Imaging Markers in Genetic Forms of Parkinson’s Disease
Abstract
:1. Background
2. Methods
3. Imaging Studies Findings in Genetic Forms and Prodromal Phase of Parkinson’s Disease
3.1. Genetic Forms of Parkinson’s Disease
3.1.1. Molecular Imaging (SPECT and PET)
3.1.2. MRI Findings
3.2. Imaging Findings in Non-Manifesting Carriers (NMCs) of PD-Related Genetic Mutations
3.2.1. Molecular Imaging (SPECT and PET)
3.2.2. MRI Findings
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Lau, L.M.L.; Breteler, M.M.B. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006, 5, 525–535. [Google Scholar] [CrossRef]
- Nussbaum, R.L.; Ellis, C.E. Alzheimer’s disease and Parkinson’s disease. N. Engl. J. Med. 2003, 348, 1356–1364. [Google Scholar] [CrossRef]
- Morrish, P.K.; Rakshi, J.S.; Bailey, D.L.; Sawle, G.V.; Brooks, D.J. Measuring the rate of progression and estimating the preclinical period of Parkinson’s disease with [18F] dopa PET. J. Neurol. Neurosurg. Psychiatry 1998, 64, 314–319. [Google Scholar] [CrossRef]
- Lohmann, E.; Periquet, M.; Bonifati, V.; Wood, N.W.; De Michele, G.; Bonnet, A.-M.; Fraix, V.; Broussolle, E.; Horstink, M.W.I.M.; Vidailhet, M.; et al. European Consortium on Genetic Susceptibility in Parkinson’s Disease. How much phenotypic variation can be attributed to parkin genotype? Ann. Neurol. 2003, 54, 176–185. [Google Scholar] [CrossRef]
- Chang, D.; Nalls, M.A.; Hallgrímsdóttir, I.B.; Hunkapiller, J.; Van Der Brug, M.; Cai, F.; International Parkinson’s Disease Genomics Consortium; 23andMe Research Team; Kerchner, G.A.; Ayalon, G.; et al. A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nat. Genet. 2017, 49, 1511–1516. [Google Scholar] [CrossRef]
- Bonifati, V.; Rizzu, P.; Squitieri, F.; Krieger, E.; Vanacore, N.; van Swieten, J.C.; Brice, A.; van Duijn, C.M.; Oostra, B.; Meco, G.; et al. DJ-1 (PARK7), a novel gene for autosomal recessive, early onset parkinsonism. Neurol. Sci. 2003, 24, 159–160. [Google Scholar] [CrossRef]
- Sidransky, E.; Nalls, M.A.; Aasly, J.O.; Aharon-Peretz, J.; Annesi, G.; Barbosa, E.R.; Bar-Shira, A.; Berg, D.; Bras, J.; Brice, A.; et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N. Engl. J. Med. 2009, 361, 1651–1661. [Google Scholar] [CrossRef]
- Gan-Or, Z.; Giladi, N.; Rozovski, U.; Shifrin, C.; Rosner, S.; Gurevich, T.; Bar-Shira, A.; Orr-Urtreger, A. Genotype-phenotype correlations between GBA mutations and Parkinson disease risk and onset. Neurology 2008, 70, 2277–2283. [Google Scholar] [CrossRef]
- Neumann, J.; Bras, J.; Deas, E.; O’Sullivan, S.S.; Parkkinen, L.; Lachmann, R.H.; Li, A.; Holton, J.; Guerreiro, R.; Paudel, R.; et al. Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain 2009, 132 Pt 7, 1783–1794. [Google Scholar] [CrossRef]
- Healy, D.G.; Falchi, M.; O’Sullivan, S.S.; Bonifati, V.; Durr, A.; Bressman, S.; Brice, A.; Aasly, J.; Zabetian, C.P.; Goldwurm, S.; et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: A case-control study. Lancet Neurol. 2008, 7, 583–590. [Google Scholar] [CrossRef]
- Thaler, A.; Ash, E.; Gan-Or, Z.; Orr-Urtreger, A.; Giladi, N. The LRRK2 G2019S mutation as the cause of Parkinson’s disease in Ashkenazi Jews. J. Neural. Transm. 2009, 116, 1473–1482. [Google Scholar] [CrossRef]
