The Ponto-Geniculo-Occipital (PGO) Waves in Dreaming: An Overview
Abstract
:1. Introduction
2. The Neural Mechanisms Underlying Dreaming
2.1. PGO Waves
2.2. Activation–Synthesis Hypothesis
2.3. Activation, Input, and Modulation (AIM) Model
2.4. Neuronal Mechanisms of REM Sleep Regulation
2.5. Other Recent Mechanisms of Dreaming
3. The Physiological Functions of Dreaming: The Involvement of PGO Waves during REM Sleep
3.1. Memory Consolidation
3.2. Unlearning
3.3. Brain Development and Plasticity
3.4. Mood Regulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Freud, S. The Interpretation of Dreams. In The Standard Edition of the Complete Psychological Works of Sigmund Freud; Strachey, J., Ed.; Hogarth Press: London, UK, 1953; Volume 4–5. [Google Scholar]
- Aserinsky, E.; Kleitman, N. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 1953, 118, 273–274. [Google Scholar] [CrossRef]
- Dement, W.; Kleitman, N. Cyclic variations in EEG during sleep and their relation to eye movements, body motility, and dreaming. Electroencephalogr. Clin. Neurophysiol. 1957, 9, 673–690. [Google Scholar] [CrossRef]
- Dement, W.; Kleitman, N. The relation of eye movements during sleep to dream activity: An objective method for the study of dreaming. J. Exp. Psychol. 1957, 53, 339–346. [Google Scholar] [CrossRef]
- Jouvet, M.; Michel, F. Electromyographic correlations of sleep in the chronic decorticate & mesencephalic cat. C. R. Seances Soc. Biol. Fil. 1959, 153, 422–425. [Google Scholar]
- Eiser, A.S. Physiology and psychology of dreams. Semin. Neurol. 2005, 25, 97–105. [Google Scholar] [CrossRef]
- Fernández-Mendoza, J.; Lozano, B.; Seijo, F.; Santamarta-Liébana, E.; Ramos-Platón, M.J.; Vela-Bueno, A.; Fernández-González, F. Evidence of subthalamic PGO-like waves during REM sleep in humans: A deep brain polysomnographic study. Sleep 2009, 32, 1117–1126. [Google Scholar] [CrossRef]
- Jouvet, M. Neurophysiology of the states of sleep. Physiol. Rev. 1967, 47, 117–177. [Google Scholar] [CrossRef]
- Jouvet, M. The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergeb. Physiol. 1972, 64, 166–307. [Google Scholar] [CrossRef]
- Negoescu, R.M.; Csiki, I.E. Autonomic control of the heart in some vagal maneuvers and normal sleep. Physiologie 1989, 26, 39–49. [Google Scholar]
- Monti, A.; Medigue, C.; Nedelcoux, H.; Escourrou, P. Autonomic control of the cardiovascular system during sleep in normal subjects. Eur. J. Appl. Physiol. 2002, 87, 174–181. [Google Scholar] [CrossRef]
- Siegel, J. Clues to the functions of mammalian sleep. Nature 2005, 437, 1264–1271. [Google Scholar] [CrossRef]
- Perogamvros, L.; Dang-Vu, T.T.; Desseilles, M.; Schwartz, S. Sleep and dreaming are for important matters. Front. Psychol. 2013, 4, 474. [Google Scholar] [CrossRef]
- Peever, J.; Fuller, P.M. The Biology of REM Sleep. Curr. Biol. 2017, 27, R1237–R1248. [Google Scholar] [CrossRef]
- Dement, W.C.; Pelayo, R. Reminiscences of Michel Jouvet. Sleep Med. 2018, 49, 78–80. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Liu, W.Y.; Li, L.; Qu, W.M.; Huang, Z.L. Neural circuitry underlying REM sleep: A review of the literature and current concepts. Prog. Neurobiol. 2021, 204, 102106. [Google Scholar] [CrossRef]
- Chen, H.L.; Gao, J.X.; Chen, Y.N.; Xie, J.F.; Xie, Y.P.; Spruyt, K.; Lin, J.S.; Shao, Y.F.; Hou, Y.P. Rapid Eye Movement Sleep during Early Life: A Comprehensive Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 13101. [Google Scholar] [CrossRef]
- Arnulf, I.; Buda, C.; Sastre, J.P. Michel Jouvet: An explorer of dreams and a great storyteller. Sleep Med. 2018, 49, 4–9. [Google Scholar] [CrossRef]
