The Genetic Basis of Probable REM Sleep Behavior Disorder in Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Assessment of Probable REM Sleep Behavior Disorder
2.3. Genomic Data Processing
2.4. Statistical Analysis
2.5. Machine-Learning Models
3. Results
3.1. Characteristics of the Sample
3.2. Genetic Factors Connected with RBD
3.3. Machine-Learning Models
4. Discussion
5. Conclusions
6. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dorsey, E.R.; Constantinescu, R.; Thompson, J.P.; Biglan, K.M.; Holloway, R.G.; Kieburtz, K.; Marshall, F.J.; Ravina, B.M.; Schifitto, G.; Siderowf, A.; et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 2007, 68, 384–386. [Google Scholar] [CrossRef] [PubMed]
- Lang, A.E.; Espay, A.J. Disease Modification in Parkinson’s Disease: Current Approaches, Challenges, and Future Considerations. Mov. Disord. 2018, 33, 660–677. [Google Scholar] [CrossRef]
- Chaudhuri, K.R.; Schapira, A.H. Non-motor symptoms of Parkinson’s disease: Dopaminergic pathophysiology and treatment. Lancet Neurol. 2009, 8, 464–474. [Google Scholar] [CrossRef] [PubMed]
- Avidan, A.; Hays, R.D.; Diaz, N.; Bordelon, Y.; Thompson, A.W.; Vassar, S.D.; Vickrey, B.G. Associations of sleep disturbance symptoms with health-related quality of life in Parkinson’s disease. J. Neuropsychiatry Clin. Neurosci. 2013, 25, 319–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallagher, D.A.; Lees, A.J.; Schrag, A. What are the most important nonmotor symptoms in patients with Parkinson’s disease and are we missing them? Mov. Disord. 2010, 25, 2493–2500. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, C.Y.; Liu, J. Meta-analysis on the prevalence of REM sleep behavior disorder symptoms in Parkinson’s disease. BMC Neurol. 2017, 17, 23. [Google Scholar] [CrossRef] [Green Version]
- Baumann-Vogel, H.; Hor, H.; Poryazova, R.; Valko, P.; Werth, E.; Baumann, C.R. REM sleep behavior in Parkinson disease: Frequent, particularly with higher age. PLoS ONE 2020, 15, e0243454. [Google Scholar] [CrossRef]
- Hu, M.T. REM sleep behavior disorder (RBD). Neurobiol. Dis. 2020, 143, 104996. [Google Scholar] [CrossRef]
- Barasa, A.; Wang, J.; Dewey, R.B., Jr. Probable REM Sleep Behavior Disorder Is a Risk Factor for Symptom Progression in Parkinson Disease. Front. Neurol. 2021, 12, 651157. [Google Scholar] [CrossRef]
- Ferri, R.; Cosentino, F.I.; Pizza, F.; Aricò, D.; Plazzi, G. The timing between REM sleep behavior disorder and Parkinson’s disease. Sleep Breath. 2014, 18, 319–323. [Google Scholar] [CrossRef]
- Neikrug, A.B.; Avanzino, J.A.; Liu, L.; Maglione, J.E.; Natarajan, L.; Corey-Bloom, J.; Palmer, B.W.; Loredo, J.S.; Ancoli-Israel, S. Parkinson’s disease and REM sleep behavior disorder result in increased non-motor symptoms. Sleep Med. 2014, 15, 959–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singleton, A.B.; Farrer, M.; Johnson, J.; Singleton, A.; Hague, S.; Kachergus, J.; Hulihan, M.; Peuralinna, T.; Dutra, A.; Nussbaum, R.; et al. alpha-Synuclein locus triplication causes Parkinson’s disease. Science 2003, 302, 841. [Google Scholar] [CrossRef] [Green Version]