- Zabetian, C.P.; Hutter, C.M.; Yearout, D.; Lopez, A.N.; Factor, S.A.; Griffith, A.; Leis, B.C.; Bird, T.D.; Nutt, J.G.; Higgins, D.S.; et al. LRRK2 G2019S in families with Parkinson disease who originated from Europe and the Middle East: Evidence of two distinct founding events beginning two millennia ago. Am. J. Hum. Genet. 2006, 79, 752–758. [Google Scholar] [CrossRef]
- Kozlovski, T.; Mitelpunkt, A.; Thaler, A.; Gurevich, T.; Orr-Urtreger, A.; Gana-Weisz, M.; Shachar, N.; Galili, T.; Marcus-Kalish, M.; Bressman, S.; et al. Hierarchical Data-Driven Analysis of Clinical Symptoms Among Patients With Parkinson’s Disease. Front. Neurol. 2019, 10, 531. [Google Scholar] [CrossRef]
- Mirelman, A.; Alcalay, R.N.; Saunders-Pullman, R.; Yasinovsky, K.; Thaler, A.; Gurevich, T.; Mejia-Santana, H.; Raymond, D.; Gana-Weisz, M.; Bar-Shira, A.; et al. Nonmotor symptoms in healthy Ashkenazi Jewish carriers of the G2019S mutation in the LRRK2 gene. Mov. Disord. 2015, 30, 981–986. [Google Scholar] [CrossRef]
- Mirelman, A.; Heman, T.; Yasinovsky, K.; Thaler, A.; Gurevich, T.; Marder, K.; Bressman, S.; Bar-Shira, A.; Orr-Urtreger, A.; Giladi, N.; et al. Fall risk and gait in Parkinson’s disease: The role of the LRRK2 G2019S mutation. Mov. Disord. 2013, 28, 1683–1690. [Google Scholar] [CrossRef]
- Alcalay, R.N.; Mirelman, A.; Saunders-Pullman, R.; Tang, M.X.; Mejia Santana, H.; Raymond, D.; Roos, E.; Orbe-Reilly, M.; Gurevich, T.; Bar Shira, A.; et al. Parkinson disease phenotype in Ashkenazi Jews with and without LRRK2 G2019S mutations. Mov. Disord. 2013, 28, 1966–1971. [Google Scholar] [CrossRef]
- Kasten, M.; Klein, C. The many faces of alpha-synuclein mutations. Mov. Disord. 2013, 28, 697–701. [Google Scholar] [CrossRef]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015, 30, 1591–1601. [Google Scholar] [CrossRef]
- Filippi, M.; Balestrino, R.; Basaia, S.; Agosta, F. Neuroimaging in Glucocerebrosidase-Associated Parkinsonism: A Systematic Review. Mov. Disord. 2022, 37, 1375–1393. [Google Scholar] [CrossRef]
- Brücke, T.; Brücke, C. Dopamine transporter (DAT) imaging in Parkinson’s disease and related disorders. J. Neural. Transm. 2022, 129, 581–594. [Google Scholar] [CrossRef]
- Phelps, M.E. Positron emission tomography provides molecular imaging of biological processes. Proc. Natl. Acad. Sci. USA 2000, 97, 9226–9233. [Google Scholar] [CrossRef]
- Strijckmans, K. The isochronous cyclotron: Principles and recent developments. Comput. Med. Imaging Graph. 2001, 25, 69–78. [Google Scholar] [CrossRef]
- Lu, F.M.; Yuan, Z. PET/SPECT molecular imaging in clinical neuroscience: Recent advances in the investigation of CNS diseases. Quant. Imaging Med. Surg. 2015, 5, 433–447. [Google Scholar] [CrossRef]
- McNeill, A.; Wu, R.M.; Tzen, K.Y.; Aguiar, P.C.; Arbelo, J.M.; Barone, P.; Bhatia, K.; Barsottini, O.; Bonifati, V.; Bostantjopoulou, S.; et al. Dopaminergic neuronal imaging in genetic Parkinson’s disease: Insights into pathogenesis. PLoS ONE 2013, 8, e69190. [Google Scholar] [CrossRef]
- Kim, M.S.; Park, D.G.; An, Y.S.; Yoon, J.H. Dual-phase 18F-FP-CIT positron emission tomography and cardiac 123I-MIBG scintigraphy of Parkinson’s disease patients with GBA mutations: Evidence of the body-first type? Eur. J. Neurol. 2023, 30, 344–352. [Google Scholar] [CrossRef]