- Hobson, J.A.; McCarley, R.W. The brain as a dream state generator: An activation-synthesis hypothesis of the dream process. Am. J. Psychiatry 1977, 134, 1335–1348. [Google Scholar] [CrossRef]
- Crick, F.; Mitchison, G. The function of dream sleep. Nature 1983, 304, 111–114. [Google Scholar] [CrossRef]
- Hobson, J.A.; Pace-Schott, E.F.; Stickgold, R. Dreaming and the brain: Toward a cognitive neuroscience of conscious states. Behav. Brain Sci. 2000, 23, 793–842; discussion 904–1121. [Google Scholar] [CrossRef]
- Hobson, J.A. REM sleep and dreaming: Towards a theory of protoconsciousness. Nat. Rev. Neurosci. 2009, 10, 803–813. [Google Scholar] [CrossRef]
- Mikiten, T.; Niebyl, P.; Hendley, C. EEG desynchronization during behavioral sleep associated with spike discharges from the thalamus of the cat. Fed. Proc. 1961, 20, 327. [Google Scholar]
- Jeannerod, M.; Mouret, J.; Jouvet, M. The study of the ocular motor activity during the paradoxical phase of sleep in the cat. Electroencephalogr. Clin. Neurophysiol. 1965, 18, 554–566. [Google Scholar] [CrossRef]
- Mouret, J.; Jeannerod, M.; Jouvet, M. Electrical activity of the visual system during the paradoxical phase of sleep in the cat. J. Physiol. 1963, 55, 305–306. [Google Scholar]
- Hobson, J.A.; Friston, K.J. Waking and dreaming consciousness: Neurobiological and functional considerations. Prog. Neurobiol. 2012, 98, 82–98. [Google Scholar] [CrossRef]
- Cespuglio, R.; Laurent, J.P.; Jouvet, M. Relationships between ponto-geniculo-occipital (pgo) activity and ocular movements in reserpinised anaesthetised cat (author’s transl). Brain Res. 1975, 83, 319–335. [Google Scholar] [CrossRef]
- Vanni-Mercier, G.; Debilly, G. A key role for the caudoventral pontine tegmentum in the simultaneous generation of eye saccades in bursts and associated ponto-geniculo-occipital waves during paradoxical sleep in the cat. Neuroscience 1998, 86, 571–585. [Google Scholar] [CrossRef]
- Karashima, A.; Nakao, M.; Katayama, N.; Honda, K. Instantaneous acceleration and amplification of hippocampal theta wave coincident with phasic pontine activities during REM sleep. Brain Res. 2005, 1051, 50–56. [Google Scholar] [CrossRef]
- Kaufman, L.S.; Morrison, A.R. Spontaneous and elicited PGO spikes in rats. Brain Res. 1981, 214, 61–72. [Google Scholar] [CrossRef]
- Karashima, A.; Katayama, N.; Nakao, M. Enhancement of synchronization between hippocampal and amygdala theta waves associated with pontine wave density. J. Neurophysiol. 2010, 103, 2318–2325. [Google Scholar] [CrossRef]
- Tsunematsu, T.; Patel, A.A.; Onken, A.; Sakata, S. State-dependent brainstem ensemble dynamics and their interactions with hippocampus across sleep states. Elife 2020, 9, e52244. [Google Scholar] [CrossRef]
- Cohen, B.; Feldman, M. Relationship of electrical activity in pontine reticular formation and lateral geniculate body to rapid eye movements. J. Neurophysiol. 1968, 31, 806–817. [Google Scholar] [CrossRef]
- Ramirez-Villegas, J.F.; Besserve, M.; Murayama, Y.; Evrard, H.C.; Oeltermann, A.; Logothetis, N.K. Coupling of hippocampal theta and ripples with pontogeniculooccipital waves. Nature 2021, 589, 96–102. [Google Scholar] [CrossRef]
- Vuillon-Cacciuttolo, G.; Seri, B. Effects of optic nerve section in baboons on the geniculate and cortical spike activity during various states of vigilance. Electroencephalogr. Clin. Neurophysiol. 1978, 44, 754–768. [Google Scholar] [CrossRef]