- Polymeropoulos, M.H.; Higgins, J.J.; Golbe, L.I.; Johnson, W.G.; Ide, S.E.; Di Iorio, G.; Sanges, G.; Stenroos, E.S.; Pho, L.T.; Schaffer, A.A.; et al. Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Science 1996, 274, 1197–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nalls, M.A.; Blauwendraat, C.; Vallerga, C.L.; Heilbron, K.; Bandres-Ciga, S.; Chang, D.; Tan, M.; Kia, D.A.; Noyce, A.J.; Xue, A.; et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: A meta-analysis of genome-wide association studies. Lancet Neurol. 2019, 18, 1091–1102. [Google Scholar] [CrossRef] [PubMed]
- Tolosa, E.; Vila, M.; Klein, C.; Rascol, O. LRRK2 in Parkinson disease: Challenges of clinical trials. Nat. Rev. Neurol. 2020, 16, 97–107. [Google Scholar] [CrossRef]
- Zhang, Y.; Shu, L.; Zhou, X.; Pan, H.; Xu, Q.; Guo, J.; Tang, B.; Sun, Q. A Meta-Analysis of GBA-Related Clinical Symptoms in Parkinson’s Disease. Parkinsons Dis. 2018, 2018, 3136415. [Google Scholar] [CrossRef] [Green Version]
- Boeve, B.F. REM sleep behavior disorder: Updated review of the core features, the REM sleep behavior disorder-neurodegenerative disease association, evolving concepts, controversies, and future directions. Ann. N. Y. Acad. Sci. 2010, 1184, 15–54. [Google Scholar] [CrossRef] [Green Version]
- St Louis, E.K.; Boeve, B.F. REM Sleep Behavior Disorder: Diagnosis, Clinical Implications, and Future Directions. Mayo Clin. Proc. 2017, 92, 1723–1736. [Google Scholar] [CrossRef]
- Boeve, B.F.; Silber, M.H.; Ferman, T.J.; Lucas, J.A.; Parisi, J.E. Association of REM sleep behavior disorder and neurodegenerative disease may reflect an underlying synucleinopathy. Mov. Disord. 2001, 16, 622–630. [Google Scholar] [CrossRef]
- Boeve, B.F. Idiopathic REM sleep behaviour disorder in the development of Parkinson’s disease. Lancet Neurol. 2013, 12, 469–482. [Google Scholar] [CrossRef] [Green Version]
- Iranzo, A.; Santamaria, J.; Tolosa, E. The clinical and pathophysiological relevance of REM sleep behavior disorder in neurodegenerative diseases. Sleep Med. Rev. 2009, 13, 385–401. [Google Scholar] [CrossRef]
- McCarter, S.J.; St Louis, E.K.; Boeve, B.F. REM sleep behavior disorder and REM sleep without atonia as an early manifestation of degenerative neurological disease. Curr. Neurol. Neurosci. Rep. 2012, 12, 182–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- St Louis, E.K.; McCarter, S.J.; Boeve, B.F.; Silber, M.H.; Kantarci, K.; Benarroch, E.E.; Rando, A.; Tippmann-Peikert, M.; Olson, E.J.; Mauermann, M.L. Lesional REM sleep behavior disorder localizes to the dorsomedial pons. Neurology 2014, 83, 1871–1873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krohn, L.; Heilbron, K.; Blauwendraat, C.; Reynolds, R.H.; Yu, E.; Senkevich, K.; Rudakou, U.; Estiar, M.A.; Gustavsson, E.K.; Brolin, K.; et al. Genome-wide association study of REM sleep behavior disorder identifies polygenic risk and brain expression effects. Nat. Commun. 2022, 13, 7496. [Google Scholar] [CrossRef]
