Transcranial Direct Current Stimulation (tDCS) Effects on Quantitative Sensory Testing (QST) and Nociceptive Processing in Healthy Subjects: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strategy of Search and Study Selection
2.2. Eligibility Criteria
2.3. Data Extraction
2.4. Methodological Quality Assessment
2.5. Risk of Bias Assessment
2.6. Level of Evidence Assessment
2.7. Data Synthesis
3. Results
3.1. Study Selection
3.2. Characteristics of the Included Studies
3.3. Methodological Quality and Risk of Bias
3.4. Certainty of Evidence (GRADE)
3.5. Effects of tDCS on PPTs
3.6. Effects of tDCS on HPTs
3.7. Effects of tDCS on CPTs
3.8. Effects of tDCS on Pain
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nitsche, M.A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimu-lation. J. Physiol. 2000, 527, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Lang, N.; Nitsche, M.A.; Paulus, W.; Rothwell, J.C.; Lemon, R.N. Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability. Exp. Brain Res. 2004, 156, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Sudbrack-Oliveira, P.; Razza, L.B.; Brunoni, A.R. Non-invasive cortical stimulation: Transcranial direct current stimulation (tDCS). Int. Rev. Neurobiol. 2021, 159, 1–22. [Google Scholar] [PubMed]
- Pacheco-Barrios, K.; Cardenas-Rojas, A.; Thibaut, A.; Costa, B.; Ferreira, I.; Caumo, W.; Fregni, F. Methods and strategies of tDCS for the treatment of pain: Current status and future directions. Expert Rev. Med. Devices 2020, 17, 879–898. [Google Scholar] [CrossRef] [PubMed]
- Braulio, G.; Passos, S.C.; Leite, F.; Schwertner, A.; Stefani, L.C.; Palmer, A.C.S.; Torres, I.L.S.; Fregni, F.; Caumo, W. Effects of transcranial direct current stimulation block remifentanil-induced hyperalgesia: A randomized, double-blind clinical trial. Front. Pharmacol. 2018, 9, 94. [Google Scholar] [CrossRef] [PubMed]
- Pinto, C.B.; Teixeira Costa, B.; Duarte, D.; Fregni, F. Transcranial Direct Current Stimulation as a Therapeutic Tool for Chronic Pain. J. ECT 2018, 34, e36–e50. [Google Scholar] [CrossRef]
- Da Silva, N.R.J.; Laste, G.; Deitos, A.; Stefani, L.C.; Cambraia-Canto, G.; Torres, I.L.S.; Brunoni, A.R.; Fregni, F.; Caumo, W. Combined neuromodulatory interventions in acute experimental pain: Assessment of melatonin and non-invasive brain stimulation. Front. Behav. Neurosci. 2015, 9, 77. [Google Scholar] [CrossRef]
- Corti, E.J.; Nguyen, A.T.; Marinovic, W.; Gasson, N.; Loftus, A.M. Anodal-TDCS over Left-DLPFC Modulates Motor Cortex Excitability in Chronic Lower Back Pain. Brain Sci. 2022, 12, 1654. [Google Scholar] [CrossRef]
- Kold, S.; Graven-Nielsen, T. Effect of anodal high-definition transcranial direct current stimulation on the pain sen-sitivity in a healthy population: A double-blind, sham-controlled study. Pain 2021, 162, 1659–1668. [Google Scholar] [CrossRef]
- Zortea, M.; Ramalho, L.; Alves, R.L.; Alves, C.F.d.S.; Braulio, G.; Torres, I.L.d.S.; Fregni, F.; Caumo, W. Transcranial direct current stimulation to improve the dysfunction of descending pain modulatory system related to opioids in chronic non-cancer pain: An integrative review of neurobiology and meta-analysis. Front. Neurosci. 2019, 13, 1218. [Google Scholar] [CrossRef]
- Tavares, D.R.B.; Okazaki, J.E.F.; Santana, M.V.d.A.; Pinto, A.C.P.N.; Tutiya, K.K.; Gazoni, F.M.; Pinto, C.B.; Santos, F.C.; Fregni, F.; Trevisani, V.F.M. Motor cortex transcranial direct current stimulation effects on knee osteoarthritis pain in elderly subjects with dysfunctional descending pain inhibitory system: A randomized controlled trial. Brain Stimul. 2021, 14, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.J.; Messing, S.B.; Rao, H.; Detre, J.A.; Thompson-Schill, S.L. Prefrontal transcranial direct current stimulation alters activation and connectivity in cortical and subcortical reward systems: A tDCS-fMRI study. Hum. Brain Mapp. 2014, 35, 3673–3686. [Google Scholar] [CrossRef] [PubMed]
