Balancing Act: Acute and Contextual Vestibular Sensations of Cranial Electrotherapy Stimulation Using Survey and Sensor Outcomes in a Non-Clinical Sample
Abstract
:1. Introduction
2. Method
2.1. Design
2.2. Participants
2.3. Materials and Equipment
2.3.1. CES Device
2.3.2. Survey Measures
2.3.3. Wearable Balance Sensors
2.3.4. Serial Subtraction Task
2.4. Procedure
2.5. Analyses
3. Results
3.1. Preliminary Analysis
3.1.1. Self-Reported Vestibular and Cutaneous Sensations
3.1.2. Balance Performance
3.2. Primary Analysis
3.2.1. Self-Reported Vestibular Sensations
3.2.2. Balance Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gebodh, N.; Esmaeilpour, Z.; Adair, D.; Schestattsky, P.; Fregni, F.; Bikson, M. Transcranial Direct Current Stimulation among Technologies for Low-Intensity Transcranial Electrical Stimulation: Classification, History, and Terminology. In Practical Guide to Transcranial Direct Current Stimulation: Principles, Procedures and Applications; Knotkova, H., Nitsche, M.A., Bikson, M., Woods, A.J., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 3–43. ISBN 978-3-319-95948-1. [Google Scholar]
- Guleyupoglu, B.; Schestatsky, P.; Edwards, D.; Fregni, F.; Bikson, M. Classification of Methods in Transcranial Electrical Stimulation (tES) and Evolving Strategy from Historical Approaches to Contemporary Innovations. J. Neurosci. Methods 2013, 219, 297–311. [Google Scholar] [CrossRef]
- Yavari, F.; Jamil, A.; Mosayebi Samani, M.; Vidor, L.P.; Nitsche, M.A. Basic and Functional Effects of Transcranial Electrical Stimulation (tES)—An Introduction. Neurosci. Biobehav. Rev. 2018, 85, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Antal, A.; Alekseichuk, I.; Bikson, M.; Brockmöller, J.; Brunoni, A.R.; Chen, R.; Cohen, L.G.; Dowthwaite, G.; Ellrich, J.; Flöel, A.; et al. Low Intensity Transcranial Electric Stimulation: Safety, Ethical, Legal Regulatory and Application Guidelines. Clin. Neurophysiol. 2017, 128, 1774–1809. [Google Scholar] [CrossRef] [PubMed]
- Shekelle, P.G.; Cook, I.A.; Miake-Lye, I.M.; Booth, M.S.; Beroes, J.M.; Mak, S. Benefits and Harms of Cranial Electrical Stimulation for Chronic Painful Conditions, Depression, Anxiety, and Insomnia: A Systematic Review. Ann. Intern. Med. 2018, 168, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Brunyé, T.T.; Patterson, J.E.; Wooten, T.; Hussey, E.K. A Critical Review of Cranial Electrotherapy Stimulation for Neuromodulation in Clinical and Non-Clinical Samples. Front. Hum. Neurosci. 2021, 15, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Brunyé, T.T.; Hussey, E.K.; Fontes, E.B.; Ward, N. Modulating Applied Task Performance via Transcranial Electrical Stimulation. Front. Hum. Neurosci. 2019, 13, 140. [Google Scholar] [CrossRef]
- Datta, A.; Dmochowski, J.P.; Guleyupoglu, B.; Bikson, M.; Fregni, F. Cranial Electrotherapy Stimulation and Transcranial Pulsed Current Stimulation: A Computer Based High-Resolution Modeling Study. NeuroImage 2013, 65, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Ferdjallah, M.; Bostick, F.X.; Barr, R.E. Potential and Current Density Distributions of Cranial Electrotherapy Stimulation (CES) in a Four-Concentric-Spheres Model. IEEE Trans. Biomed. Eng. 1996, 43, 939–943. [Google Scholar] [CrossRef] [PubMed]
