The Influence of Age and Physical Activity on Locomotor Adaptation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Split-Belt Treadmill Paradigm
2.4. Modified Retrospective Physical Activity Survey
2.5. Data Collection
2.6. Data Analysis
- Baseline (B): the last six strides of the baseline phase;
- Early Adaptation (EA): the first six strides of the adaptation phase;
- Mid-Adaptation (MA): the last six strides before the 10 s TIED trial;
- Late Adaptation (LA): the last six strides of the adaptation phase;
- Early Post-adaptation (EPA): the first six strides of the post-adaptation phase;
- Late Post-adaptation (LPA): the last six strides of the post-adaptation phase.
2.7. Statistics
3. Results
3.1. Demographic and Psychometric Data
3.2. Gait Symmetry during the Locomotor Adaptation Task
3.3. Correlation between Age and Locomotor Adaptation
3.4. Correlation between Physical Activity and Locomotor Adaptation
4. Discussion
4.1. Locomotor Adaptation Is Preserved in Older Adults
4.2. Older Adults Show Longer-Lasting Aftereffects
4.3. Physical Activity Mediates Age-Related Effects Post-Adaptation
4.4. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Torres-Oviedo, G.; Vasudevan, E.; Malone, L.; Bastian, A.J. Locomotor Adaptation. In Enhancing Performance for Action and Perception: Multisensory Integration, Neuroplasticity and Neuroprosthetics: Part I; Lepore, F., Green, A., Chapman, C.E., Kalaska, J.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 65–74. [Google Scholar]
- Sato, S.; Choi, J.T. Neural control of human locomotor adaptation: Lessons about changes with aging. Neuroscientist 2022, 28, 469–484. [Google Scholar] [CrossRef]
- Horak, F.B. Adaptation of Automatic Postural Responses. In The Acquisition of Motor Behavior in Vertebrates; MIT Press: Cambridge, MA, USA, 1996; pp. 57–85. [Google Scholar]
- Li, W.; Keegan, T.H.M.; Sternfeld, B.; Sidney, S.; Quesenberry, C.P.; Kelsey, J.L. Outdoor falls among middle-aged and older adults: A neglected public health problem. Am. J. Public Health 2006, 96, 1192–1200. [Google Scholar] [CrossRef] [PubMed]
- Melzer, I.; Benjuya, N.; Kaplanski, J. Postural stability in the elderly: A comparison between fallers and non-fallers. Age Ageing 2004, 33, 602–607. [Google Scholar] [CrossRef]
- Horak, F.B. Clinical assessment of balance disorders. Gait Posture 1997, 6, 76–84. [Google Scholar] [CrossRef]
- Scherder, E.; Eggermont, L.; Sergeant, J.; Boersma, F. Physical activity and cognition in Alzheimer’s disease: Relationship to vascular risk factors, executive functions and gait. Rev. Neurosci. 2007, 18, 149–158. [Google Scholar] [CrossRef]
- Gerards, M.H.G.; Meijer, K.; Karamanidis, K.; Grevendonk, L.; Hoeks, J.; Lenssen, A.F.; McCrum, C. Adaptability to balance perturbations during walking as a potential marker of falls history in older adults. Front. Sports Act. Living 2021, 3, 682861. [Google Scholar] [CrossRef] [PubMed]
- Lurie, J.D.; Zagaria, A.B.; Ellis, L.; Pidgeon, D.; Gill-Body, K.M.; Burke, C.; Armbrust, K.; Cass, S.; Spratt, K.F.; McDonough, C.M.; et al. Surface perturbation training to prevent falls in older adults: A highly pragmatic, randomized controlled trial. Phys. Ther. 2020, 100, 1153–1162. [Google Scholar] [CrossRef]
- Pai, Y.-C.; Wang, E.; Espy, D.D.; Bhatt, T. Adaptability to perturbation as a predictor of future falls: A preliminary prospective study. J. Geriatr. Phys. Ther. 2010, 33, 50–55. [Google Scholar]
- Nguemeni, C.; Homola, G.A.; Nakchbandi, L.; Pham, M.; Volkmann, J.; Zeller, D. A single session of anodal cerebellar transcranial direct current stimulation does not induce facilitation of locomotor consolidation in patients with multiple sclerosis. Front. Hum. Neurosci. 2020, 14, 588671. [Google Scholar] [CrossRef]