- Ben Bashat, D.; Thaler, A.; Lerman Shacham, H.; Even-Sapir, E.; Hutchison, M.; Evans, K.C.; Orr-Urterger, A.; Cedarbaum, J.M.; Droby, A.; Giladi, N.; et al. Neuromelanin and T2*-MRI for the assessment of genetically at-risk, prodromal, and symptomatic Parkinson’s disease. NPJ Park. Dis. 2022, 8, 139. [Google Scholar] [CrossRef]
- Simuni, T.; Uribe, L.; Cho, H.R.; Caspell-Garcia, C.; Coffey, C.S.; Siderowf, A.; Trojanowski, J.Q.; Shaw, L.M.; Seibyl, J.; Singleton, A.; et al. Clinical and dopamine transporter imaging characteristics of non-manifest LRRK2 and GBA mutation carriers in the Parkinson’s Progression Markers Initiative (PPMI): A cross-sectional study. Lancet Neurol. 2020, 19, 71–80. [Google Scholar] [CrossRef]
- Lee, M.J.; Pak, K.; Kim, H.K.; Nudelman, K.N.; Kim, J.H.; Kim, Y.H.; Kang, J.; Baek, M.S.; Lyoo, C.H. Genetic factors affecting dopaminergic deterioration during the premotor stage of Parkinson disease. NPJ Park. Dis. 2021, 7, 104. [Google Scholar] [CrossRef]
- Saunders-Pullman, R.; Hagenah, J.; Dhawan, V.; Stanley, K.; Pastores, G.; Sathe, S.; Tagliati, M.; Condefer, K.; Palmese, C.; Brüggemann, N.; et al. Gaucher Disease Ascertained through a Parkinson’s Center: Imaging and Clinical Characterization. Mov. Disord. 2010, 25, 1364–1372. [Google Scholar] [CrossRef]
- Schindlbeck, K.A.; Vo, A.; Nguyen, N.; Tang, C.C.; Niethammer, M.; Dhawan, V.; Brandt, V.; Saunders-Pullman, R.; Bressman, S.B.; Eidelberg, D. LRRK2 and GBA Variants Exert Distinct Influences on Parkinson’s Disease-Specific Metabolic Networks. Cereb. Cortex 2020, 30, 2867–2878. [Google Scholar] [CrossRef]
- Reetz, K.; Gaser, C.; Klein, C.; Hagenah, J.; Büchel, C.; Gottschalk, S.; Pramstaller, P.P.; Siebner, H.R.; Binkofski, F. Structural findings in the basal ganglia in genetically determined and idiopathic Parkinson’s disease. Mov. Disord. 2009, 24, 99–103. [Google Scholar] [CrossRef]
- Bilgic, B.; Bayram, A.; Arslan, A.B.; Hanagasi, H.; Dursun, B.; Gurvit, H.; Emre, M.; Lohmann, E. Differentiating symptomatic Parkin mutations carriers from patients with idiopathic Parkinson’s disease: Contribution of automated segmentation neuroimaging method. Park. Relat. Disord. 2012, 18, 562–566. [Google Scholar] [CrossRef]
- Brockmann, K.; Gröger, A.; Di Santo, A.; Liepelt, I.; Schulte, C.; Klose, U.; Maetzler, W.; Hauser, A.K.; Hilker, R.; Gomez-Mancilla, B.; et al. Clinical and brain imaging characteristics in leucine-rich repeat kinase 2-associated PD and asymptomatic mutation carriers. Mov. Disord. 2011, 26, 2335–2342. [Google Scholar] [CrossRef]
- Thaler, A. Structural and Functional MRI in Familial Parkinson’s Disease. Int. Rev. Neurobiol. 2018, 142, 261–287. [Google Scholar] [CrossRef]
- Ghatti, S.; Yoon, E.; Lopez, G.; Ehrlich, D.; Horovitz, S.G. Imaging and genetics in Parkinson’s disese: Assessment of the GBA1 mutation. J. Neurol. 2022, 269, 5347–5355. [Google Scholar] [CrossRef]
- Leocadi, M.; Canu, E.; Donzuso, G.; Stojkovic, T.; Basaia, S.; Kresojevic, N.; Stankovic, I.; Sarasso, E.; Piramide, N.; Tomic, A.; et al. Longitudinal clinical, cognitive, and neuroanatomical changes over 5 years in GBA-positive Parkinson’s disease patients. J. Neurol. 2022, 269, 1485–1500. [Google Scholar] [CrossRef]
- Zucca, F.A.; Segura-Aguilar, J.; Ferrari, E.; Muñoz, P.; Paris, I.; Sulzer, D.; Sarna, T.; Casella, L.; Zecca, L. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog. Neurobiol. 2017, 155, 96–119. [Google Scholar] [CrossRef]