- McCormick, D.A. GABA as an Inhibitory Neurotransmitter in Human Cerebral Cortex. J. Neurophysiol. 1989, 62, 1018–1027. [Google Scholar] [CrossRef]
- Krupitsky, E.M.; Burakov, A.M.; Karan-ova, G.F.; Katsnelson, J.S.; Lebedev, V.P.; Grinenko, A.J.; Borodkin, J.S. The Administration of Transcranial Electric Treatment for Affective Disturbances Therapy in Alcoholic Patients. Drug Alcohol Depend. 1991, 27, 1–6. [Google Scholar] [CrossRef]
- Gagnon, S.A.; Wagner, A.D. Acute Stress and Episodic Memory Retrieval: Neurobiological Mechanisms and Behavioral Consequences. Ann. N.Y. Acad. Sci. 2016, 1369, 55–75. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, U. Coping with Stress: Neuroendocrine Reactions and Implications for Health. Noise Health 1999, 1, 67–74. [Google Scholar] [PubMed]
- Olver, J.S.; Pinney, M.; Maruff, P.; Norman, T.R. Impairments of Spatial Working Memory and Attention Following Acute Psychosocial Stress. Stress Health 2015, 31, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Sänger, J.; Bechtold, L.; Schoofs, D.; Blaszkewicz, M.; Wascher, E. The Influence of Acute Stress on Attention Mechanisms and Its Electrophysiological Correlates. Front. Behav. Neurosci. 2014, 8, 353. [Google Scholar] [CrossRef]
- Schommer, N.C.; Hellhammer, D.H.; Kirschbaum, C. Dissociation between Reactivity of the Hypothalamus-Pituitary-Adrenal Axis and the Sympathetic-Adrenal-Medullary System to Repeated Psychosocial Stress. Psychosom. Med. 2003, 65, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Shields, G.S.; Sazma, M.A.; Yonelinas, A.P. The Effects of Acute Stress on Core Executive Functions: A Meta-Analysis and Comparison with Cortisol. Neurosci. Biobehav. Rev. 2016, 68, 651–668. [Google Scholar] [CrossRef]
- Tsigos, C.; Chrousos, G.P. Hypothalamic–Pituitary–Adrenal Axis, Neuroendocrine Factors and Stress. J. Psychosom. Res. 2002, 53, 865–871. [Google Scholar] [CrossRef]
- Wiemers, U.S.; Sauvage, M.M.; Schoofs, D.; Hamacher-Dang, T.C.; Wolf, O.T. What We Remember from a Stressful Episode. Psychoneuroendocrinology 2013, 38, 2268–2277. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-Y.; So, W.-Y.; Roh, H.-T. Effects of aerobic exercise training and cranial electrotherapy stimulation on the stress-related hormone, the neurotrophic factor, and mood states in obese middle-aged women: A pilot clinical trial. Salud Ment. 2016, 39, 249–256. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, W.-Y.; Lee, C.-H.; Min, T.-J.; Lee, Y.-S.; Kim, J.-H.; Park, Y.-C. Effects of Cranial Electrotherapy Stimulation on Preoperative Anxiety, Pain and Endocrine Response. J. Int. Med. Res. 2013, 41, 1788–1795. [Google Scholar] [CrossRef]
- Roh, H.-T.; So, W.-Y. Cranial Electrotherapy Stimulation Affects Mood State but Not Levels of Peripheral Neurotrophic Factors or Hypothalamic- Pituitary-Adrenal Axis Regulation. Technol. Health Care 2017, 25, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Antal, A.; Luber, B.; Brem, A.-K.; Bikson, M.; Brunoni, A.R.; Cohen Kadosh, R.; Dubljevic, V.; Fecteau, S.; Ferreri, F.; Flöel, A.; et al. Non-Invasive Brain Stimulation and Neuroenhancement. Clin. Neurophysiol. Pract. 2022, 7, 146–165. [Google Scholar] [CrossRef] [PubMed]