- Lim, A.S.; Lozano, A.M.; Moro, E.; Hamani, C.; Hutchison, W.D.; Dostrovsky, J.O.; Lang, A.E.; Wennberg, R.A.; Murray, B.J. Characterization of REM-sleep associated ponto-geniculo-occipital waves in the human pons. Sleep 2007, 30, 823–827. [Google Scholar] [CrossRef]
- Hong, C.C.; Harris, J.C.; Pearlson, G.D.; Kim, J.S.; Calhoun, V.D.; Fallon, J.H.; Golay, X.; Gillen, J.S.; Simmonds, D.J.; van Zijl, P.C.; et al. fMRI evidence for multisensory recruitment associated with rapid eye movements during sleep. Hum. Brain Mapp. 2009, 30, 1705–1722. [Google Scholar] [CrossRef]
- Gott, J.A.; Liley, D.T.; Hobson, J.A. Towards a Functional Understanding of PGO Waves. Front. Hum. Neurosci. 2017, 11, 89. [Google Scholar] [CrossRef]
- Andrillon, T.; Kouider, S. The vigilant sleeper: Neural mechanisms of sensory (de) coupling during sleep. Curr. Opin. Physiol. 2020, 15, 47–59. [Google Scholar] [CrossRef]
- Van De Poll, M.N.; van Swinderen, B. Balancing Prediction and Surprise: A Role for Active Sleep at the Dawn of Consciousness? Front. Syst. Neurosci. 2021, 15, 768762. [Google Scholar] [CrossRef]
- Hobson, J.A.; Hong, C.C.; Friston, K.J. Virtual reality and consciousness inference in dreaming. Front. Psychol. 2014, 5, 1133. [Google Scholar] [CrossRef]
- Andrillon, T.; Nir, Y.; Cirelli, C.; Tononi, G.; Fried, I. Single-neuron activity and eye movements during human REM sleep and awake vision. Nat. Commun. 2015, 6, 7884. [Google Scholar] [CrossRef]
- Miyauchi, S.; Misaki, M.; Kan, S.; Fukunaga, T.; Koike, T. Human brain activity time-locked to rapid eye movements during REM sleep. Exp. Brain Res. 2009, 192, 657–667. [Google Scholar] [CrossRef]
- Peigneux, P.; Laureys, S.; Fuchs, S.; Delbeuck, X.; Degueldre, C.; Aerts, J.; Delfiore, G.; Luxen, A.; Maquet, P. Generation of rapid eye movements during paradoxical sleep in humans. Neuroimage 2001, 14, 701–708. [Google Scholar] [CrossRef]
- Jouvet, M. Research on the neural structures and responsible mechanisms in different phases of physiological sleep. Arch. Ital. Biol. 1962, 100, 125–206. [Google Scholar]
- Seligman, M.E.; Yellen, A. What is a dream? Behav. Res. Ther. 1987, 25, 1–24. [Google Scholar] [CrossRef]
- Dawson, J.L.; Conduit, R. The Substrate That Dreams Are Made On: An Evaluation of Current Neurobiological Theories of Dreaming. In States of Consciousness: Experimental Insights into Meditation, Waking, Sleep and Dreams; Cvetkovic, D., Cosic, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 133–156. [Google Scholar]
- Scarpelli, S.; Alfonsi, V.; Gorgoni, M.; De Gennaro, L. What about dreams? State of the art and open questions. J. Sleep Res. 2022, 31, e13609. [Google Scholar] [CrossRef]
- Blumberg, M.S.; Dooley, J.C.; Sokoloff, G. The developing brain revealed during sleep. Curr. Opin. Physiol. 2020, 15, 14–22. [Google Scholar] [CrossRef]
- Ferreira, J.G.P.; Bittencourt, J.C.; Adamantidis, A. Melanin-concentrating hormone and sleep. Curr. Opin. Neurobiol. 2017, 44, 152–158. [Google Scholar] [CrossRef]
- Liu, D.; Dan, Y. A Motor Theory of Sleep-Wake Control: Arousal-Action Circuit. Annu. Rev. Neurosci. 2019, 42, 27–46. [Google Scholar] [CrossRef]
- Luppi, P.H. Jouvet’s animal model of RBD, clinical RBD, and their relationships to REM sleep mechanisms. Sleep Med. 2018, 49, 28–30. [Google Scholar] [CrossRef]
- Héricé, C.; Patel, A.A.; Sakata, S. Circuit mechanisms and computational models of REM sleep. Neurosci. Res. 2019, 140, 77–92. [Google Scholar] [CrossRef]
- Park, S.H.; Weber, F. Neural and Homeostatic Regulation of REM Sleep. Front. Psychol. 2020, 11, 1662. [Google Scholar] [CrossRef]