- Yu, E.; Krohn, L.; Ruskey, J.A.; Asayesh, F.; Spiegelman, D.; Shah, Z.; Chia, R.; Arnulf, I.; Hu, M.T.M.; Montplaisir, J.Y.; et al. HLA in isolated REM sleep behavior disorder and Lewy body dementia. medRxiv 2023. [Google Scholar] [CrossRef]
- Mufti, K.; Yu, E.; Rudakou, U.; Krohn, L.; Ruskey, J.A.; Asayesh, F.; Laurent, S.B.; Spiegelman, D.; Arnulf, I.; Hu, M.T.M.; et al. Novel Associations of BST1 and LAMP3 With REM Sleep Behavior Disorder. Neurology 2021, 96, e1402–e1412. [Google Scholar] [CrossRef] [PubMed]
- Krohn, L.; Ruskey, J.A.; Rudakou, U.; Leveille, E.; Asayesh, F.; Hu, M.T.M.; Arnulf, I.; Dauvilliers, Y.; Högl, B.; Stefani, A.; et al. GBA variants in REM sleep behavior disorder: A multicenter study. Neurology 2020, 95, e1008–e1016. [Google Scholar] [CrossRef]
- Rolinski, M.; Szewczyk-Krolikowski, K.; Tomlinson, P.R.; Nithi, K.; Talbot, K.; Ben-Shlomo, Y.; Hu, M.T. REM sleep behaviour disorder is associated with worse quality of life and other non-motor features in early Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2014, 85, 560–566. [Google Scholar] [CrossRef] [Green Version]
- Thaler, A.; Bregman, N.; Gurevich, T.; Shiner, T.; Dror, Y.; Zmira, O.; Gan-Or, Z.; Bar-Shira, A.; Gana-Weisz, M.; Orr-Urtreger, A.; et al. Parkinson’s disease phenotype is influenced by the severity of the mutations in the GBA gene. Parkinsonism Relat. Disord. 2018, 55, 45–49. [Google Scholar] [CrossRef]
- Ouled Amar Bencheikh, B.; Ruskey, J.A.; Arnulf, I.; Dauvilliers, Y.; Monaca, C.C.; De Cock, V.C.; Gagnon, J.F.; Spiegelman, D.; Hu, M.T.M.; Högl, B.; et al. LRRK2 protective haplotype and full sequencing study in REM sleep behavior disorder. Parkinsonism Relat. Disord. 2018, 52, 98–101. [Google Scholar] [CrossRef]
- Somerville, E.N.; Krohn, L.; Yu, E.; Rudakou, U.; Senkevich, K.; Ruskey, J.A.; Asayesh, F.; Ahmad, J.; Spiegelman, D.; Dauvilliers, Y.; et al. NPC1 variants are not associated with Parkinson’s disease, REM-sleep behavior disorder or dementia with Lewy bodies in European cohorts. Neurobiol. Aging 2023, 127, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Rudakou, U.; Futhey, N.C.; Krohn, L.; Ruskey, J.A.; Heilbron, K.; Cannon, P.; Alam, A.; Arnulf, I.; Hu, M.T.M.; Montplaisir, J.Y.; et al. SMPD1 variants do not have a major role in rapid eye movement sleep behavior disorder. Neurobiol. Aging 2020, 93, 142.e5–142.e7. [Google Scholar] [CrossRef] [PubMed]