- Elyamany, O.; Leicht, G.; Herrmann, C.S.; Mulert, C. Transcranial Alternating Current Stimulation (tACS): From Basic Mechanisms towards First Applications in Psychiatry. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 271, 135–156. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, D.L.; Nichols, F. Cranial Electrotherapy Stimulation for Treatment of Anxiety, Depression, and Insomnia. Psychiatr. Clin. N. Am. 2013, 36, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Curthoys, I.S.; MacDougall, H.G. What Galvanic Vestibular Stimulation Actually Activates. Front. Neur. 2012, 3, 117. [Google Scholar] [CrossRef]
- Reynolds, R.F.; Osler, C.J. Galvanic Vestibular Stimulation Produces Sensations of Rotation Consistent with Activation of Semicircular Canal Afferents. Front. Neur. 2012, 3, 104. [Google Scholar] [CrossRef]
- Ahn, H.; Galle, K.; Mathis, K.B.; Miao, H.; Montero-Hernandez, S.; Jackson, N.; Ju, H.-H.; McCrackin, H.; Goodwin, C.; Hargraves, A.; et al. Feasibility and Efficacy of Remotely Supervised Cranial Electrical Stimulation for Pain in Older Adults with Knee Osteoarthritis: A Randomized Controlled Pilot Study. J. Clin. Neurosci. 2020, 77, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Blacker, K.J.; Hamilton, J.; Roush, G.; Pettijohn, K.A.; Biggs, A.T. Cognitive Training for Military Application: A Review of the Literature and Practical Guide. J. Cogn. Enhanc. 2019, 3, 30–51. [Google Scholar] [CrossRef]
- Brunyé, T.T.; Brou, R.; Doty, T.J.; Gregory, F.D.; Hussey, E.K.; Lieberman, H.R.; Loverro, K.L.; Mezzacappa, E.S.; Neumeier, W.H.; Patton, D.J.; et al. A Review of U.S. Army Research Contributing to Cognitive Enhancement in Military Contexts. J. Cogn. Enhanc. 2020, 4, 453–468. [Google Scholar] [CrossRef]
- Cantelon, J.A.; Hussey, E.K.; Giles, G.E.; Bode, V.G.; Ward, N. Effects of Acute and Sustained Stress on Cognitive Performance during a 72-Hour Military Training Mission. Med. Sci. Sports Exerc. 2022, 54, 59. [Google Scholar] [CrossRef]
- Hussey, E.K.; Fontes, E.B.; Ward, N.; Westfall, D.R.; Kao, S.-C.; Kramer, A.F.; Hillman, C.H. Combined and Isolated Effects of Acute Exercise and Brain Stimulation on Executive Function in Healthy Young Adults. J. Clin. Med. 2020, 9, 1410. [Google Scholar] [CrossRef]
- Pellecchia, G.L. Postural Sway Increases with Attentional Demands of Concurrent Cognitive Task. Gait Posture 2003, 18, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Springer, S.; Giladi, N.; Peretz, C.; Yogev, G.; Simon, E.S.; Hausdorff, J.M. Dual-Tasking Effects on Gait Variability: The Role of Aging, Falls, and Executive Function. Mov. Disord. 2006, 21, 950–957. [Google Scholar] [CrossRef] [PubMed]
- Ward, N.; Hussey, E.; Wooten, T.; Marfeo, E.; Brunyé, T.T. Modulating Cognitive–Motor Multitasking with Commercial-off-the-Shelf Non-Invasive Brain Stimulation. Brain Sci. 2022, 12, 180. [Google Scholar] [CrossRef] [PubMed]
- Yogev-Seligmann, G.; Hausdorff, J.M.; Giladi, N. The Role of Executive Function and Attention in Gait. Mov. Disord. 2008, 23, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Hao, Y.; Wang, Y.; Jor’dan, A.; Pascual-Leone, A.; Zhang, J.; Fang, J.; Manor, B. Transcranial Direct Current Stimulation Reduces the Cost of Performing a Cognitive Task on Gait and Postural Control. Eur. J. Neurosci. 2014, 39, 1343–1348. [Google Scholar] [CrossRef] [PubMed]