- Hobson, J.A.; McCarley, R.W.; Wyzinski, P.W. Sleep cycle oscillation: Reciprocal discharge by two brainstem neuronal groups. Science 1975, 189, 55–58. [Google Scholar] [CrossRef]
- McCarley, R.W.; Hobson, J.A. Neuronal excitability modulation over the sleep cycle: A structural and mathematical model. Science 1975, 189, 58–60. [Google Scholar] [CrossRef]
- Takahashi, K.; Lin, J.S.; Sakai, K. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse. Neuroscience 2008, 153, 860–870. [Google Scholar] [CrossRef]
- Hasegawa, E.; Miyasaka, A.; Sakurai, K.; Cherasse, Y.; Li, Y.; Sakurai, T. Rapid eye movement sleep is initiated by basolateral amygdala dopamine signaling in mice. Science 2022, 375, 994–1000. [Google Scholar] [CrossRef]
- Solms, M. Dreaming and REM sleep are controlled by different brain mechanisms. Behav. Brain Sci. 2000, 23, 843–850; discussion 904–1121. [Google Scholar] [CrossRef]
- Perogamvros, L.; Schwartz, S. The roles of the reward system in sleep and dreaming. Neurosci. Biobehav. Rev. 2012, 36, 1934–1951. [Google Scholar] [CrossRef]
- Perogamvros, L.; Schwartz, S. Sleep and emotional functions. Curr. Top. Behav. Neurosci. 2015, 25, 411–431. [Google Scholar] [CrossRef]
- Kumar Yadav, R.; Mallick, B.N. Dopaminergic- and cholinergic-inputs from substantia nigra and pedunculo-pontine tegmentum, respectively, converge in amygdala to modulate rapid eye movement sleep in rats. Neuropharmacology 2021, 193, 108607. [Google Scholar] [CrossRef]
- Dang-Vu, T.T.; Schabus, M.; Desseilles, M.; Sterpenich, V.; Bonjean, M.; Maquet, P. Functional neuroimaging insights into the physiology of human sleep. Sleep 2010, 33, 1589–1603. [Google Scholar] [CrossRef]
- Horne, J. Why REM sleep? Clues beyond the laboratory in a more challenging world. Biol. Psychol. 2013, 92, 152–168. [Google Scholar] [CrossRef]
- Morrison, A.R.; Sanford, L.D.; Ross, R.J. The amygdala: A critical modulator of sensory influence on sleep. Biol. Signals Recept. 2000, 9, 283–296. [Google Scholar] [CrossRef]
- Wamsley, E.J.; Stickgold, R. Dreaming and offline memory processing. Curr. Biol. 2010, 20, R1010–R1013. [Google Scholar] [CrossRef]
- Mangiaruga, A.; Scarpelli, S.; Bartolacci, C.; De Gennaro, L. Spotlight on dream recall: The ages of dreams. Nat. Sci. Sleep 2018, 10, 1–12. [Google Scholar] [CrossRef]
- Wamsley, E.J. Dreaming and offline memory consolidation. Curr. Neurol. Neurosci. Rep. 2014, 14, 433. [Google Scholar] [CrossRef]
- Hutchison, I.C.; Rathore, S. The role of REM sleep theta activity in emotional memory. Front. Psychol. 2015, 6, 1439. [Google Scholar] [CrossRef]
- Datta, S. Avoidance task training potentiates phasic pontine-wave density in the rat: A mechanism for sleep-dependent plasticity. J. Neurosci. 2000, 20, 8607–8613. [Google Scholar] [CrossRef]
- Datta, S.; Saha, S.; Prutzman, S.L.; Mullins, O.J.; Mavanji, V. Pontine-wave generator activation-dependent memory processing of avoidance learning involves the dorsal hippocampus in the rat. J. Neurosci. Res. 2005, 80, 727–737. [Google Scholar] [CrossRef]
- Ulloor, J.; Datta, S. Spatio-temporal activation of cyclic AMP response element-binding protein, activity-regulated cytoskeletal-associated protein and brain-derived nerve growth factor: A mechanism for pontine-wave generator activation-dependent two-way active-avoidance memory processing in the rat. J. Neurochem. 2005, 95, 418–428. [Google Scholar] [CrossRef]
- Datta, S.; Li, G.; Auerbach, S. Activation of phasic pontine-wave generator in the rat: A mechanism for expression of plasticity-related genes and proteins in the dorsal hippocampus and amygdala. Eur. J. Neurosci. 2008, 27, 1876–1892. [Google Scholar] [CrossRef]