- Tomassini, V.; Johansen-Berg, H.; Leonardi, L.; Paixao, L.; Jbabdi, S.; Palace, J.; Pozzilli, C.; Matthews, P.M. Preservation of motor skill learning in patients with multiple sclerosis. Mult. Scler. 2011, 17, 103–115. [Google Scholar] [CrossRef]
- Roemmich, R.T.; Nocera, J.R.; Stegemöller, E.L.; Hassan, A.; Okun, M.S.; Hass, C.J. Locomotor adaptation and locomotor adaptive learning in parkinson’s disease and normal aging. Clin. Neurophysiol. 2014, 125, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Bohm, S.; Mersmann, F.; Bierbaum, S.; Dietrich, R.; Arampatzis, A. Cognitive demand and predictive adaptational responses in dynamic stability control. J. Biomech. 2012, 45, 2330–2336. [Google Scholar] [CrossRef] [PubMed]
- Sombric, C.J.; Harker, H.M.; Sparto, P.J.; Torres-Oviedo, G. Explicit action switching interferes with the context-specificity of motor memories in older adults. Front. Aging Neurosci. 2017, 9, 40. [Google Scholar] [CrossRef] [PubMed]
- Tseng, S.-C.; Stanhope, S.J.; Morton, S.M. Visuomotor adaptation of voluntary step initiation in older adults. Gait Posture 2010, 31, 180–184. [Google Scholar] [CrossRef]
- Bruijn, S.M.; Van Impe, A.; Duysens, J.; Swinnen, S.P. Split-belt walking: Adaptation differences between young and older adults. J. Neurophysiol. 2012, 108, 1149–1157. [Google Scholar] [CrossRef]
- Yaakov, S. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012, 11, 1006–1012. [Google Scholar]
- Malone, L.A.; Bastian, A.J.; Torres-Oviedo, G. How does the motor system correct for errors in time and space during locomotor adaptation? J. Neurophysiol. 2012, 108, 672–683. [Google Scholar] [CrossRef]
- Vervoort, D.; den Otter, A.R.; Buurke, T.J.W.; Vuillerme, N.; Hortobágyi, T.; Lamoth, C.J.C. Effects of aging and task prioritization on split-belt gait adaptation. Front. Aging Neurosci. 2019, 11, 10. [Google Scholar] [CrossRef]
- Vervoort, D.; den Otter, A.; Buurke, T.; Vuillerme, N.; Hortobágyi, T.; Lamoth, C. Do gait and muscle activation patterns change at middle-age during split-belt adaptation? J. Biomech. 2020, 99, 109510. [Google Scholar] [CrossRef]
- Malone, L.A.; Bastian, A.J. Age-related forgetting in locomotor adaptation. Neurobiol. Learn. Mem. 2016, 128, 1–6. [Google Scholar] [CrossRef]
- Rossi, C.; Roemmich, R.T.; Schweighofer, N.; Bastian, A.J.; Leech, K.A. Younger and Late Middle-Aged Adults Exhibit Different Patterns of Cognitive-Motor Interference During Locomotor Adaptation, with No Disruption of Savings. Front. Aging 2021, 13, 729284. [Google Scholar] [CrossRef] [PubMed]
- Ducharme, S.W.; Kent, J.A.; van Emmerik, R.E.A. Comparable stride time fractal dynamics and gait adaptability in active young and older adults under normal and asymmetric walking. Front. Physiol. 2019, 10, 1318. [Google Scholar] [CrossRef] [PubMed]
- Gulsvik, A.K.; Thelle, D.S.; Samuelsen, S.O.; Myrstad, M.; Mowé, M.; Wyller, T.B. Ageing, physical activity and mortality–A 42-year follow-up study. Int. J. Epidemiol. 2012, 41, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Lee, J. The association between physical activity and risk of falling in older adults: A systematic review and meta-analysis of prospective cohort studies. Geriatr. Nurs. 2020, 41, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Amara, A.W.; Chahine, L.; Seedorff, N.; Caspell-Garcia, C.J.; Coffey, C.; Simuni, T. Self-reported physical activity levels and clinical progression in early Parkinson’s disease. Park. Relat. Disord. 2019, 61, 118–125. [Google Scholar] [CrossRef]