- Lehéricy, S.; Sharman, M.A.; Dos Santos, C.L.; Paquin, R.; Gallea, C. Magnetic resonance imaging of the substantia nigra in Parkinson’s disease. Mov. Disord. 2012, 27, 822–830. [Google Scholar] [CrossRef]
- Kashihara, K.; Shinya, T.; Higaki, F. Neuromelanin magnetic resonance imaging of nigral volume loss in patients with Parkinson’s disease. J. Clin. Neurosci. 2011, 18, 1093–1096. [Google Scholar] [CrossRef]
- Martin-Bastida, A.; Pietracupa, S.; Piccini, P. Neuromelanin in parkinsonian disorders: An update. Int. J. Neurosci. 2017, 127, 1116–1123. [Google Scholar] [CrossRef]
- Hatano, T.; Okuzumi, A.; Kamagata, K.; Daida, K.; Taniguchi, D.; Hori, M.; Yoshino, H.; Aoki, S.; Hattori, N. Neuromelanin MRI is useful for monitoring motor complications in Parkinson’s and PARK2 disease. J. Neural. Transm. 2017, 124, 407–415. [Google Scholar] [CrossRef]
- Martínez, M.; Ariz, M.; Alvarez, I.; Castellanos, G.; Aguilar, M.; Hernández-Vara, J.; Caballol, N.; Garrido, A.; Bayés, À.; Vilas, D.; et al. Brainstem neuromelanin and iron MRI reveals a precise signature for idiopathic and LRRK2 Parkinson’s disease. NPJ Park. Dis. 2023, 9, 62. [Google Scholar] [CrossRef]
- Assaf, Y.; Pasternak, O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: A review. J. Mol. Neurosci. 2008, 34, 51–61. [Google Scholar] [CrossRef]
- Li, X.R.; Ren, Y.D.; Cao, B.; Huang, X.L. Analysis of white matter characteristics with tract-based spatial statistics according to diffusion tensor imaging in early Parkinson’s disease. Neurosci. Lett. 2018, 675, 127–132. [Google Scholar] [CrossRef]
- Agosta, F.; Kostic, V.S.; Davidovic, K.; Kresojević, N.; Sarro, L.; Svetel, M.; Stanković, I.; Comi, G.; Klein, C.; Filippi, M. White matter abnormalities in Parkinson’s disease patients with glucocerebrosidase gene mutations. Mov. Disord. 2013, 28, 772–778. [Google Scholar] [CrossRef]
- Atkinson-Clement, C.; Pinto, S.; Eusebio, A.; Coulon, O. Diffusion tensor imaging in Parkinson’s disease: Review and meta-analysis. Neuroimage Clin. 2017, 16, 98–110. [Google Scholar] [CrossRef]
- Yu, J.; Chen, L.; Cai, G.; Wang, Y.; Chen, X.; Hong, W.; Ye, Q. Evaluating white matter alterations in Parkinson’s disease-related parkin S/N167 mutation carriers using tract-based spatial statistics. Quant. Imaging Med. Surg. 2022, 12, 4272–4285. [Google Scholar] [CrossRef]
- Rocca, M.A.; Schoonheim, M.M.; Valsasina, P.; Geurts, J.J.G.; Filippi, M. Task- and resting-state fMRI studies in multiple sclerosis: From regions to systems and time-varying analysis. Current status and future perspective. Neuroimage Clin. 2022, 35, 103076. [Google Scholar] [CrossRef]
- Van Eimeren, T.; Binkofski, F.; Buhmann, C.; Hagenah, J.; Strafella, A.P.; Pramstaller, P.P.; Siebner, H.R.; Klein, C. Imaging movement-related activity in medicated Parkin-associated and sporadic Parkinson’s disease. Park. Relat. Disord. 2010, 16, 384–387. [Google Scholar] [CrossRef]
- Fox, M.D.; Snyder, A.Z.; Vincent, J.L.; Corbetta, M.; Van Essen, D.C.; Raichle, M.E. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 2005, 102, 9673–9678. [Google Scholar] [CrossRef]
- Biswal, B.B.; Mennes, M.; Zuo, X.N.; Gohel, S.; Kelly, C.; Smith, S.M.; Beckmann, C.F.; Adelstein, J.S.; Buckner, R.L.; Colcombe, S.; et al. Toward discovery science of human brain function. Proc. Natl. Acad. Sci. USA 2010, 107, 4734–4739. [Google Scholar] [CrossRef]
