Could the Construct of Modern-Type Depression Predict Internet Gaming Disorder in Italian Video Gamers? A Case–Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Recruitment Strategies
2.2. Measurements
2.3. Statistical Analysis
3. Results
3.1. Socio-Demographic Characteristics of the Sample
3.2. Psychopathological Characteristics of the Sample
3.3. Modern-Type Depression Characterization in Our Sample in Relation to Video Gaming and Internet Gaming Disorder
4. Discussion
4.1. Summary of the Main Findings of the Study
4.2. Limitations and Strengths of the Study
4.3. Future Research Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kato, T.A.; Hashimoto, R.; Hayakawa, K.; Kubo, H.; Watabe, M.; Teo, A.R.; Kanba, S. Multidimensional anatomy of ‘modern type depression’ in Japan: A proposal for a different diagnostic approach to depression beyond the DSM-5. Psychiatry Clin. Neurosci. 2016, 70, 7–23. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.A.; Katsuki, R.; Kubo, H.; Shimokawa, N.; Sato-Kasai, M.; Hayakawa, K.; Kuwano, N.; Umene-Nakano, W.; Tateno, M.; Setoyama, D.; et al. Development and validation of the 22-item Tarumi’s Modern-Type Depression Trait Scale: Avoidance of Social Roles, Complaint, and Low Self-Esteem (TACS-22). Psychiatry Clin. Neurosci. 2019, 73, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Orsolini, L.; Bellagamba, S.; Volpe, U.; Kato, T.A. Hikikomori and modern-type depression in Italy: A new phenotypical trans-cultural characterization? Int. J. Soc. Psychiatry 2022, 68, 1010–1017. [Google Scholar] [CrossRef] [PubMed]
- Tarumi, S. The “new” variant of depression: The dysthymic type. JPN J. Clin. Psychiatry 2005, 34, 687–694. [Google Scholar]
- Kato, T.A.; Kanba, S. Modern-Type Depression as an “Adjustment” Disorder in Japan: The Intersection of Collectivistic Society Encountering an Individualistic Performance-Based System. Am. J. Psychiatry 2017, 174, 1051–1053. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.A.; Shinfuku, N.; Sartorius, N.; Kanba, S. Are Japan’s hikikomori and depression in young people spreading abroad? Lancet 2011, 378, 1070. [Google Scholar] [CrossRef] [PubMed]
- Cerniglia, L.; Zoratto, F.; Cimino, S.; Laviola, G.; Ammaniti, M.; Adriani, W. Internet Addiction in adolescence: Neurobiological, psychosocial and clinical issues. Neurosci. Biobehav. Rev. 2017, 76 Pt A, 174–184. [Google Scholar] [CrossRef]
- Kato, T.A.; Shinfuku, N.; Tateno, M. Internet society, internet addiction, and pathological social withdrawal: The chicken and egg dilemma for internet addiction and hikikomori. Curr. Opin. Psychiatry 2020, 33, 264–270. [Google Scholar] [CrossRef]
- Monacis, L.; Palo, V.; Griffiths, M.D.; Sinatra, M. Validation of the Internet Gaming Disorder Scale—Short-Form (IGDS9-SF) in an Italian-speaking sample. J. Behav. Addict. 2016, 5, 683–690. [Google Scholar] [CrossRef]
- Lwanga, S.K.; Lemeshow, S. Sample Size Determination in Health Studies: A Practical Manual; World Health Organization (WHO): Geneva, Switzerland, 1991; Available online: https://apps.who.int/iris/handle/10665/40062 (accessed on 20 November 2023).