- Barber, T.R.; Lawton, M.; Rolinski, M.; Evetts, S.; Baig, F.; Ruffmann, C.; Gornall, A.; Klein, J.C.; Lo, C.; Dennis, G.; et al. Prodromal Parkinsonism and Neurodegenerative Risk Stratification in REM Sleep Behavior Disorder. Sleep 2017, 40, zsx071. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Santiago, R.; Iranzo, A.; Gaig, C.; Serradell, M.; Fernández, M.; Tolosa, E.; Santamaría, J.; Ezquerra, M. Absence of LRRK2 mutations in a cohort of patients with idiopathic REM sleep behavior disorder. Neurology 2016, 86, 1072–1073. [Google Scholar] [CrossRef] [PubMed]
- Kestenbaum, M.; Alcalay, R.N. Clinical Features of LRRK2 Carriers with Parkinson’s Disease. Adv. Neurobiol. 2017, 14, 31–48. [Google Scholar] [CrossRef]
- Zhu, R.L.; Xie, C.J.; Hu, P.P.; Wang, K. Clinical variations in Parkinson’s disease patients with or without REM sleep behaviour disorder: A meta-analysis. Sci. Rep. 2017, 7, 40779. [Google Scholar] [CrossRef] [Green Version]
- Parkinson Progression Marker Initiative. The Parkinson Progression Marker Initiative (PPMI). Prog. Neurobiol. 2011, 95, 629–635. [Google Scholar] [CrossRef]
- Stiasny-Kolster, K.; Mayer, G.; Schäfer, S.; Möller, J.C.; Heinzel-Gutenbrunner, M.; Oertel, W.H. The REM sleep behavior disorder screening questionnaire--a new diagnostic instrument. Mov. Disord. 2007, 22, 2386–2393. [Google Scholar] [CrossRef]
- Skorvanek, M.; Feketeova, E.; Kurtis, M.M.; Rusz, J.; Sonka, K. Accuracy of Rating Scales and Clinical Measures for Screening of Rapid Eye Movement Sleep Behavior Disorder and for Predicting Conversion to Parkinson’s Disease and Other Synucleinopathies. Front. Neurol. 2018, 9, 376. [Google Scholar] [CrossRef]
- Högl, B.; Stefani, A. REM sleep behavior disorder (RBD): Update on diagnosis and treatment. Somnologie 2017, 21, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Szwedo, A.A.; Pedersen, C.C.; Ushakova, A.; Forsgren, L.; Tysnes, O.B.; Counsell, C.E.; Alves, G.; Lange, J.; Macleod, A.D.; Maple-Grødem, J. Association of SNCA Parkinson’s Disease Risk Polymorphisms With Disease Progression in Newly Diagnosed Patients. Front. Neurol. 2020, 11, 620585. [Google Scholar] [CrossRef]
- Höglinger, G.; Schulte, C.; Jost, W.H.; Storch, A.; Woitalla, D.; Krüger, R.; Falkenburger, B.; Brockmann, K. GBA-associated PD: Chances and obstacles for targeted treatment strategies. J. Neural Transm. 2022, 129, 1219–1233. [Google Scholar] [CrossRef] [PubMed]
- Maple-Grødem, J.; Dalen, I.; Tysnes, O.B.; Macleod, A.D.; Forsgren, L.; Counsell, C.E.; Alves, G. Association of GBA Genotype With Motor and Functional Decline in Patients With Newly Diagnosed Parkinson Disease. Neurology 2021, 96, e1036–e1044. [Google Scholar] [CrossRef] [PubMed]
- Yahalom, G.; Greenbaum, L.; Israeli-Korn, S.; Fay-Karmon, T.; Livneh, V.; Ruskey, J.A.; Roncière, L.; Alam, A.; Gan-Or, Z.; Hassin-Baer, S. Carriers of both GBA and LRRK2 mutations, compared to carriers of either, in Parkinson’s disease: Risk estimates and genotype-phenotype correlations. Parkinsonism Relat. Disord. 2019, 62, 179–184. [Google Scholar] [CrossRef]