- Makovac, E.; Cercignani, M.; Serra, L.; Torso, M.; Spanò, B.; Petrucci, S.; Ricciardi, L.; Ginevrino, M.; Caltagirone, C.; Bentivoglio, A.R.; et al. Brain Connectivity Changes in Autosomal Recessive Parkinson Disease: A Model for the Sporadic Form. PLoS ONE 2016, 11, e0163980. [Google Scholar] [CrossRef]
- Hou, Y.; Luo, C.; Yang, J.; Ou, R.; Song, W.; Chen, Y.; Gong, Q.; Shang, H. Altered intrinsic brain functional connectivity in drug-naïve Parkinson’s disease patients with LRRK2 mutations. Neurosci. Lett. 2018, 675, 145–151. [Google Scholar] [CrossRef]
- Greuel, A.; Trezzi, J.P.; Glaab, E.; Ruppert, M.C.; Maier, F.; Jäger, C.; Hodak, Z.; Lohmann, K.; Ma, Y.; Eidelberg, D.; et al. GBA Variants in Parkinson’s Disease: Clinical, Metabolomic, and Multimodal Neuroimaging Phenotypes. Mov. Disord. 2020, 35, 2201–2210. [Google Scholar] [CrossRef]
- Kono, S.; Ouchi, Y.; Terada, T.; Ida, H.; Suzuki, M.; Miyajima, H. Functional brain imaging in glucocerebrosidase mutation carriers with and without parkinsonism. Mov. Disord. 2010, 25, 1823–1829. [Google Scholar] [CrossRef]
- Wile, D.J.; Agarwal, P.A.; Schulzer, M.; Mak, E.; Dinelle, K.; Shahinfard, E.; Vafai, N.; Hasegawa, K.; Zhang, J.; McKenzie, J.; et al. Serotonin and dopamine transporter PET changes in the premotor phase of LRRK2 parkinsonism: Cross-sectional studies. Lancet Neurol. 2017, 16, 351–359. [Google Scholar] [CrossRef]
- Artzi, M.; Even-Sapir, E.; Lerman Shacham, H.; Thaler, A.; Urterger, A.O.; Bressman, S.; Marder, K.; Hendler, T.; Giladi, N.; Ben Bashat, D.; et al. DaT-SPECT assessment depicts dopamine depletion among asymptomatic G2019S LRRK2 mutation carriers. PLoS ONE 2017, 12, e0175424. [Google Scholar] [CrossRef]
- Kägi, G.; Bhatia, K.P.; Tolosa, E. The role of DAT-SPECT in movement disorders. J. Neurol. Neurosurg. Psychiatry 2010, 81, 5–12. [Google Scholar] [CrossRef]
- Binkofski, F.; Reetz, K.; Gaser, C.; Hilker, R.; Hagenah, J.; Hedrich, K.; van Eimeren, T.; Thiel, A.; Büchel, C.; Pramstaller, P.P.; et al. Morphometric fingerprint of asymptomatic Parkin and PINK1 mutation carriers in the basal ganglia. Neurology 2007, 69, 842–850. [Google Scholar] [CrossRef]
- Reetz, K.; Lencer, R.; Steinlechner, S.; Gaser, C.; Hagenah, J.; Büchel, C.; Petersen, D.; Kock, N.; Djarmati, A.; Siebner, H.R.; et al. Limbic and frontal cortical degeneration is associated with psychiatric symptoms in PINK1 mutation carriers. Biol. Psychiatry 2008, 64, 241–247. [Google Scholar] [CrossRef]
- Thaler, A.; Artzi, M.; Mirelman, A.; Jacob, Y.; Helmich, R.C.; van Nuenen, B.F.L.; Gurevich, T.; Orr-Urtreger, A.; Marder, K.; Bressman, S.; et al. A voxel-based morphometry and diffusion tensor imaging analysis of asymptomatic Parkinson’s disease-related G2019S LRRK2 mutation carriers. Mov. Disord. 2014, 29, 823–827. [Google Scholar] [CrossRef] [PubMed]
- Szamosi, A.; Nagy, H.; Kéri, S. Delay discounting of reward and caudate nucleus volume in individuals with α-synuclein gene duplication before and after the development of Parkinson’s disease. Neurodegener. Dis. 2013, 11, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Burciu, R.G.; Seidler, R.D.; Shukla, P.; Nalls, M.A.; Singleton, A.B.; Okun, M.S.; Vaillancourt, D.E. Multimodal neuroimaging and behavioral assessment of α-synuclein polymorphism rs356219 in older adults. Neurobiol. Aging 2018, 66, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Trachtenberg, J.T.; Chen, B.E.; Knott, G.W.; Feng, G.; Sanes, J.R.; Welker, E.; Svoboda, K. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 2002, 420, 788–794. [Google Scholar] [CrossRef] [PubMed]