- Barclay, T.H.; Barclay, R.D. A Clinical Trial of Cranial Electrotherapy Stimulation for Anxiety and Comorbid Depression. J. Affect. Disord. 2014, 164, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Koleoso, O.N.; Osinowo, H.O.; Akhigbe, K.O. The Role of Relaxation Therapy and Cranial Electrotherapy Stimulation in the Management of Dental Anxiety in Nigeria. IOSR J. Dent. Med. Sci. 2013, 10, 51–57. [Google Scholar] [CrossRef]
- McClure, D.; Greenman, S.C.; Koppolu, S.S.; Varvara, M.; Yaseen, Z.S.; Galynker, I.I. A Pilot Study of Safety and Efficacy of Cranial Electrotherapy Stimulation in Treatment of Bipolar II Depression. J. Nerv. Ment. Dis. 2015, 203, 827–835. [Google Scholar] [CrossRef]
- Mischoulon, D.; De Jong, M.F.; Vitolo, O.V.; Cusin, C.; Dording, C.M.; Yeung, A.S.; Durham, K.; Parkin, S.R.; Fava, M.; Dougherty, D.D. Efficacy and Safety of a Form of Cranial Electrical Stimulation (CES) as an Add-on Intervention for Treatment-Resistant Major Depressive Disorder: A Three Week Double Blind Pilot Study. J. Psychiatr. Res. 2015, 70, 98–105. [Google Scholar] [CrossRef]
- Southworth, S. A Study of the Effects of Cranial Electrical Stimulation on Attention and Concentration. Integr. Physiol. Behav. Sci. 1999, 34, 43–53. [Google Scholar] [CrossRef]
- Wagenseil, B.; Garcia, C.; Suvorov, A.V.; Fietze, I.; Penzel, T. The Effect of Cranial Electrotherapy Stimulation on Sleep in Healthy Women. Physiol. Meas. 2018, 39, 114007. [Google Scholar] [CrossRef]
- Brunyé, T.T.; Giles, G.E.; Eddy, M.D.; Navarro, E. Cranial Electrotherapy Stimulation (CES) Does Not Reliably Influence Emotional, Physiological, Biochemical, or Behavioral Responses to Acute Stress. J. Cogn. Enhanc. 2022, 6, 417–433. [Google Scholar] [CrossRef]
- Cork, R.C.; Wood, P.; Ming, N.; Clifton, S.; James, E.; Price, L. The Effect of Cranial Electrotherapy Stimulation (CES) on Pain Associated with Fibromyalgia. Internet J. Anesthesiol. 2004, 8, 1–8. [Google Scholar]
- Lande, R.G.; Gragnani, C. Efficacy of Cranial Electric Stimulation for the Treatment of Insomnia: A Randomized Pilot Study. Complement. Ther. Med. 2013, 21, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Lichtbroun, A.S.; Raicer, M.-M.C.; Smith, R.B. The Treatment of Fibromyalgia with Cranial Electrotherapy Stimulation. JCR J. Clin. Rheumatol. 2001, 7, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Morriss, R.; Xydopoulos, G.; Craven, M.; Price, L.; Fordham, R. Clinical Effectiveness and Cost Minimisation Model of Alpha-Stim Cranial Electrotherapy Stimulation in Treatment Seeking Patients with Moderate to Severe Generalised Anxiety Disorder. J. Affect. Disord. 2019, 253, 426–437. [Google Scholar] [CrossRef]
- Morriss, R.; Price, L. Differential Effects of Cranial Electrotherapy Stimulation on Changes in Anxiety and Depression Symptoms over Time in Patients with Generalized Anxiety Disorder. J. Affect. Disord. 2020, 277, 785–788. [Google Scholar] [CrossRef]
- Taylor, A.G.; Anderson, J.G.; Riedel, S.L.; Lewis, J.E.; Kinser, P.A.; Bourguignon, C. Cranial Electrical Stimulation Improves Symptoms and Functional Status in Individuals with Fibromyalgia. Pain Manag. Nurs. 2013, 14, 327–335. [Google Scholar] [CrossRef]
- Dhanani, L.; Ruggs, E.; Eagleson, J.; Wiernik, B.M.; Hernandez, T.; Volpone, S.; Sabat, I.; D’Mello, S.; Poeppelman, T.; Zelin, A. Better Practices in Surveying Demographic Information; Society for Industrial and Organizational Psychology: Bowling Green, OH, USA, 2021. [Google Scholar]