- Zhang, B.; Cui, C.; Yu, H.; Li, G. Association between ZNF184 and symptoms of Parkinson’s disease in southern Chinese. Neurol. Sci. 2020, 41, 2121–2126. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Oliver, R.; Kar, S.K. Differential Gene Expression in Brain and Liver Tissue of Wistar Rats after Rapid Eye Movement Sleep Deprivation. Clocks Sleep 2020, 2, 442–465. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.R.; Penzes, P. Ankyrins: Roles in synaptic biology and pathology. Mol. Cell. Neurosci. 2018, 91, 131–139. [Google Scholar] [CrossRef]
- Tone, D.; Ode, K.L.; Zhang, Q.; Fujishima, H.; Yamada, R.G.; Nagashima, Y.; Matsumoto, K.; Wen, Z.; Yoshida, S.Y.; Mitani, T.T.; et al. Distinct phosphorylation states of mammalian CaMKIIβ control the induction and maintenance of sleep. PLoS Biol. 2022, 20, e3001813. [Google Scholar] [CrossRef]
- Fujioka, A.; Nagano, M.; Ikegami, K.; Masumoto, K.H.; Yoshikawa, T.; Koinuma, S.; Nakahama, K.I.; Shigeyoshi, Y. Circadian expression and specific localization of synaptotagmin17 in the suprachiasmatic nucleus, the master circadian oscillator in mammals. Brain Res. 2023, 1798, 148129. [Google Scholar] [CrossRef]
- Postuma, R.B.; Montplaisir, J.Y.; Pelletier, A.; Dauvilliers, Y.; Oertel, W.; Iranzo, A.; Ferini-Strambi, L.; Arnulf, I.; Hogl, B.; Manni, R.; et al. Environmental risk factors for REM sleep behavior disorder: A multicenter case-control study. Neurology 2012, 79, 428–434. [Google Scholar] [CrossRef] [Green Version]
- Bagley, S.C.; White, H.; Golomb, B.A. Logistic regression in the medical literature: Standards for use and reporting, with particular attention to one medical domain. J. Clin. Epidemiol. 2001, 54, 979–985. [Google Scholar] [CrossRef] [PubMed]
- Kleinbaum, D.G.; Kupper, L.L.; Chambless, L.E. Logistic regression analysis of epidemiologic data: Theory and practice. Commun. Stat.—Theory Methods 1982, 11, 485–547. [Google Scholar] [CrossRef]
- Sperandei, S. Understanding logistic regression analysis. Biochem. Med. 2014, 24, 12–18. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Overall (N = 330) | No RBD (N = 240) | pRBD (N = 90) | p-Value |
---|---|---|---|---|
Years of education | 0.008 | |||
Mean (SD) | 15.6 (3.77) | 15.9 (3.59) | 14.6 (4.12) | |
Median (Min, Max) | 16.0 (0, 26.0) | 16.0 (0, 25.0) | 15.0 (4.00, 26.0) | |
Missing | 17 (5.1%) | 11 (4.6%) | 6 (6.7%) | |
Sex | 0.533 | |||
M | 143 (43.1%) | 107 (44.6%) | 36 (40.0%) | |
F | 189 (56.9%) | 133 (55.4%) | 54 (60.0%) | |
Age | 0.261 | |||
Mean (SD) | 61.2 (10.9) | 61.6 (10.6) | 60.1 (11.8) | |
Median (Min, Max) | 63.0 (31.0, 84.0) | 64.0 (31.0, 83.0) | 63.0 (31.0, 84.0) | |
Age at PD onset | 0.050 | |||
Mean (SD) | 57.8 (10.9) | 59.3 (11.0) | 55.2 (10.6) | |
Median (Min, Max) | 60.0 (29.0, 80.0) | 61.0 (32.0, 80.0) | 58.5 (29.0, 70.0) | |
Missing | 211 (63.6%) | 165 (68.8%) | 46 (51.1%) | |
PD duration (months) | 0.028 | |||
Mean (SD) | 37.3 (23.9) | 33.4 (23.6) | 43.2 (23.1) | |
Median (Min, Max) | 31.0 (2.92, 85.0) | 29.0 (2.92, 80.1) | 43.1 (4.01, 85.0) | |