- Eysenbach, G. Improving the quality of web surveys: The checklist for reporting results of internet E-surveys (CHERRIES). J. Med. Internet Res. 2004, 6, e34. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Demetrovics, Z.; Urbán, R.; Nagygyörgy, K.; Farkas, J.; Zilahy, D.; Mervó, B.; Reindl, A.; Ágoston, C.; Kertész, A.; Harmath, E. Why do you play? The development of the motives for online gaming questionnaire (MOGQ). Behav. Res. Methods 2011, 43, 814–825. [Google Scholar] [CrossRef] [PubMed]
- Cheli, S.; Floridi, M.; Cavalletti, V. Italian Validation of the 22-Item Tarumi’s Modern-Type Depression Trait Scale. University of Florence, Florence, Italy. 2022; unpublished manuscript. [Google Scholar]
- Tateno, M.; Kato, T.A. Personality traits of female vocational school students in Japan with smartphone addiction with comorbid modern-type depression traits. Psychiatry Clin. Neurosci. 2022, 76, 675–676. [Google Scholar] [CrossRef] [PubMed]
- De Pasquale, C.; Dinaro, C.; Sciacca, F. Relationship of Internet gaming disorder with dissociative experience in Italian university students. Ann. Gen. Psychiatry 2018, 17, 28. [Google Scholar] [CrossRef] [PubMed]
- De Pasquale, C.; Sciacca, F.; Martinelli, V.; Chiappedi, M.; Dinaro, C.; Hichy, Z. Relationship of Internet Gaming Disorder with Psychopathology and Social Adaptation in Italian Young Adults. Int. J. Environ. Res. Public Health 2020, 17, 8201. [Google Scholar] [CrossRef] [PubMed]
- Volpe, U.; Orsolini, L.; Salvi, V.; Albert, U.; Carmassi, C.; Carrà, G.; Cirulli, F.; Dell’Osso, B.; Luciano, M.; Menculini, G.; et al. COVID-19-Related Social Isolation Predispose to Problematic Internet and Online Video Gaming Use in Italy. Int. J. Environ. Res. Public Health 2022, 19, 1539. [Google Scholar] [CrossRef] [PubMed]
- Di Carlo, F.; Verrastro, V.; Alessi, M.C.; Sociali, A.; Altomare, A.I.; Di Natale, C.; Stigliano, G.; Miuli, A.; Lalli, A.; Di Petta, G.; et al. High-Risk Gaming Is Associated with Frequent Substance Use: An Exploratory Survey among Young Adults. Eur. Addict. Res. 2023, 29, 241–252. [Google Scholar] [CrossRef] [PubMed]
- De Palo, V.; Monacis, L.; Sinatra, M.; Griffiths, M.D.; Pontes, H.; Petro, M.; Miceli, S. Measurement Invariance of the Nine-Item Internet Gaming Disorder Scale (IGDS9-SF) Across Albania, USA, UK, and Italy. Int. J. Ment. Health Addict. 2019, 17, 935–946. [Google Scholar] [CrossRef]
- Billieux, J.; Van der Linden, M.; Achab, S.; Khazaal, Y.; Paraskevopoulos, L.; Zullino, D.; Thorens, G. Why do you play World of Warcraft? An in-depth exploration of self-reported motivations to play online and in-game behaviours in the virtual world of Azeroth. Comput. Hum. Behav. 2013, 29, 103–109. [Google Scholar] [CrossRef]