- Muncie, H.L.; Sirmans, S.M.; James, E. Dizziness: Approach to Evaluation and Management. Am Fam Physician 2017, 95, 154–162. [Google Scholar]
- Mancini, M.; King, L.; Salarian, A.; Holmstrom, L.; McNames, J.; Horak, F.B. Mobility Lab to Assess Balance and Gait with Synchronized Body-Worn Sensors. J. Bioeng. Biomed. Sci. 2013, 7, 1–15. [Google Scholar] [CrossRef]
- Bristow, T.; Jih, C.-S.; Slabich, A.; Gunn, J. Standardization and Adult Norms for the Sequential Subtracting Tasks of Serial 3’s and 7’s. Appl. Neuropsychol. Adult 2016, 23, 372–378. [Google Scholar] [CrossRef] [PubMed]
- da Costa, K.G.; Hussey, E.K.; Fontes, E.B.; Menta, A.; Ramsay, J.W.; Hancock, C.L.; Loverro, K.L.; Marfeo, E.; Ward, N. Effects of Cognitive over Postural Demands on Upright Standing among Young Adults. Percept. Mot. Ski. 2021, 128, 80–95. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2022. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Revelle, W. Psych: Procedures for Personality and Psychological Research; Northwestern University: Evanston, IL, USA, 2020. [Google Scholar]
- Selker, R.; Love, J.; Dropmann, D.; Moreno, V. Jmv: The “Jamovi” Analyses. 2021. [Google Scholar]
- Virasakdi, C. epiDisplay: Epidemiological Data Display Package. 2022. [Google Scholar]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Lüdecke, D.; Ben-Shachar, M.; Patil, I.; Waggoner, P.; Makowski, D. Performance: An R Package for Assessment, Comparison and Testing of Statistical Models. J. Open Source Softw. 2021, 6, 3139. [Google Scholar] [CrossRef]
- Tabachnick, B.L.; Fidell, L.S. Using Multivariate Statistics, 6th ed.; Pearson Education: Boston, MA, USA, 2013; ISBN 0-205-84957-1. [Google Scholar]
- Jacobson, G.P.; Newman, C.W. The Development of the Dizziness Handicap Inventory. Arch. Otolaryngol.-Head Neck Surg. 1990, 116, 424–427. [Google Scholar] [CrossRef] [PubMed]
- Tyson, S.F.; Connell, L.A. How to Measure Balance in Clinical Practice. A Systematic Review of the Psychometrics and Clinical Utility of Measures of Balance Activity for Neurological Conditions. Clin. Rehabil. 2009, 23, 824–840. [Google Scholar] [CrossRef]
- Dlugaiczyk, J.; Gensberger, K.D.; Straka, H. Galvanic Vestibular Stimulation: From Basic Concepts to Clinical Applications. J. Neurophysiol. 2019, 121, 2237–2255. [Google Scholar] [CrossRef]
- Utz, K.S.; Dimova, V.; Oppenländer, K.; Kerkhoff, G. Electrified Minds: Transcranial Direct Current Stimulation (tDCS) and Galvanic Vestibular Stimulation (GVS) as Methods of Non-Invasive Brain Stimulation in Neuropsychology—A Review of Current Data and Future Implications. Neuropsychologia 2010, 48, 2789–2810. [Google Scholar] [CrossRef]
- Day, B.L.; Séverac Cauquil, A.; Bartolomei, L.; Pastor, M.A.; Lyon, I.N. Human Body-Segment Tilts Induced by Galvanic Stimulation: A Vestibularly Driven Balance Protection Mechanism. J. Physiol. 1997, 500, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, R.C.; Day, B.L. Probing the Human Vestibular System with Galvanic Stimulation. J. Appl. Physiol. 2004, 96, 2301–2316. [Google Scholar] [CrossRef]