Missing | 211 (63.6%) | 165 (68.8%) | 46 (51.1%) | |
Antiparkinsonians | <0.001 | |||
No | 198 (59.6%) | 158 (65.8%) | 40 (44.4%) | |
Yes | 134 (40.4%) | 82 (34.2%) | 50 (55.6%) | |
Levodopa | <0.001 | |||
No | 241 (72.6%) | 188 (78.3%) | 53 (58.9%) | |
Yes | 91 (27.4%) | 52 (21.7%) | 37 (41.1%) | |
Dopamine agonists | 0.002 | |||
No | 274 (82.5%) | 209 (87.1%) | 65 (72.2%) | |
Yes | 58 (17.5%) | 31 (12.9%) | 25 (27.8%) | |
MAO-B inhibitors | 0.016 | |||
No | 240 (72.3%) | 183 (76.3%) | 56 (62.2%) | |
Yes | 92 (27.7%) | 57 (23.8%) | 34 (37.8%) | |
Entacapano | 0.015 | |||
No | 310 (93.4%) | 230 (95.8%) | 79 (87.8%) | |
Yes | 22 (6.63%) | 10 (4.17%) | 11 (12.2%) | |
Levodopa equivalent daily dose | 0.001 | |||
Mean (SD) | 280 (714) | 158 (323) | 564 (1170) | |
Median (Min, Max) | 0 (0, 7630) | 0 (0, 2400) | 140 (0, 7630) | |
Elixhauser comorbidities score | 0.186 | |||
Mean (SD) | 1.26 (3.14) | 1.13 (2.85) | 1.64 (3.83) | |
Median (Min, Max) | 0 (0, 20.0) | 0 (0, 20.0) | 0 (0, 19.0) | |
MDS-UPDRS I-III | <0.001 | |||
Mean (SD) | 18.4 (22.0) | 14.4 (17.5) | 29.5 (28.5) | |
Median (Min, Max) | 8.00 (0, 130) | 7.00 (0, 106) | 22.0 (0, 130) | |
Missing | 8 (2.4%) | 2 (0.8%) | 4 (4.4%) | |
Dyskinesias | 0.84 | |||
No | 313 (96.3%) | 230 (96.6%) | 83 (95.4%) | |
Yes | 12 (3.69%) | 8 (3.36%) | 4 (4.60%) | |
Missing | 7 (2.1%) | 2 (0.8%) | 3 (3.3%) | |
Motor fluctuations | <0.001 | |||
No | 296 (91.1%) | 226 (95.0%) | 70 (80.5%) | |
Yes | 29 (8.92%) | 12 (5.04%) | 17 (19.5%) | |
Missing | 7 (2.1%) | 2 (0.8%) | 3 (3.3%) | |
MoCA score | 0.360 | |||
Mean (SD) | 27.4 (2.76) | 27.5 (2.57) | 27.2 (3.24) | |
Median (Min, Max) | 28.0 (11.0, 30.0) | 28.0 (11.0, 30.0) | 28.0 (12.0, 30.0) | |
Missing | 19 (5.7%) | 12 (5.0%) | 7 (7.8%) | |
Minimal cognitive impairment | 0.999 | |||
No | 148 (95.5%) | 98 (95.1%) | 50 (96.2%) | |
Yes | 7 (4.52%) | 5 (4.85%) | 2 (3.85%) | |
Missing | 177 (53.3%) | 137 (57.1%) | 38 (42.2%) | |
PD Dementia | 0.999 | |||
No | 152 (98.1%) | 102 (99.0%) | 50 (96.2%) | |
Yes | 3 (1.94%) | 1 (0.971%) | 2 (3.85%) | |
Missing | 177 (53.3%) | 137 (57.1%) | 38 (42.2%) |
Number of Risk Alleles for Each SNP | Overall (N = 330) | No RBD (N = 240) | pRBD (N = 90) | Chi-sq p-Value | Additive Model OR (95% CI) p-Value, (AIC) | Dominant Model OR (95% CI) p-Value, (AIC) | Recessive Model OR (95% CI) p-Value, (AIC) | Full Model OR (95% CI) p-Value FDR p-Value |
---|---|---|---|---|---|---|---|---|
GBA_N370S_rs76763715 | 0.004 | - | 3.22 (1.48–7.07) | - | 3.38 (1.45–7.93) | |||
0 | 301 (91.3%) | 226 (94.2%) | 75 (83.3%) | 0.002 (382.14) | 0.004 | |||
1 | 29 (8.73%) | 14 (5.83%) | 15 (16.7%) | SELECTED | 0.018 | |||
2 | 0 (0%) | 0 (0%) | 0 (0%) | |||||
GBA_E365K_rs2230288 | 0.026 | - | 7.00 (1.47–49.51) | - | 5.59 (1.05–42.09) | |||
0 | 323 (97.9%) | 238 (99.2%) | 85 (94.4%) | 0.02 (384.69) | 0.050 | |||
1 | 7 (2.11%) | 2 (0.833%) | 5 (5.56%) | SELECTED | 0.084 | |||