- Dauriat, F.Z.; Zermatten, A.; Billieux, J.; Thorens, G.; Bondolfi, G.; Zullino, D.; Khazaal, Y. Motivations to play specifically predict excessive involvement in massively multiplayer online role-playing games: Evidence from an online survey. Eur. Addict. Res. 2011, 17, 185–189. [Google Scholar] [CrossRef]
- Kuss, D.J.; Louws, J.; Wiers, R.W. Online gaming addiction? Motives predict addictive play behavior in massively multiplayer online role-playing games. Cyberpsychol. Behav. Soc. Netw. 2012, 15, 480–485. [Google Scholar] [CrossRef]
- Kneer, J.; Rieger, D. Problematic game play: The diagnostic value of playing motives, passion, and playing time in men. Behav. Sci. 2015, 5, 203–213. [Google Scholar] [CrossRef]
- Ballabio, M.; Griffiths, M.D.; Urbán, R.; Quartiroli, A.; Demetrovics, Z.; Király, O. Do gaming motives mediate between psychiatric symptoms and problematic gaming? An empirical survey study. Addict. Res. Theory 2017, 25, 397–408. [Google Scholar] [CrossRef]
- Marino, C.; Canale, N.; Vieno, A.; Caselli, G.; Scacchi, L.; Spada, M.M. Social anxiety and Internet gaming disorder: The role of motives and metacognitions. J. Behav. Addict. 2020, 9, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Stockdale, L.A.; Coyne, S.M. Bored and online: Reasons for using social media, problematic social networking site use, and behavioral outcomes across the transition from adolescence to emerging adulthood. J. Adolesc. 2020, 79, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Ostinelli, E.G.; Zangani, C.; Giordano, B.; Maestri, D.; Gambini, O.; D’Agostino, A.; Furukawa, T.A.; Purgato, M. Depressive symptoms and depression in individuals with internet gaming disorder: A systematic review and meta-analysis. J. Affect. Disord. 2021, 284, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Orsolini, L.; Longo, G.; Volpe, U. The Mediatory Role of the Boredom and Loneliness Dimensions in the Development of Problematic Internet Use. Int. J. Environ. Res. Public Health 2023, 20, 4446. [Google Scholar] [CrossRef] [PubMed]
- Orsolini, L.; Ricci, L.; Cicolini, A.; Volpe, U. Liquid Youth Generation? The New Psychopathological Trajectories of the Post-Modern Society. J. Psychol. Psychother. Res. 2023, 10, 32–50. [Google Scholar] [CrossRef]
|
Total Sample | Not-IGD | IGD | p-Value | |
---|---|---|---|---|
Age | ||||
Males | 21.8 ± 3.6 | 21.7 ± 3.5 | 21.8 ± 3.6 | p = 0.798 |
Females | 21.6 ± 3.3 | 21.6 ± 3.3 | 21.8 ± 2.9 | p = 0.393 |
Sex | ||||
Males | 328 (60.4%) | 257 (57.2%) | 71 (75.5%) | χ2 = 10.876 p * < 0.001 |
Females | 215 (39.6%) | 192 (42.8%) | 23 (24.5%) | |
Education | ||||
Middle school certificate | 16 (3.0%) | 12 (2.7%) | 4 (4.3%) | χ2 = 1.802 p = 0.614 |
High school diploma | 378 (69.7%) | 312 (69.6%) | 66 (70.2%) | |
Degree | 137 (25.2%) | 116 (25.9%) | 21 (22.3%) | |
Post-graduate diploma | 11 (2.0%) | 8 (1.8%) | 3 (3.2%) | |
Working status | ||||
High school student | 11 (2.0%) | 9 (2.0%) | 2 (2.1%) | χ2 = 1.672 p = 0.892 |