- Olson, M.; Lockhart, T.E.; Lieberman, A. Motor learning deficits in Parkinson’s disease (PD) and their effect on training response in gait and balance: A narrative review. Front. Neurol. 2019, 10, 62. [Google Scholar] [CrossRef]
- Nguemeni, C.; Hiew, S.; Kögler, S.; Homola, G.A.; Volkmann, J.; Zeller, D. Split-belt training but not cerebellar anodal tDCS improves stability control and reduces risk of fall in patients with multiple sclerosis. Brain Sci. 2021, 12, 63. [Google Scholar] [CrossRef]
- Beck, A.T.; Ward, C.H.; Mendelson, M.; Mock, J.; Erbaugh, J. an inventory for measuring depression. Arch. Gen. Psychiatry 1961, 4, 561–571. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Slachevsky, A.; Villalpando, J.M.; Sarazin, M.; Hahn-Barma, V.; Pillon, B.; Dubois, B. Frontal assessment battery and differential diagnosis of frontotemporal dementia and Alzheimer disease. Arch. Neurol. 2004, 61, 1104–1107. [Google Scholar] [CrossRef]
- Nucci, M.; Mapelli, D.; Mondini, S. Cognitive reserve index questionnaire (CRIq): A new instrument for measuring cognitive reserve. Aging Clin. Exp. Res. 2012, 24, 218–226. [Google Scholar] [CrossRef]
- Kriska, A.M.; Sandler, R.B.; Cauley, J.A.; Laporte, R.E.; Hom, D.L.; Pambianco, G. The assessment of historical physical activity and its relation to adult bone parameters. Am. J. Epidemiol. 1988, 127, 1053–1063. [Google Scholar] [CrossRef]
- Reisman, D.S.; Wityk, R.; Silver, K.; Bastian, A.J. Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke. Brain 2007, 130, 1861–1872. [Google Scholar] [CrossRef]
- Willems, M.E.; Ponte, J.P. Divergent muscle fatigue during unilateral isometric contractions of dominant and non-dominant quadriceps. J. Sci. Med. Sport 2013, 16, 240–244. [Google Scholar] [CrossRef]
- Reisman, D.S.; Block, H.J.; Bastian, A.J. Interlimb coordination during locomotion: What can be adapted and stored? J. Neurophysiol. 2005, 94, 2403–2415. [Google Scholar] [CrossRef]
- Jayaram, G.; Tang, B.; Pallegadda, R.; Vasudevan, E.V.; Celnik, P.; Bastian, A. Modulating locomotor adaptation with cerebellar stimulation. J. Neurophysiol. 2012, 107, 2950–2957. [Google Scholar] [CrossRef]
- Vasudevan, E.V.L.; Hamzey, R.J.; Kirk, E.M. Using a split-belt treadmill to evaluate generalization of human locomotor adaptation. J. Vis. Exp. 2017, 126, e55424. [Google Scholar] [CrossRef]
- Hamzey, R.J.; Kirk, E.M.; Vasudevan, E.V. Gait speed influences aftereffect size following locomotor adaptation, but only in certain environments. Exp. Brain Res. 2016, 234, 1479–1490. [Google Scholar] [CrossRef]
- Paffenbarger, R.S., Jr.; Wing, A.L.; Hyde, R.T. Physical activity as an index of heart attack risk in college alumni. Am. J. Epidemiol. 1978, 108, 161–175. [Google Scholar] [CrossRef]
- Braun, B.J.; Veith, N.T.; Hell, R.; Döbele, S.; Roland, M.; Rollmann, M.; Holstein, J.; Pohlemann, T. Validation and reliability testing of a new, fully integrated gait analysis insole. J. Foot Ankle Res. 2015, 8, 54. [Google Scholar] [CrossRef]
- Braun, B.J.; Bushuven, E.; Hell, R.; Veith, N.T.; Buschbaum, J.; Holstein, J.H.; Pohlemann, T. A novel tool for continuous fracture aftercare–Clinical feasibility and first results of a new telemetric gait analysis insole. Injury 2016, 47, 490–494. [Google Scholar] [CrossRef]
- Amboni, M.; Barone, P.; Hausdorff, J.M. Cognitive contributions to gait and falls: Evidence and implications. Mov. Disord. 2013, 28, 1520–1533. [Google Scholar] [CrossRef]