- Datta, S.; O’Malley, M.W. Fear extinction memory consolidation requires potentiation of pontine-wave activity during REM sleep. J. Neurosci. 2013, 33, 4561–4569. [Google Scholar] [CrossRef]
- Datta, S.; Mavanji, V.; Ulloor, J.; Patterson, E.H. Activation of phasic pontine-wave generator prevents rapid eye movement sleep deprivation-induced learning impairment in the rat: A mechanism for sleep-dependent plasticity. J. Neurosci. 2004, 24, 1416–1427. [Google Scholar] [CrossRef]
- Mavanji, V.; Ulloor, J.; Saha, S.; Datta, S. Neurotoxic lesions of phasic pontine-wave generator cells impair retention of 2-way active avoidance memory. Sleep 2004, 27, 1282–1292. [Google Scholar] [CrossRef]
- Datta, S. Neuronal activity in the peribrachial area: Relationship to behavioral state control. Neurosci. Biobehav. Rev. 1995, 19, 67–84. [Google Scholar] [CrossRef]
- Carrera-Cañas, C.; Garzón, M.; de Andrés, I. The Transition Between Slow-Wave Sleep and REM Sleep Constitutes an Independent Sleep Stage Organized by Cholinergic Mechanisms in the Rostrodorsal Pontine Tegmentum. Front. Neurosci. 2019, 13, 748. [Google Scholar] [CrossRef]
- Datta, S.; Hobson, J.A. Neuronal activity in the caudolateral peribrachial pons: Relationship to PGO waves and rapid eye movements. J. Neurophysiol. 1994, 71, 95–109. [Google Scholar] [CrossRef]
- Tsunematsu, T. What are the neural mechanisms and physiological functions of dreams? Neurosci. Res. 2023, 189, 54–59. [Google Scholar] [CrossRef]
- Siegel, J.M. The REM sleep-memory consolidation hypothesis. Science 2001, 294, 1058–1063. [Google Scholar] [CrossRef]
- De Zeeuw, C.I.; Canto, C.B. Interpreting thoughts during sleep. Science 2022, 377, 919–920. [Google Scholar] [CrossRef]
- Senzai, Y.; Scanziani, M. A cognitive process occurring during sleep is revealed by rapid eye movements. Science 2022, 377, 999–1004. [Google Scholar] [CrossRef]
- Karashima, A.; Nakamura, K.; Watanabe, M.; Sato, N.; Nakao, M.; Katayama, N.; Yamamoto, M. Synchronization between hippocampal theta waves and PGO waves during REM sleep. Psychiatry Clin. Neurosci. 2001, 55, 189–190. [Google Scholar] [CrossRef]
- Karashima, A.; Nakao, M.; Honda, K.; Iwasaki, N.; Katayama, N.; Yamamoto, M. Theta wave amplitude and frequency are differentially correlated with pontine waves and rapid eye movements during REM sleep in rats. Neurosci. Res. 2004, 50, 283–289. [Google Scholar] [CrossRef]
- Karashima, A.; Katayama, N.; Nakao, M. Phase-locking of spontaneous and tone-elicited pontine waves to hippocampal theta waves during REM sleep in rats. Brain Res. 2007, 1182, 73–81. [Google Scholar] [CrossRef]
- Boyce, R.; Glasgow, S.D.; Williams, S.; Adamantidis, A. Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science 2016, 352, 812–816. [Google Scholar] [CrossRef]
- Hopfield, J.J.; Feinstein, D.I.; Palmer, R.G. ‘Unlearning’ has a stabilizing effect in collective memories. Nature 1983, 304, 158–159. [Google Scholar] [CrossRef]
- Li, W.; Ma, L.; Yang, G.; Gan, W.B. REM sleep selectively prunes and maintains new synapses in development and learning. Nat. Neurosci. 2017, 20, 427–437. [Google Scholar] [CrossRef]
- Pascovich, C.; Lagos, P.; Urbanavicius, J.; Devera, A.; Rivas, M.; Costa, A.; López Hill, X.; Falconi, A.; Scorza, C.; Torterolo, P. Melanin-concentrating hormone (MCH) in the median raphe nucleus: Fibers, receptors and cellular effects. Peptides 2020, 126, 170249. [Google Scholar] [CrossRef]