- Son, G.M.L.; Blouin, J.-S.; Inglis, J.T. Short-Duration Galvanic Vestibular Stimulation Evokes Prolonged Balance Responses. J. Appl. Physiol. 2008, 105, 1210–1217. [Google Scholar] [CrossRef] [PubMed]
- Inukai, Y.; Otsuru, N.; Masaki, M.; Saito, K.; Miyaguchi, S.; Kojima, S.; Onishi, H. Effect of Noisy Galvanic Vestibular Stimulation on Center of Pressure Sway of Static Standing Posture. Brain Stimul. 2018, 11, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Johannsen, L.; Stephan, D.N.; Straub, E.; Döhring, F.; Kiesel, A.; Koch, I.; Müller, H. Assessing the Influence of Cognitive Response Conflict on Balance Control: An Event-Related Approach Using Response-Aligned Force-Plate Time Series Data. Psychol. Res. 2023, 87, 2297–2315. [Google Scholar] [CrossRef]
Number of Reported Sensations | n Trials (%) |
---|---|
Zero (none) | 153 (30%) |
One | 131 (26%) |
Two | 94 (18%) |
Three | 56 (11%) |
Four | 30 (6%) |
Five | 23 (4%) |
Six (all) | 25 (5%) |
Possible Guess | n Guesses (%) | % Correct Guesses |
---|---|---|
Active | 34 (27%) | 62% |
Sham | 57 (44%) | 58% |
Unsure | 37 (29%) | - |
Model (M) | −2Loglikelihood (No. Parameters) | Deviance (Δ Previous M) | χ2 Critical Value (Δ df) | R2 | p | Conclusion | |
---|---|---|---|---|---|---|---|
No. | Predictors | ||||||
0 | None (null) | −883.82 (3) | 1767.6 | .52 | |||
1 | Trial | −877.51 (4) | 1755.0 (12.6) | 12.63 (1) | .53 | ≤.001 *** | Improved model fit |
2 | Trial, stimulation | −877.18 (5) | 1754.3 (0.7) | 0.66 (1) | .53 | .418 | Unimproved model fit |
3 | Trial, stimulation, physical demand | −874.71 (6) | 1749.4 (4.9) | 4.94 (1) | .54 | .026 * | Improved model fit |
4 | Trial, stimulation, physical demand, cognitive demand | −874.62 (7) | 1749.2 (0.2) | 0.18 (1) | .54 | .676 | Unimproved model fit |
5 | M4 with stimulation × physical demand | −874.20 (8) | 1748.4 (0.8) | 0.84 (1) | .54 | .359 | Unimproved model fit |
6 | M5 with stimulation × cognitive demand | −873.80 (9) | 1747.6 (0.8) | 0.80 (1) | .54 | .371 | Unimproved model fit |
7 | M6 with physical demand × cognitive demand | −871.95 (10) | 1743.9 (3.7) | 3.70 (1) | .54 | .054 | Unimproved model fit |
8 | Full (M7 with stimulation × physical demand × cognitive demand) | −871.47 (11) | 1743.0 (0.9) | 0.95 (1) | .54 | .329 | Unimproved model fit |
Fixed Effects | |||||||
Parameter | Estimate | SE | df | t | p | 95% CI [LL, UL] | |
γ00 | Intercept | 1.28 | 0.19 | 120.37 | 6.73 | ≤.001 *** | [0.91, 1.66] |
γ10 | Trial | 0.08 | 0.02 | 448 | 3.36 | ≤.001 *** | [0.03, 0.12] |
γ20 | Stimulation | 0.09 | 0.10 | 448 | 0.83 | .408 | [−0.12, 0.29] |
γ30 | Physical demand | 0.23 | 0.10 | 448 | 2.23 | .026 * | [0.03, 0.43] |
Random effects | |||||||
Parameter | Variance | SD | 95% CI [LL, UL] | ||||
τ00 | Intercept | 1.51 | 1.23 | [1.02, 1.50] | |||
σ2 | Residual | 1.34 | 1.16 | [1.08, 1.24] |
Model (M) | −2Loglikelihood (No. Parameters) | Deviance (Δ Previous M) | χ2 Critical Value (Δ df) | R2 | p | Conclusion | |
---|---|---|---|---|---|---|---|
No. | Predictors | ||||||
0 | None (null) | 152.87 (3) | −305.74 | .01 | |||
1 | Trial | 154.77 (4) | −309.54 (3.8) | 3.80 (1) | .03 | .051 | Unimproved model fit |
2 | Trial, stimulation | 154.93 (5) | −309.86 (0.32) | 0.33 (1) | .03 | .567 | Unimproved model fit |
3 | Trial, stimulation, cognitive demand | 167.93 (6) | −335.87 (26.01) | 26.00 (1) | .16 | ≤.001 *** | Improved model fit |