- Jahanshahi, M.; Jenkins, I.H.; Brown, R.G.; Marsden, C.D.; Passingham, R.E.; Brooks, D.J. Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain 1995, 118 Pt 4, 913–933. [Google Scholar] [CrossRef]
- Sabatini, U.; Boulanouar, K.; Fabre, N.; Martin, F.; Carel, C.; Colonnese, C.; Bozzao, L.; Berry, I.; Montastruc, J.L.; Chollet, F.; et al. Cortical motor reorganization in akinetic patients with Parkinson’s disease: A functional MRI study. Brain 2000, 123 Pt 2, 394–403. [Google Scholar] [CrossRef]
- Buhmann, C.; Binkofski, F.; Klein, C.; Büchel, C.; van Eimeren, T.; Erdmann, C.; Hedrich, K.; Kasten, M.; Hagenah, J.; Deuschl, G.; et al. Motor reorganization in asymptomatic carriers of a single mutant Parkin allele: A human model for presymptomatic parkinsonism. Brain 2005, 128 Pt 10, 2281–2290. [Google Scholar] [CrossRef]
- Van Nuenen, B.F.L.; Weiss, M.M.; Bloem, B.R.; Reetz, K.; van Eimeren, T.; Lohmann, K.; Hagenah, J.; Pramstaller, P.P.; Binkofski, F.; Klein, C.; et al. Heterozygous carriers of a Parkin or PINK1 mutation share a common functional endophenotype. Neurology 2009, 72, 1041–1047. [Google Scholar] [CrossRef]
- Helmich, R.C.; Derikx, L.C.; Bakker, M.; Scheeringa, R.; Bloem, B.R.; Toni, I. Spatial remapping of cortico-striatal connectivity in Parkinson’s disease. Cereb. Cortex 2010, 20, 1175–1186. [Google Scholar] [CrossRef]
- Van Nuenen, B.F.L.; Helmich, R.C.; Ferraye, M.; Thaler, A.; Hendler, T.; Orr-Urtreger, A.; Mirelman, A.; Bressman, S.; Marder, K.S.; Giladi, N.; et al. Cerebral pathological and compensatory mechanisms in the premotor phase of leucine-rich repeat kinase 2 parkinsonism. Brain 2012, 135 Pt 12, 3687–3698. [Google Scholar] [CrossRef]
- Anders, S.; Sack, B.; Pohl, A.; Münte, T.; Pramstaller, P.; Klein, C.; Binkofski, F. Compensatory premotor activity during affective face processing in subclinical carriers of a single mutant Parkin allele. Brain 2012, 135 Pt 4, 1128–1140. [Google Scholar] [CrossRef]
- Thaler, A.; Mirelman, A.; Helmich, R.C.; van Nuenen, B.F.L.; Rosenberg-Katz, K.; Gurevich, T.; Orr-Urtreger, A.; Marder, K.; Bressman, S.; Bloem, B.R.; et al. Neural correlates of executive functions in healthy G2019S LRRK2 mutation carriers. Cortex 2013, 49, 2501–2511. [Google Scholar] [CrossRef]
- Helmich, R.C.; Thaler, A.; van Nuenen, B.F.L.; Gurevich, T.; Mirelman, A.; Marder, K.S.; Bressman, S.; Orr-Urtreger, A.; Giladi, N.; Bloem, B.R.; et al. Reorganization of corticostriatal circuits in healthy G2019S LRRK2 carriers. Neurology 2015, 84, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Vilas, D.; Segura, B.; Baggio, H.C.; Pont-Sunyer, C.; Compta, Y.; Valldeoriola, F.; José Martí, M.; Quintana, M.; Bayés, A.; Hernández-Vara, J.; et al. Nigral and striatal connectivity alterations in asymptomatic LRRK2 mutation carriers: A magnetic resonance imaging study. Mov. Disord. 2016, 31, 1820–1828. [Google Scholar] [CrossRef] [PubMed]