- Torterolo, P.; Sampogna, S.; Chase, M.H. MCHergic projections to the nucleus pontis oralis participate in the control of active (REM) sleep. Brain Res. 2009, 1268, 76–87. [Google Scholar] [CrossRef]
- Izawa, S.; Chowdhury, S.; Miyazaki, T.; Mukai, Y.; Ono, D.; Inoue, R.; Ohmura, Y.; Mizoguchi, H.; Kimura, K.; Yoshioka, M.; et al. REM sleep-active MCH neurons are involved in forgetting hippocampus-dependent memories. Science 2019, 365, 1308–1313. [Google Scholar] [CrossRef]
- Poe, G.R. Sleep Is for Forgetting. J. Neurosci. 2017, 37, 464–473. [Google Scholar] [CrossRef]
- Jouvet, M. Paradoxical sleep as a programming system. J. Sleep Res. 1998, 7 (Suppl. S1), 1–5. [Google Scholar] [CrossRef]
- Casaglia, E.; Luppi, P.H. Is paradoxical sleep setting up innate and acquired complex sensorimotor and adaptive behaviours?: A proposed function based on literature review. J. Sleep Res. 2022, 31, e13633. [Google Scholar] [CrossRef]
- Roffwarg, H.P.; Muzio, J.N.; Dement, W.C. Ontogenetic development of the human sleep-dream cycle. Science 1966, 152, 604–619. [Google Scholar] [CrossRef]
- Jouvet, M. Paradoxical sleep: Is it the guardian of psychological individualism. Can. J. Psychol. 1991, 45, 148–168. [Google Scholar] [CrossRef]
- Adrien, J. Neonatal sleep, a genetically-driven rehearsal before the show: An endless encounter with Michel Jouvet. Sleep Med. 2018, 49, 20–23. [Google Scholar] [CrossRef]
- Mirmiran, M.; Maas, Y.G.; Ariagno, R.L. Development of fetal and neonatal sleep and circadian rhythms. Sleep Med. Rev. 2003, 7, 321–334. [Google Scholar] [CrossRef]
- Frank, M.G. The Ontogenesis of Mammalian Sleep: Form and Function. Curr. Sleep Med. Rep. 2020, 6, 267–279. [Google Scholar] [CrossRef]
- Shaffery, J.P.; Allard, J.S.; Manaye, K.F.; Roffwarg, H.P. Selective rapid eye movement sleep deprivation affects cell size and number in kitten locus coeruleus. Front. Neurol. 2012, 3, 69. [Google Scholar] [CrossRef]
- Hogan, D.; Roffwarg, H.P.; Shaffery, J.P. The effects of 1 week of REM sleep deprivation on parvalbumin and calbindin immunoreactive neurons in central visual pathways of kittens. J. Sleep Res. 2001, 10, 285–296. [Google Scholar] [CrossRef]
- Shaffery, J.P.; Oksenberg, A.; Marks, G.A.; Speciale, S.G.; Mihailoff, G.; Roffwarg, H.P. REM sleep deprivation in monocularly occluded kittens reduces the size of cells in LGN monocular segment. Sleep 1998, 21, 837–845. [Google Scholar] [CrossRef]
- Dumoulin Bridi, M.C.; Aton, S.J.; Seibt, J.; Renouard, L.; Coleman, T.; Frank, M.G. Rapid eye movement sleep promotes cortical plasticity in the developing brain. Sci. Adv. 2015, 1, e1500105. [Google Scholar] [CrossRef]
- Shaffery, J.P.; Roffwarg, H.P.; Speciale, S.G.; Marks, G.A. Ponto-geniculo-occipital-wave suppression amplifies lateral geniculate nucleus cell-size changes in monocularly deprived kittens. Dev. Brain Res. 1999, 114, 109–119. [Google Scholar] [CrossRef]
- Garcia-Rill, E.; Charlesworth, A.; Heister, D.; Ye, M.; Hayar, A. The developmental decrease in REM sleep: The role of transmitters and electrical coupling. Sleep 2008, 31, 673–690. [Google Scholar] [CrossRef]
- Cirelli, C.; Tononi, G. Cortical development, electroencephalogram rhythms, and the sleep/wake cycle. Biol. Psychiatry 2015, 77, 1071–1078. [Google Scholar] [CrossRef]
- Blumberg, M.S.; Lesku, J.A.; Libourel, P.A.; Schmidt, M.H.; Rattenborg, N.C. What Is REM Sleep? Curr. Biol. 2020, 30, R38–R49. [Google Scholar] [CrossRef]