- Darter, B.J.; Labrecque, B.A.; Perera, R.A. Dynamic stability during split-belt walking and the relationship with step length symmetry. Gait Posture 2018, 62, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Finley, J.M. Characterizing Dynamic Balance during Adaptive Locomotor Learning. In Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, Republic of Korea, 11–15 July 2017; pp. 50–53. [Google Scholar]
- Reisman, D.S.; Wityk, R.; Silver, K.; Bastian, A.J. Split-belt treadmill adaptation transfers to overground walking in persons poststroke. Neurorehabilit. Neural Repair 2009, 23, 735–744. [Google Scholar] [CrossRef]
- Phillips, C. Lifestyle modulators of neuroplasticity: How physical activity, mental engagement, and diet promote cognitive health during aging. Neural Plast. 2017, 2017, 3589271. [Google Scholar] [CrossRef]
- Colcombe, S.J.; Erickson, K.I.; Raz, N.; Webb, A.G.; Cohen, N.J.; McAuley, E.; Kramer, A.F. Aerobic fitness reduces brain tissue loss in aging humans. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2003, 58, M176–M180. [Google Scholar] [CrossRef]
- Erickson, K.I.; Prakash, R.S.; Voss, M.W.; Chaddock, L.; Hu, L.; Morris, K.S.; White, S.M.; Wójcicki, T.R.; McAuley, E.; Kramer, A.F. Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 2009, 19, 1030–1039. [Google Scholar] [CrossRef]
- Campos, C.; Rocha, N.B.F.; Lattari, E.; Paes, F.; Nardi, A.E.; Machado, S. Exercise-induced neuroprotective effects on neurodegenerative diseases: The key role of trophic factors. Expert Rev. Neurother. 2016, 16, 723–734. [Google Scholar] [CrossRef]
- Phillips, C.; Fahimi, A.; Das, D.; Mojabi, F.S.; Ponnusamy, R.; Salehi, A. Noradrenergic system in down syndrome and Alzheimer’s disease a target for therapy. Curr. Alzheimer Res. 2016, 13, 68–83. [Google Scholar] [CrossRef] [PubMed]
- Kitago, T.; Ryan, S.L.; Mazzoni, P.; Krakauer, J.W.; Haith, A.M. Unlearning versus savings in visuomotor adaptation: Comparing effects of washout, passage of time, and removal of errors on motor memory. Front. Hum. Neurosci. 2013, 7, 307. [Google Scholar] [CrossRef] [PubMed]
- Pekny, S.E.; Criscimagna-Hemminger, S.E.; Shadmehr, R. Protection and expression of human motor memories. J. Neurosci. 2011, 31, 13829–13839. [Google Scholar] [CrossRef] [PubMed]
- Azizan, A.; Shaari, I.H.; Rahman, F.; Herawati, I.; Sahrani, S. Association between Fall Risk with Physical Activity and Personality among Community-dwelling Older Adults with and without Cognitive Impairment. Int. J. Aging Health Mov. 2021, 3, 31–39. [Google Scholar]
Measure | Mean [Range] | Rs | p |
---|---|---|---|
BDI | 4.3 ± 3.89 [0–14] | 0.15 | 0.429 |
FAB | 17.47 ± 0.78 [15–18] | 0.24 | 0.202 |
MoCA | 28.27 ± 1.62 [25–30] | −0.33 | 0.071 |
HISTPAQearly (kcal/wk) | 2425.83 ± 2432.93 | −0.14 | 0.474 |
HISTPAQrecent (kcal/wk) | 2566.40 ± 1825.26 | −0.07 | 0.705 |
25FWT (s) | 3.99 s ± 0.58 | 0.58 | 0.001 |
CRIQ | 118.07 ± 18.50 | 0.83 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hiew, S.; Eibeck, L.; Nguemeni, C.; Zeller, D. The Influence of Age and Physical Activity on Locomotor Adaptation. Brain Sci. 2023, 13, 1266. https://doi.org/10.3390/brainsci13091266
Hiew S, Eibeck L, Nguemeni C, Zeller D. The Influence of Age and Physical Activity on Locomotor Adaptation. Brain Sciences. 2023; 13(9):1266. https://doi.org/10.3390/brainsci13091266
Chicago/Turabian StyleHiew, Shawn, Leila Eibeck, Carine Nguemeni, and Daniel Zeller. 2023. "The Influence of Age and Physical Activity on Locomotor Adaptation" Brain Sciences 13, no. 9: 1266. https://doi.org/10.3390/brainsci13091266
APA StyleHiew, S., Eibeck, L., Nguemeni, C., & Zeller, D. (2023). The Influence of Age and Physical Activity on Locomotor Adaptation. Brain Sciences, 13(9), 1266. https://doi.org/10.3390/brainsci13091266