- Bregman, N.; Thaler, A.; Mirelman, A.; Helmich, R.C.; Gurevich, T.; Orr-Urtreger, A.; Marder, K.; Bressman, S.; Bloem, B.R.; Giladi, N.; et al. A cognitive fMRI study in non-manifesting LRRK2 and GBA carriers. Brain Struct. Funct. 2017, 222, 1207–1218. [Google Scholar] [CrossRef] [PubMed]
- Thaler, A.; Kliper, E.; Maidan, I.; Herman, T.; Rosenberg-Katz, K.; Bregman, N.; Gurevich, T.; Shiner, T.; Hausdorff, J.M.; Orr-Urtreger, A.; et al. Cerebral Imaging Markers of GBA and LRRK2 Related Parkinson’s Disease and Their First-Degree Unaffected Relatives. Brain Topogr. 2018, 31, 1029–1036. [Google Scholar] [CrossRef]
- Jacob, Y.; Rosenberg-Katz, K.; Gurevich, T.; Helmich, R.C.; Bloem, B.R.; Orr-Urtreger, A.; Giladi, N.; Mirelman, A.; Hendler, T.; Thaler, A. Network abnormalities among non-manifesting Parkinson disease related LRRK2 mutation carriers. Hum. Brain Mapp. 2019, 40, 2546–2555. [Google Scholar] [CrossRef]
- Thaler, A.; Helmich, R.C.; Or-Borichev, A.; van Nuenen, B.F.L.; Shapira-Lichter, I.; Gurevich, T.; Orr-Urtreger, A.; Marder, K.; Bressman, S.; Bloem, B.R.; et al. Intact working memory in non-manifesting LRRK2 carriers—An fMRI study. Eur. J. Neurosci. 2016, 43, 106–112. [Google Scholar] [CrossRef]
- Droby, A.; Artzi, M.; Lerman, H.; Hutchison, R.M.; Bashat, D.B.; Omer, N.; Gurevich, T.; Orr-Urtreger, A.; Cohen, B.; Cedarbaum, J.M.; et al. Aberrant dopamine transporter and functional connectivity patterns in LRRK2 and GBA mutation carriers. NPJ Park. Dis. 2022, 8, 20. [Google Scholar] [CrossRef]
- Berg, D.; Postuma, R.B.; Adler, C.H.; Bloem, B.R.; Chan, P.; Dubois, B.; Gasser, T.; Goetz, C.G.; Halliday, G.; Joseph, L.; et al. MDS research criteria for prodromal Parkinson’s disease. Mov. Disord. 2015, 30, 1600–1611. [Google Scholar] [CrossRef]
- Heinzel, S.; Berg, D.; Gasser, T.; Chen, H.; Yao, C.; Postuma, R.B.; MDS Task Force on the Definition of Parkinson’s Disease. Update of the MDS research criteria for prodromal Parkinson’s disease. Mov. Disord. 2019, 34, 1464–1470. [Google Scholar] [CrossRef] [PubMed]
- Mahlknecht, P.; Marini, K.; Werkmann, M.; Poewe, W.; Seppi, K. Prodromal Parkinson’s disease: Hype or hope for disease-modification trials? Transl. Neurodegener. 2022, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Peplow, P.V.; Martinez, B.; Gennarelli, T.A. Neurodegenerative Disease Biomarkers: Towards Translating Research to Clinical Practice; Hamana: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Mahlknecht, P.; Hotter, A.; Hussl, A.; Esterhammer, R.; Schocke, M.; Seppi, K. Significance of MRI in diagnosis and differential diagnosis of Parkinson’s disease. Neurodegener. Dis. 2010, 7, 300–318. [Google Scholar] [CrossRef] [PubMed]
- Heim, B.; Krismer, F.; De Marzi, R.; Seppi, K. Magnetic resonance imaging for the diagnosis of Parkinson’s disease. J. Neural. Transm. 2017, 124, 915–964. [Google Scholar] [CrossRef] [PubMed]
- Ohtsuka, C.; Sasaki, M.; Konno, K.; Kato, K.; Takahashi, J.; Yamashita, F.; Terayama, Y. Differentiation of early-stage parkinsonisms using neuromelanin-sensitive magnetic resonance imaging. Park. Relat. Disord. 2014, 20, 755–760. [Google Scholar] [CrossRef]
- Reiter, E.; Mueller, C.; Pinter, B.; Krismer, F.; Scherfler, C.; Esterhammer, R.; Kremser, C.; Schocke, M.; Wenning, G.K.; Poewe, W.; et al. Dorsolateral nigral hyperintensity on 3.0T susceptibility-weighted imaging in neurodegenerative Parkinsonism. Mov. Disord. 2015, 30, 1068–1076. [Google Scholar] [CrossRef]