2 | 0 (0%) | 0 (0%) | 0 (0%) | |||||
ACMSD.TMEM163_rs6430538 | 0.022 | 0.64 (0.45–0.89) | 0.64 (0.39–1.06) | 0.39 (0.19–0.77) | 0.48 (0.22–0.99) | |||
0 | 115 (34.9%) | 77 (32.1%) | 38 (42.2%) | 0.01 (383.93) | 0.08 (387.81) | 0.009 (383.03) | 0.050 | |
1 | 142 (43.1%) | 101 (42.1%) | 41 (45.6%) | SELECTED | 0.084 | |||
2 | 73 (22.0%) | 62 (25.8%) | 11 (12.2%) | |||||
MCCC1_rs12637471 | 0.077 | 1.07 (0.69–1.64) | 0.90 (0.54–1.48) | 3.35 (0.98–11.92) | 3.05 (0.83–11.65) | |||
0 | 207 (62.3%) | 149 (62.1%) | 58 (64.4%) | 0.74 (390.62) | 0.69 (390.57) | 0.05 (386.97) | 0.110 | |
1 | 112 (34.3%) | 86 (35.8%) | 26 (28.9%) | SELECTED | 0.110 | |||
2 | 11 (3.31%) | 5 (2.08%) | 6 (6.67%) | |||||
FAM47E.STBD1_rs6812193 | 0.077 | 1.22 (0.84–1.76) | 1.02 (0.62–1.68) | 2.14 (1.05–4.27) | 1.77 (0.79–3.91) | |||
0 | 132 (41.9%) | 100 (41.7%) | 37 (41.1%) | 0.26 (389.49) | 0.93 (390.72) | 0.03 (386.31) | 0.150 | |
1 | 155 (46.7%) | 118 (49.2%) | 37 (41.1%) | SELECTED | 0.170 | |||
2 | 38 (11.4%) | 22 (9.17%) | 16 (17.8%) | |||||
SNCA_A53T_rs104893877 | <0.001 | - | 7.37 (2.39–27.48) | - | 8.21 (2.26–36.34) | |||
0 | 312 (95.8%) | 236 (98.3%) | 80 (88.9%) | <0.001 (378.33) | 0.002 | |||
1 | 14 (4.22%) | 4 (1.67%) | 10 (11.1%) | SELECTED | 0.014 | |||
2 | 0 (0%) | 0 (0%) | 0 (0%) | |||||
ANK2.CAMK2D_rs78738012 | 0.005 | 2.26 (1.34–3.82) | 2.47 (1.39–4.36) | 2.70 (0.32–22.81) | 2.12 (1.08–4.10) | |||
0 | 265 (80.1%) | 203 (84.6%) | 62 (68.9%) | 0.002 (381.38) | 0.001 (381.19) | 0.32 (389.79) | 0.030 | |
1 | 61 (18.7%) | 35 (14.6%) | 26 (28.9%) | SELECTED | 0.050 | |||
2 | 4 (1.20%) | 2 (0.833%) | 2 (2.22%) | |||||
ZNF184_rs9468199 | 0.022 | 1.58 (1.04–2.41) | 1.92 (1.17–3.16) | 0.88 (0.19–3.04) | 1.89 (1.08–3.33) | |||
0 | 213 (64.8%) | 165 (68.8%) | 48 (53.3%) | 0.03 (386.15) | 0.009 (384.07) | 0.85 (390.70) | 0.030 | |
1 | 105 (31.6%) | 66 (27.5%) | 39 (43.3%) | SELECTED | 0.050 | |||
2 | 12 (3.61%) | 9 (3.75%) | 3 (3.33%) | |||||
CTSB_rs1293298 | 0.108 | 0.96 (0.64–1.41) | 0.77 (0.47–1.25) | 1.87 (0.78–4.30) | 1.91 (0.73–4.86) | |||
0 | 157 (47.9%) | 110 (45.8%) | 47 (52.2%) | 0.84 (390.69) | 0.30 (389.66) | 0.14 (388.67) | 0.17 | |
1 | 148 (44.6%) | 115 (47.9%) | 33 (36.7%) | SELECTED | 0.17 | |||
2 | 25 (7.53%) | 15 (6.25%) | 10 (11.1%) | |||||
COQ7.SYT17_rs11343 | 0.007 | 0.81 (0.57–1.15) | 1.19 (0.69–2.10) | 0.38 (0.17–0.75) | 0.36 (0.15–0.78) | |||
0 | 93 (28.0%) | 70 (29.2%) | 23 (25.6%) | 0.25 (389.41) | 0.51 (390.30) | 0.009 (382.81) | 0.010 | |
1 | 168 (50.9%) | 111 (46.3%) | 57 (63.3%) | SELECTED | 0.041 | |||
2 | 69 (21.1%) | 59 (24.6%) | 10 (11.1%) | |||||
ZNF646.KAT8.BCKDK_rs14235 | 0.07 | 1.24 (0.87–1.75) | 1.73 (1.03–3.01) | 0.89 (0.45–1.69) | 1.67 (0.93–3.08) | |||
0 | 117 (35.5%) | 93 (38.8%) | 24 (26.7%) | 0.22 (389.23) | 0.04 (386.43) | 0.74 (390.62) | 0.09 | |
1 | 158 (47.9%) | 106 (44.2%) | 52 (57.8%) | SELECTED | 0.11 | |||
2 | 55 (16.6%) | 41 (17.1%) | 14 (15.6%) |