- Ravassard, P.; Pachoud, B.; Comte, J.C.; Mejia-Perez, C.; Scoté-Blachon, C.; Gay, N.; Claustrat, B.; Touret, M.; Luppi, P.H.; Salin, P.A. Paradoxical (REM) sleep deprivation causes a large and rapidly reversible decrease in long-term potentiation, synaptic transmission, glutamate receptor protein levels, and ERK/MAPK activation in the dorsal hippocampus. Sleep 2009, 32, 227–240. [Google Scholar] [CrossRef]
- Tononi, G.; Cirelli, C. Sleep and the price of plasticity: From synaptic and cellular homeostasis to memory consolidation and integration. Neuron 2014, 81, 12–34. [Google Scholar] [CrossRef]
- Calais, J.B.; Ojopi, E.B.; Morya, E.; Sameshima, K.; Ribeiro, S. Experience-dependent upregulation of multiple plasticity factors in the hippocampus during early REM sleep. Neurobiol. Learn. Mem. 2015, 122, 19–27. [Google Scholar] [CrossRef]
- Graven, S.N.; Browne, J.V. Sleep and Brain Development: The Critical Role of Sleep in Fetal and Early Neonatal Brain Development. Newborn Infant. Nurs. Rev. 2008, 8, 173–179. [Google Scholar] [CrossRef]
- Datta, S.; Calvo, J.M.; Quattrochi, J.; Hobson, J.A. Cholinergic microstimulation of the peribrachial nucleus in the cat. I. Immediate and prolonged increases in ponto-geniculo-occipital waves. Arch. Ital. Biol. 1992, 130, 263–284. [Google Scholar]
- Mavanji, V.; Datta, S. Activation of the phasic pontine-wave generator enhances improvement of learning performance: A mechanism for sleep-dependent plasticity. Eur. J. Neurosci. 2003, 17, 359–370. [Google Scholar] [CrossRef]
- Shaffery, J.P.; Sinton, C.M.; Bissette, G.; Roffwarg, H.P.; Marks, G.A. Rapid eye movement sleep deprivation modifies expression of long-term potentiation in visual cortex of immature rats. Neuroscience 2002, 110, 431–443. [Google Scholar] [CrossRef]
- Shaffery, J.P.; Lopez, J.; Roffwarg, H.P. Brain-derived neurotrophic factor (BDNF) reverses the effects of rapid eye movement sleep deprivation (REMSD) on developmentally regulated, long-term potentiation (LTP) in visual cortex slices. Neurosci. Lett. 2012, 513, 84–88. [Google Scholar] [CrossRef]
- Renouard, L.; Bridi, M.C.D.; Coleman, T.; Arckens, L.; Frank, M.G. Anatomical correlates of rapid eye movement sleep-dependent plasticity in the developing cortex. Sleep 2018, 41, zsy124. [Google Scholar] [CrossRef]
- Quattrochi, J.J.; Bazalakova, M.; Hobson, J.A. From synapse to gene product: Prolonged expression of c-fos induced by a single microinjection of carbachol in the pontomesencephalic tegmentum. Brain Res. Mol. Brain Res. 2005, 136, 164–176. [Google Scholar] [CrossRef]
- Murkar, A.L.A.; De Koninck, J. Consolidative mechanisms of emotional processing in REM sleep and PTSD. Sleep Med. Rev. 2018, 41, 173–184. [Google Scholar] [CrossRef]
- Riemann, D.; Berger, M.; Voderholzer, U. Sleep and depression—Results from psychobiological studies: An overview. Biol. Psychol. 2001, 57, 67–103. [Google Scholar] [CrossRef]
- Helm, K.; Viol, K.; Weiger, T.M.; Tass, P.A.; Grefkes, C.; Del Monte, D.; Schiepek, G. Neuronal connectivity in major depressive disorder: A systematic review. Neuropsychiatr. Dis. Treat. 2018, 14, 2715–2737. [Google Scholar] [CrossRef]
- Datta, S.; Siwek, D.F.; Patterson, E.H.; Cipolloni, P.B. Localization of pontine PGO wave generation sites and their anatomical projections in the rat. Synapse 1998, 30, 409–423. [Google Scholar] [CrossRef]
- Grogans, S.E.; Fox, A.S.; Shackman, A.J. The Amygdala and Depression: A Sober Reconsideration. Am. J. Psychiatry 2022, 179, 454–457. [Google Scholar] [CrossRef]
- Hopkins, D.A.; Holstege, G. Amygdaloid projections to the mesencephalon, pons and medulla oblongata in the cat. Exp. Brain Res. 1978, 32, 529–547. [Google Scholar] [CrossRef]