- Bae, Y.J.; Kim, J.M.; Kim, E.; Lee, K.M.; Kang, S.Y.; Park, H.S.; Kim, K.J.; Kim, Y.E.; Oh, E.S.; Yun, J.Y.; et al. Loss of Nigral Hyperintensity on 3 Tesla MRI of Parkinsonism: Comparison With (123) I-FP-CIT SPECT. Mov. Disord. 2016, 31, 684–692. [Google Scholar] [CrossRef]
- Lehericy, S.; Vaillancourt, D.E.; Seppi, K.; Monchi, O.; Rektorova, I.; Antonini, A.; McKeown, M.J.; Masellis, M.; Berg, D.; Rowe, J.B.; et al. The role of high-field magnetic resonance imaging in parkinsonian disorders: Pushing the boundaries forward. Mov. Disord. 2017, 32, 510–525. [Google Scholar] [CrossRef]
- Biondetti, E.; Gaurav, R.; Yahia-Cherif, L.; Mangone, G.; Pyatigorskaya, N.; Valabrègue, R.; Ewenczyk, C.; Hutchison, M.; François, C.; Arnulf, I.; et al. Spatiotemporal changes in substantia nigra neuromelanin content in Parkinson’s disease. Brain 2020, 143, 2757–2770. [Google Scholar] [CrossRef]
- Gaurav, R.; Yahia-Cherif, L.; Pyatigorskaya, N.; Mangone, G.; Biondetti, E.; Valabrègue, R.; Ewenczyk, C.; Hutchison, R.M.; Cedarbaum, J.M.; Corvol, J.C.; et al. Longitudinal Changes in Neuromelanin MRI Signal in Parkinson’s Disease: A Progression Marker. Mov. Disord. 2021, 36, 1592–1602. [Google Scholar] [CrossRef]
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers 2017, 3, 17013. [Google Scholar] [CrossRef] [PubMed]
- Blesa, J.; Trigo-Damas, I.; Dileone, M.; Del Rey, N.L.G.; Hernandez, L.F.; Obeso, J.A. Compensatory mechanisms in Parkinson’s disease: Circuits adaptations and role in disease modification. Exp. Neurol. 2017, 298 Pt B, 148–161. [Google Scholar] [CrossRef]
- Berg, D.; Borghammer, P.; Fereshtehnejad, S.M.; Heinzel, S.; Horsager, J.; Schaeffer, E.; Postuma, R.B. Prodromal Parkinson disease subtypes—Key to understanding heterogeneity. Nat. Rev. Neurol. 2021, 17, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Wurster, I.; Quadalti, C.; Rossi, M.; Hauser, A.K.; Deuschle, C.; Schulte, C.; Waniek, K.; Lachmann, I.; la Fougere, C.; Doppler, K.; et al. Linking the phenotype of SNCA Triplication with PET-MRI imaging pattern and alpha-synuclein CSF seeding. NPJ Park. Dis. 2022, 8, 117. [Google Scholar] [CrossRef] [PubMed]
- Inguanzo, A.; Sala-Llonch, R.; Segura, B.; Erostarbe, H.; Abos, A.; Campabadal, A.; Uribe, C.; Baggio, H.C.; Compta, Y.; Marti, M.J.; et al. Hierarchical cluster analysis of multimodal imaging data identifies brain atrophy and cognitive patterns in Parkinson’s disease. Park. Relat. Disord. 2021, 82, 16–23. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Droby, A.; Thaler, A.; Mirelman, A. Imaging Markers in Genetic Forms of Parkinson’s Disease. Brain Sci. 2023, 13, 1212. https://doi.org/10.3390/brainsci13081212
Droby A, Thaler A, Mirelman A. Imaging Markers in Genetic Forms of Parkinson’s Disease. Brain Sciences. 2023; 13(8):1212. https://doi.org/10.3390/brainsci13081212
Chicago/Turabian StyleDroby, Amgad, Avner Thaler, and Anat Mirelman. 2023. "Imaging Markers in Genetic Forms of Parkinson’s Disease" Brain Sciences 13, no. 8: 1212. https://doi.org/10.3390/brainsci13081212
APA StyleDroby, A., Thaler, A., & Mirelman, A. (2023). Imaging Markers in Genetic Forms of Parkinson’s Disease. Brain Sciences, 13(8), 1212. https://doi.org/10.3390/brainsci13081212