University student | 423 (77.9%) | 351 (78.3%) | 71 (75.5%) | |
Working student | 38 (7.0%) | 32 (7.1%) | 6 (6.5%) | |
Full time worker | 50 (9.2%) | 40 (8.9%) | 10 (10.6%) | |
Part time worker | 7 (1.3%) | 6 (1.3%) | 1 (1.1%) | |
Unemployed | 14 (2.6%) | 10 (2.2%) | 4 (4.3%) | |
Type of video playing | ||||
Only online | 46 (8.5%) | 37 (8.2%) | 9 (9.6%) | χ2 = 0.871 p * = 0.651 |
Only offline | 73 (13.4%) | 63 (14.0%) | 10 (10.6%) | |
Online and offline | 424 (78.1%) | 349 (77.7%) | 75 (79.8%) | |
Video game playing activity | ||||
During the week | 47 (8.7%) | 42 (9.5%) | 5 (5.3%) | χ2 = 6.408 p = 0.041 |
During the weekend | 46 (8.6%) | 43 (9.7%) | 3 (3.2%) | |
Both | 445 (82.7%) | 359 (80.9%) | 86 (91.5%) | |
Time spent playing weekly | ||||
Less than 1 h | 81 (15.0%) | 76 (17%) | 5 (5.3%) | χ2 = 28.040 p < 0.001 |
1–3 h | 142 (26.2%) | 126 (28.2%) | 16 (17.0%) | |
4–6 h | 120 (22.2%) | 103 (23.0%) | 17 (18.1%) | |
More than 6 h | 198 (36.6%) | 142 (31.8%) | 56 (59.6%) |
Total Sample | Not-IGD | IGD | p-Value | |
---|---|---|---|---|
TACS-22 Total score | 43.3 ± 14.0 | 42.3 ± 14.2 | 48.4 ± 11.6 | p < 0.001 |
MOGQ Socialization | 8.4 ± 3.7 | 8.0 ± 3.6 | 10.2 ± 3.7 | p < 0.001 |
MOGQ Escape | 8.2 ± 4.5 | 7.3 ± 3.9 | 12.6 ± 4.7 | p < 0.001 |
MOGQ Competition | 9.7 ± 4.3 | 9.3 ± 4.2 | 12.0 ± 4.2 | p < 0.001 |
MOGQ Coping | 9.5 ± 3.7 | 9.0 ± 3.5 | 11.8 ± 3.7 | p < 0.001 |
MOGQ Skill development | 9.1 ± 4.8 | 8.8 ± 4.7 | 11.0 ± 5.0 | p < 0.001 |
MOGQ Fantasy | 7.0 ± 3.9 | 6.5 ± 3.6 | 9.5 ± 4.5 | p < 0.001 |
MOGQ Recreation | 12.0 ± 3.5 | 12.0 ± 3.5 | 12.4 ± 3.2 | p = 0.526 |
Total Sample | Not-MTD | MTD | p-Value | |
---|---|---|---|---|
Age | ||||
Males | 21.8 ± 3.6 | 21.7 ± 3.5 | 21.8 ± 3.7 | p = 0.547 |
Females | 21.6 ± 3.3 | 21.6 ± 3.3 | 21.6 ± 3.1 | p = 0.901 |
Sex | ||||
Males | 328 (60.4%) | 272 (64.2%) | 55 (47.4%) | χ2 = 10.682 p = 0.001 |
Females | 214 (39.6%) | 152 (35.8%) | 61 (52.6%) | |
Education | ||||
Middle school certificate | 16 (3.0%) | 11 (2.6%) | 5 (4.2%) | χ2 = 3.055 p = 0.383 |
High school diploma | 378 (69.7%) | 291 (68.6%) | 87 (73.7%) | |
Degree | 137 (25.2%) | 113 (26.7%) | 24 (20.3%) | |
Post-graduate diploma | 11 (2.0%) | 9 (2.1%) | 2 (1.7%) | |
Working status | ||||
High school student | 11 (2.0%) | 9 (2.1%) | 2 (1.7%) | χ2 = 4.950 p = 0.422 |
University student | 423 (77.9%) | 326 (76.9%) | 96 (81.4%) | |
Working student | 38 (7.0%) | 31 (7.3%) | 7 (5.9%) | |
Full time worker | 50 (9.2%) | 43 (10.1%) | 7 (5.9%) | |
Part time worker | 7 (1.3%) | 4 (0.9%) | 3 (2.5%) | |
Unemployed | 14 (2.6%) | 11 (2.6%) | 3 (2.5%) | |
Type of video game playing | ||||
Only online | 46 (8.5%) | 38 (9.0%) | 8 (6.8%) | χ2 = 2.920 p = 0.232 |
Only offline | 73 (13.4%) | 52 (12.3%) | 21 (17.8%) | |
Online and offline | 424 (78.1%) | 334 (78.8%) | 89 (75.4%) | |
Video game playing activity | ||||