4 | M3 with stimulation × cognitive demand | 167.93 (7) | −335.87 (0) | 0.00 (1) | .16 | .958 | Unimproved model fit |
Fixed Effects | |||||||
Parameter | Estimate | SE | df | t | p | 95% CI [LL, UL] | |
γ00 | Intercept | 0.10 | 0.02 | 254.89 | 6.09 | ≤.001 *** | [0.07, 0.35] |
γ10 | Trial | −0.01 | 0.01 | 191.65 | −2.07 | .040 * | [−0.03, 0.00] |
γ20 | Stimulation | 0.01 | 0.02 | 191.40 | 0.62 | .539 | [−0.02, 0.04] |
γ30 | Cognitive demand | 0.08 | 0.02 | 192.72 | 5.28 | ≤.001 *** | [0.05, 0.11] |
Random effects | |||||||
Parameter | Variance | SD | 95% CI [LL, UL] | ||||
τ00 | Intercept | 0.00 | 0.03 | [0.00, 0.05] | |||
σ2 | Residual | 0.01 | 0.01 | [0.11, 0.14] |
Model (M) | −2Loglikelihood (No. Parameters) | Deviance (Δ Previous M) | χ2 Critical Value (Δ df) | R2 | p | Conclusion | |
---|---|---|---|---|---|---|---|
No. | Predictors | ||||||
0 | None (null) | −802.24 (3) | 1604.5 | .74 | |||
1 | Trial | −799.57 (4) | 1599.2 (5.3) | 5.34 (1) | .75 | .021 * | Improved model fit |
2 | Trial, stimulation | −795.89 (5) | 1591.8 (7.4) | 7.37 (1) | .76 | .007 ** | Improved model fit |
3 | Trial, stimulation, cognitive demand | −791.56 (6) | 1583.1 (8.7) | 8.66 (1) | .77 | .003 ** | Improved model fit |
4 | M3 with stimulation × cognitive demand | −790.88 (7) | 1581.8 (1.3) | 1.37 (1) | .77 | .242 | Unimproved model fit |
Fixed Effects | |||||||
Parameter | Estimate | SE | df | t | p | 95% CI [LL, UL] | |
γ00 | Intercept | 19.98 | 1.00 | 98.64 | 19.97 | ≤.001 *** | [18.00, 21.97] |
γ10 | Trial | −0.60 | 0.22 | 192.00 | −2.72 | .007 ** | [−1.01, −0.16] |
γ20 | Stimulation | 1.34 | 0.48 | 192.00 | 2.77 | .006 ** | [0.39, 2.29] |
γ30 | Cognitive demand | 1.43 | 0.48 | 192.11 | 2.98 | .003 ** | [0.48, 2.38] |
Random effects | |||||||
Parameter | Variance | SD | 95% CI [LL, UL] | ||||
τ00 | Intercept | 47.42 | 6.89 | [5.76, 8.37] | |||
σ2 | Residual | 14.71 | 3.84 | [3.48, 4.25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sansevere, K.S.; MacVicar, J.A.; Samuels, D.R.; Yang, A.K.; Johnson, S.K.; Brunyé, T.T.; Ward, N. Balancing Act: Acute and Contextual Vestibular Sensations of Cranial Electrotherapy Stimulation Using Survey and Sensor Outcomes in a Non-Clinical Sample. Brain Sci. 2024, 14, 87. https://doi.org/10.3390/brainsci14010087
Sansevere KS, MacVicar JA, Samuels DR, Yang AK, Johnson SK, Brunyé TT, Ward N. Balancing Act: Acute and Contextual Vestibular Sensations of Cranial Electrotherapy Stimulation Using Survey and Sensor Outcomes in a Non-Clinical Sample. Brain Sciences. 2024; 14(1):87. https://doi.org/10.3390/brainsci14010087
Chicago/Turabian StyleSansevere, Kayla S., Joel A. MacVicar, Daniel R. Samuels, Audrey K. Yang, Sara K. Johnson, Tad T. Brunyé, and Nathan Ward. 2024. "Balancing Act: Acute and Contextual Vestibular Sensations of Cranial Electrotherapy Stimulation Using Survey and Sensor Outcomes in a Non-Clinical Sample" Brain Sciences 14, no. 1: 87. https://doi.org/10.3390/brainsci14010087
APA StyleSansevere, K. S., MacVicar, J. A., Samuels, D. R., Yang, A. K., Johnson, S. K., Brunyé, T. T., & Ward, N. (2024). Balancing Act: Acute and Contextual Vestibular Sensations of Cranial Electrotherapy Stimulation Using Survey and Sensor Outcomes in a Non-Clinical Sample. Brain Sciences, 14(1), 87. https://doi.org/10.3390/brainsci14010087