Model | AUC ROC (%) | Sensitivity (%) | Specificity (%) | Calculated Prevalence (%) |
---|---|---|---|---|
Logistic regression | 67.00 | 39 (20–61) | 95 (87–99) | 13 (7–21) |
Bayes Naïve | 67.00 | 39 (20–61) | 95 (87–99) | 13 (7–21) |
Decision tree | 55.27 | 13 (3–34) | 97 (91–100) | 5 (2–11) |
Boosted Decision tree | 79.12 | 22 (7–44) | 99 (93–100) | 6 (2–12) |
Neural Network | 80.63 | 35 (16–57) | 95 (87–99) | 12 (6–20) |
SVM | 76.00 | 9 (1–28) | 99 (93–100) | 3 (1–8) |
Random Forrest | 71.40 | 23 (15–32) | 96 (89–99) | 7 (3–14) |
Logistic Regression Model | Only Genetic | Genetic + Clinical | Genetic + Clinical (LOOCV) |
---|---|---|---|
Model variables | |||
GBA_N370S_rs76763715 (Dominant) | 1.67 | 1.20 | 1.62 |
GBA_E365K_rs2230288 (Dominant) | 3.15 | 4.02 | 6.45 |
ACMSD.TMEM163_rs6430538 (Recessive) | 0.44 | 0.57* | 0.60 |
MCCC1_rs12637471 (Recessive) | 3.31 | 2.48 | 2.34 |
FAM47E.STBD1_rs6812193 (Recessive) | 1.91 | 1.59 | 1.62 |
SNCA_A53T_rs104893877 (Dominant) | 6.49 | 3.32 | 3.65 |
ANK2.CAMK2D_rs78738012 (Dominant) | 1.85 | 1.76 | 2.02 |
ZNF184_rs9468199 (Dominant) | 1.85 | 2.01 | 2.12 |
CTSB_rs1293298 (Recessive) | 2.07 | 2.25 | 2.19 |
COQ7.SYT17_rs11343 (Recessive) | 0.40 | 0.38 | 0.34 |
ZNF646.KAT8.BCKDK_rs14235 (Dominant) | 1.53 | 1.38 | 1.67 |
Levodopa-Equivalent Daily Dose | - | 1.00 | 1.00 |
MDS-UPDRS I + II + III | - | 1.02 | 1.02 |
Motor Fluctuations | - | 0.89 | 1.06 |
Model parameters | |||
Sample Size | 101 | 97 | 324 |
ROC (%) | 67.0 | 82.5 | 78.3 |
Sensitivity (%) | 39 (20–61) | 48 (26–70) | 38 (28–49) |
Specificity (%) | 95 (87–99) | 97 (91–100) | 95 (92–98) |
Model parameters | |||
Sample Size | 101 | 97 | 324 |
ROC (%) | 67.0 | 82.5 | 78.3 |
Sensitivity (%) | 39 (20–61) | 48 (26–70) | 38 (28–49) |
Specificity (%) | 95 (87–99) | 97 (91–100) | 95 (92–98) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perez-Lloret, S.; Chevalier, G.; Bordet, S.; Barbar, H.; Capani, F.; Udovin, L.; Otero-Losada, M. The Genetic Basis of Probable REM Sleep Behavior Disorder in Parkinson’s Disease. Brain Sci. 2023, 13, 1146. https://doi.org/10.3390/brainsci13081146
Perez-Lloret S, Chevalier G, Bordet S, Barbar H, Capani F, Udovin L, Otero-Losada M. The Genetic Basis of Probable REM Sleep Behavior Disorder in Parkinson’s Disease. Brain Sciences. 2023; 13(8):1146. https://doi.org/10.3390/brainsci13081146
Chicago/Turabian StylePerez-Lloret, Santiago, Guenson Chevalier, Sofia Bordet, Hanny Barbar, Francisco Capani, Lucas Udovin, and Matilde Otero-Losada. 2023. "The Genetic Basis of Probable REM Sleep Behavior Disorder in Parkinson’s Disease" Brain Sciences 13, no. 8: 1146. https://doi.org/10.3390/brainsci13081146
APA StylePerez-Lloret, S., Chevalier, G., Bordet, S., Barbar, H., Capani, F., Udovin, L., & Otero-Losada, M. (2023). The Genetic Basis of Probable REM Sleep Behavior Disorder in Parkinson’s Disease. Brain Sciences, 13(8), 1146. https://doi.org/10.3390/brainsci13081146