- Calvo, J.M.; Badillo, S.; Morales-Ramirez, M.; Palacios-Salas, P. The role of the temporal lobe amygdala in ponto-geniculo-occipital activity and sleep organization in cats. Brain Res. 1987, 403, 22–30. [Google Scholar] [CrossRef]
- Ross, R.J.; Ball, W.A.; Levitt, D.R.; Gresch, P.J.; Morrison, A.R. Effects of monoamine reuptake blockade on ponto-geniculo-occipital wave activity. Neuropharmacology 1990, 29, 965–968. [Google Scholar] [CrossRef]
- Navarro-Sanchis, C.; Brock, O.; Winsky-Sommerer, R.; Thuret, S. Modulation of Adult Hippocampal Neurogenesis by Sleep: Impact on Mental Health. Front. Neural Circuits 2017, 11, 74. [Google Scholar] [CrossRef]
- Saleh, A.; Potter, G.G.; McQuoid, D.R.; Boyd, B.; Turner, R.; MacFall, J.R.; Taylor, W.D. Effects of early life stress on depression, cognitive performance and brain morphology. Psychol. Med. 2017, 47, 171–181. [Google Scholar] [CrossRef]
- Albert, K.M.; Potter, G.G.; Boyd, B.D.; Kang, H.; Taylor, W.D. Brain network functional connectivity and cognitive performance in major depressive disorder. J. Psychiatr. Res. 2019, 110, 51–56. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Zhu, L.; Zhu, Q.; Jia, Y.; Zhang, L.; Peng, Q.; Wang, J.; Liu, J.; Fan, W.; et al. Volumetric Deficit Within the Fronto-Limbic-Striatal Circuit in First-Episode Drug Naïve Patients with Major Depression Disorder. Front. Psychiatry 2020, 11, 600583. [Google Scholar] [CrossRef]
- Kobayashi, I.; Boarts, J.M.; Delahanty, D.L. Polysomnographically measured sleep abnormalities in PTSD: A meta-analytic review. Psychophysiology 2007, 44, 660–669. [Google Scholar] [CrossRef]
- Lancel, M.; van Marle, H.J.F.; Van Veen, M.M.; van Schagen, A.M. Disturbed Sleep in PTSD: Thinking Beyond Nightmares. Front. Psychiatry 2021, 12, 767760. [Google Scholar] [CrossRef]
- Pace-Schott, E.F.; Germain, A.; Milad, M.R. Sleep and REM sleep disturbance in the pathophysiology of PTSD: The role of extinction memory. Biol. Mood Anxiety Disord. 2015, 5, 3. [Google Scholar] [CrossRef]
- Sanford, L.D.; Silvestri, A.J.; Ross, R.J.; Morrison, A.R. Influence of fear conditioning on elicited ponto-geniculo-occipital waves and rapid eye movement sleep. Arch. Ital. Biol. 2001, 139, 169–183. [Google Scholar]
- Liu, X.; Tang, X.; Sanford, L.D. Fear-conditioned suppression of REM sleep: Relationship to Fos expression patterns in limbic and brainstem regions in BALB/cJ mice. Brain Res. 2003, 991, 1–17. [Google Scholar] [CrossRef]
- Germain, A.; Buysse, D.J.; Nofzinger, E. Sleep-specific mechanisms underlying posttraumatic stress disorder: Integrative review and neurobiological hypotheses. Sleep Med. Rev. 2008, 12, 185–195. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.-X.; Yan, G.; Li, X.-X.; Xie, J.-F.; Spruyt, K.; Shao, Y.-F.; Hou, Y.-P. The Ponto-Geniculo-Occipital (PGO) Waves in Dreaming: An Overview. Brain Sci. 2023, 13, 1350. https://doi.org/10.3390/brainsci13091350
Gao J-X, Yan G, Li X-X, Xie J-F, Spruyt K, Shao Y-F, Hou Y-P. The Ponto-Geniculo-Occipital (PGO) Waves in Dreaming: An Overview. Brain Sciences. 2023; 13(9):1350. https://doi.org/10.3390/brainsci13091350
Chicago/Turabian StyleGao, Jin-Xian, Guizhong Yan, Xin-Xuan Li, Jun-Fan Xie, Karen Spruyt, Yu-Feng Shao, and Yi-Ping Hou. 2023. "The Ponto-Geniculo-Occipital (PGO) Waves in Dreaming: An Overview" Brain Sciences 13, no. 9: 1350. https://doi.org/10.3390/brainsci13091350
APA StyleGao, J. -X., Yan, G., Li, X. -X., Xie, J. -F., Spruyt, K., Shao, Y. -F., & Hou, Y. -P. (2023). The Ponto-Geniculo-Occipital (PGO) Waves in Dreaming: An Overview. Brain Sciences, 13(9), 1350. https://doi.org/10.3390/brainsci13091350