During the week | 47 (8.8%) | 37 (8.8%) | 10 (8.6%) | χ2 = 0.228 p = 0.892 |
During the weekend | 46 (8.4%) | 34 (8.1%) | 11 (9.5%) | |
Both | 445 (82.8%) | 349 (83.1%) | 95 (81.9%) | |
Time spent playing weekly | ||||
Less than 1 h | 81 (15.0%) | 70 (16.5%) | 11 (9.5%) | χ2 = 4.386 p = 0.223 |
1–3 h | 142 (26.2%) | 107 (25.3%) | 35 (30.2%) | |
4–6 h | 120 (22.2%) | 91 (21.5%) | 29 (25.0%) | |
More than 6 h | 198 (36.6%) | 155 (36.6%) | 41 (35.3%) |
Total Sample | Not-MTD | MTD | p-Value | |
---|---|---|---|---|
IGDS9SF Total score | 15.3 | 14.7 ± 5.0 | 17.5 ± 7.3 | p < 0.001 |
MOGQ Socialization | 8.4 ± 3.7 | 8.3 ± 3.8 | 8.7 ± 3.6 | p = 0.365 |
MOGQ Escape from reality | 8.2 ± 4.5 | 7.6 ± 4.0 | 10.4 ± 5.4 | p < 0.001 |
MOGQ Competition | 9.7 ± 4.3 | 9.7 ± 4.3 | 9.9 ± 4.6 | p = 0.605 |
MOGQ Coping | 9.5 ± 3.7 | 9.2 ± 3.5 | 10.6 ± 4.2 | p < 0.001 |
MOGQ Skill development | 9.1 ± 4.8 | 9.1 ± 4.6 | 9.4 ± 5.3 | p = 0.479 |
MOGQ Fantasy | 7.0 ± 3.9 | 6.5 ± 3.4 | 8.9 ± 4.9 | p < 0.001 |
MOGQ Recreation | 12.0 ± 3.5 | 12.1 ± 3.5 | 11.8 ± 3.6 | p = 0.328 |
MOGQ Total score | 64.0 ± 20.9 | 62.4 ± 19.7 | 69.7 ± 23.8 | p < 0.001 |
B | SE | β | t | p-Value | 95%IC Lower Limit | 95%IC Upper Limit | Tolerance | VIF | |
---|---|---|---|---|---|---|---|---|---|
(constant) | 33.475 | 1.862 | 17.979 | <0.001 | 29.817 | 37.132 | |||
MOGQ “Escape from reality” subscale | 0.450 | 0.183 | 0.144 | 2.459 | 0.014 | 0.091 | 0.810 | 0.481 | 2.080 |
MOGQ “Fantasy” subscale | 0.493 | 0.194 | 0.137 | 2.547 | 0.011 | 0.113 | 0.873 | 0.568 | 1.762 |
MOGQ “Competition” subscale | −0.299 | 0.141 | −0.093 | −2.120 | 0.035 | −0.576 | −0.022 | 0.863 | 1.159 |
IGDS9-SF total score | 0.369 | 0.125 | 0.149 | 2.942 | 0.003 | 0.123 | 0.615 | 0.643 | 1.555 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orsolini, L.; Longo, G.; Bellagamba, S.; Kato, T.A.; Volpe, U. Could the Construct of Modern-Type Depression Predict Internet Gaming Disorder in Italian Video Gamers? A Case–Control Study. Brain Sci. 2024, 14, 48. https://doi.org/10.3390/brainsci14010048
Orsolini L, Longo G, Bellagamba S, Kato TA, Volpe U. Could the Construct of Modern-Type Depression Predict Internet Gaming Disorder in Italian Video Gamers? A Case–Control Study. Brain Sciences. 2024; 14(1):48. https://doi.org/10.3390/brainsci14010048
Chicago/Turabian StyleOrsolini, Laura, Giulio Longo, Silvia Bellagamba, Takahiro A. Kato, and Umberto Volpe. 2024. "Could the Construct of Modern-Type Depression Predict Internet Gaming Disorder in Italian Video Gamers? A Case–Control Study" Brain Sciences 14, no. 1: 48. https://doi.org/10.3390/brainsci14010048
APA StyleOrsolini, L., Longo, G., Bellagamba, S., Kato, T. A., & Volpe, U. (2024). Could the Construct of Modern-Type Depression Predict Internet Gaming Disorder in Italian Video Gamers? A Case–Control Study. Brain Sciences, 14(1), 48. https://doi.org/10.3390/brainsci14010048