; Basser, P.J. Tissue heterogeneity as a mechanism for localized neural stimulation by applied electric fields. Phys. Med. Biol. 2007, 52, 5603–5617. [Google Scholar] [CrossRef]
- Saypol, J.M.; Roth, B.J.; Cohen, L.G.; Hallett, M. A theoretical comparison of electric and magnetic stimulation of the brain. Ann. Biomed. Eng. 1991, 19, 317–328. [Google Scholar] [CrossRef]
- Nadeem, M.; Thorlin, T.; Gandhi, O.; Persson, M. Computation of electric and magnetic stimulation in human head using the 3-D impedance method. IEEE Trans. Biomed. Eng. 2003, 50, 900–907. [Google Scholar] [CrossRef]
- Daneshzanda, M.; Makarova, S.N.; de Lara, L.I.N.; Guerin, B.; McNab, J.; Rosen, B.R.; Hamalainen, M.S.; Raij, T.; Nummenmaa, A. Rapid computation of TMS-induced E-fields using a dipole-based magnetic stimulation profile approach. NeuroImage 2021, 237, 1180897. [Google Scholar] [CrossRef]
- Ai, L.; Bansal, P.; Mueller, J.K.; Legon, W. Efects of transcranial focused ultrasound on human primary motor cortex using 7T fMRI: A pilot study. BMC Neurosci. 2018, 19, 56. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Li, H.; Sun, J.; Hu, W.; Jin, W.; Li, S.; Tong, S. Antidepressant-Like Effect of Low-Intensity Transcranial Ultrasound Stimulation. IEEE Trans. Biomed. Eng. 2019, 66, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, S.S.; Dur, D.M. A generalized cable equation for magnetic stimulation of axons. IEEE Trans. Biomed. Eng. 1996, 43, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Grill, W.M.; Peterchev, A.V. Coupling magnetically induced electric fields to neurons: Longitudinal and transverse activation. Biophys. J. 2018, 115, 95–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, T.; Fan, J.; Lee, K.S.; Li, X. Cortical neuron activation induced by electromagnetic stimulation: A quantitative analysis via modeling and simulation. J. Comput. Neurosci. 2016, 40, 51–64. [Google Scholar] [CrossRef]
Domain | Boundary | Applicable Properties | Description |
---|---|---|---|
System domain that includes all other domains: . Its boundary is limited by the air exterior boundary: | |||
Air | |||
(integration path) | Coil | ||
The brain, composed of several brain tissues (); its boundary is limited by the air ( ) | |||
Brain tissues. Some of these domains are considered to, partially share boundaries () |
BVP | Model | Publications |
---|---|---|
MQS only | Several coils and coil configurations in an air box | [21,50] |
A coil over a passive cable | [42] | |
Figure-8 coil over a tissue planar interface | [44] | |
A quasispherical volume conductor and a paired coil | [71] | |
A neurocortical neuron model and a coil | [77] | |
+ skin effect | A coil over an non-homogeneous volume conductor | [54] |
Laplace MQS- | A coil over a cylindrical volume conductor | [43] |
Three types coils over a spherical volume conductor | [48] | |
An arbitrarily shaped coil over a half-plane conductor | [49] | |
A circular coil over a spherical conductor | [72,88,97] | |
A coil over a half-plane tissue | [84] | |
Poisson MQS- | Figure-8 coil over a realistic brain model | [22,56,58,75,79,80,81,82,85,87,90,91,92,94] |
A circular coil over a parallelepiped volume conductor | [47,51,95] | |
A coil over an approximate brain model | [52,93] | |
Figure-8 coil over several brain models | [73] | |
Figure-8 coil over a high-resolution brain model | [74,86] | |
Uniform and realistic E-fields and a realistic brain model | [78] | |
MQS A- | An 8-shaped coil over a cortical sulcus | [39,98] |
A circular coil over a realist head model | [53] | |
A custom coil over three concentric spheres | [76] | |
Figure-8 coil over an approximate head model | [83] | |
MQS full Maxwell equations | Figure-8 coil over a brain approximate model | [62] |
Boundary Value Problem | Simulation Tool | Type | Publications |
---|---|---|---|
MQS only Ep | Matlab | Direct implementation | [21] |
Equations solved with VAX 750 and Fortran | Direct implementation | [42] | |
Laplace MQS- | FEM using version 4.7 of SCIRun: A Scientific Computing Problem Solving Environment (SCI), Utah, USA | Custom software | [58] |
FEM model using Matlab and the GetFEM++ library | Direct implementation | [75,89] | |
Comsol multiphysics | Commercial general purpose software | [96] | |
Poisson MQS- | FEM custom-written Matlab and C++ routines together with Getfem++ functions | Direct implementation | [22] |
FEM software | Unknown | [52] | |
Ansoft finite-element package | Commercial general-purpose software | [97] | |
SimNIBS pipeline | Open-source software for TMS simulation | [56,94] | |
SimBio software environment | Open-source software for TMS simulation | [74,81,82] | |
SimNIBS | Open-source software for TMS simulation | [78,79,85,93] | |
Matlab and C++ | Direct implementation | [80,90,91] | |
Matlab FDM | Direct implementation | [92] | |
I-DEAS FEM package | Commercial general-purpose software | [95] | |
MQS A- | FEM implemented by Comsol Multiphysics | Commercial general-purpose software | [39] |
Eddy current solver from the commercial FEM package Maxwell3D from Ansoft | Commercial software | [53,83,86] | |
Full Maxwell equations | FEM implemented by Comsol Multiphysics | Commercial general-purpose software | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Benítez, J.A.; Martínez-Ortiz, P.; Aguila-Muñoz, J. A Review of Formulations, Boundary Value Problems and Solutions for Numerical Computation of Transcranial Magnetic Stimulation Fields. Brain Sci. 2023, 13, 1142. https://doi.org/10.3390/brainsci13081142
Pérez-Benítez JA, Martínez-Ortiz P, Aguila-Muñoz J. A Review of Formulations, Boundary Value Problems and Solutions for Numerical Computation of Transcranial Magnetic Stimulation Fields. Brain Sciences. 2023; 13(8):1142. https://doi.org/10.3390/brainsci13081142
Chicago/Turabian StylePérez-Benítez, J. A., P. Martínez-Ortiz, and J. Aguila-Muñoz. 2023. "A Review of Formulations, Boundary Value Problems and Solutions for Numerical Computation of Transcranial Magnetic Stimulation Fields" Brain Sciences 13, no. 8: 1142. https://doi.org/10.3390/brainsci13081142
APA StylePérez-Benítez, J. A., Martínez-Ortiz, P., & Aguila-Muñoz, J. (2023). A Review of Formulations, Boundary Value Problems and Solutions for Numerical Computation of Transcranial Magnetic Stimulation Fields. Brain Sciences, 13(8), 1142. https://doi.org/10.3390/brainsci13081142