- Cummiford, C.M.; Nascimento, T.D.; Foerster, B.R.; Clauw, D.J.; Zubieta, J.-K.; Harris, R.E.; DaSilva, A.F. Changes in resting state functional connectivity after repetitive transcranial direct current stimulation applied to motor cortex in fibromyalgia patients. Arthritis Res. Ther. 2016, 18, 40. [Google Scholar] [CrossRef] [PubMed]
- Peyron, R.; Faillenot, I.; Mertens, P.; Laurent, B.; Garcia-Larrea, L. Motor cortex stimulation in neuropathic pain. Correlations between analgesic effect and hemodynamic changes in the brain. A PET study. NeuroImage 2007, 34, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Boggio, P.S.; Zaghi, S.; Fregni, F. Modulation of emotions associated with images of human pain using anodal transcranial direct current stimulation (tDCS). Neuropsychologia 2009, 47, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.R.; Shi, J.; Hu, Z.Y.; Lin, Y.Y.; Lin, Y.T.; Jiang, X.; Wang, R.; Wang, X.Q.; Wang, Y.L. Is transcranial direct current stimulation beneficial for treating pain, depression, and anxiety symptoms in patients with chronic pain? A systematic review and meta-analysis. Front. Mol. Neurosci. 2022, 15, 1056966. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.-Y.; Cao, Y.-Q.; Du, S.-H.; Yang, Q.-H.; He, S.-Y.; Wang, X.-Q. Effects of High-Definition Transcranial Direct Current Stimulation Targeting the Anterior Cingulate Cortex on the Pain Thresholds: A Randomized Controlled Trial. Pain Med. 2023, 24, 89–98. [Google Scholar] [CrossRef]
- Fregni, F.; Nitsche, M.A.; Loo, C.K.; Brunoni, A.R.; Marangolo, P.; Leite, J.; Bikson, M. Regulatory considerations for the clinical and research use of transcranial direct current stimulation (tDCS): Review and recommendations from an expert panel. Clin. Res. Regul. Aff. 2015, 32, 22–35. [Google Scholar] [CrossRef]
- García-Barajas, G.; Serrano-Muñoz, D.; Gómez-Soriano, J.; Avendaño-Coy, J.; Fernández-Carnero, J.; García, A.M.; Segura-Fragosa, A.; Taylor, J. Efficacy of Anodal Suboccipital Direct Current Stimulation for Endogenous Pain Modulation and Tonic Thermal Pain Control in Healthy Participants: A Randomized Controlled Clinical Trial. Pain Med. 2021, 22, 2908–2917. [Google Scholar] [CrossRef]
- Gurdiel-Álvarez, F.; González-Zamorano, Y.; Lara, S.L.; Gómez-Soriano, J.; Taylor, J.; Romero, J.P.; Jiménez, M.G.; Fernández-Carnero, J. Effectiveness of Unihemispheric Concurrent Dual-Site Stimulation over M1 and Dorsolateral Prefrontal Cortex Stimulation on Pain Processing: A Triple Blind Cross-Over Control Trial. Brain Sci. 2021, 11, 188. [Google Scholar] [CrossRef]
- Jürgens, T.; Schulte, A.; Klein, T.; May, A. Transcranial direct current stimulation does neither modulate results of a quantitative sensory testing protocol nor ratings of suprathreshold heat stimuli in healthy volunteers. Eur. J. Pain 2012, 16, 1251–1263. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Wang, Y.; Wan, R.; Feng, B.; Zhang, Z.; Lin, Y.; Wang, Y. The effect of high-definition transcranial direct current stimulation on pain processing in a healthy population: A single-blinded crossover controlled study. Neurosci. Lett. 2021, 767, 136304. [Google Scholar] [CrossRef] [PubMed]
- Flood, A.; Waddington, G.; Cathcart, S. High-Definition Transcranial Direct Current Stimulation Enhances Conditioned Pain Modulation in Healthy Volunteers: A Randomized Trial. J. Pain 2016, 17, 600–605. [Google Scholar] [CrossRef] [PubMed]
- Ihle, K.; Rodriguez-Raecke, R.; Luedtke, K.; May, A. tDCS modulates cortical nociceptive processing but has little to no impact on pain perception. Pain 2014, 155, 2080–2087. [Google Scholar] [CrossRef] [PubMed]
- Mordillo-Mateos, L.; Dileone, M.; Soto-León, V.; Brocalero-Camacho, A.; Pérez-Borrego, Y.A.; Onate-Figuerez, A.; Aguilar, J.; Oliviero, A. Effects of transcranial direct current stimulation on temperature and pain perception. Sci. Rep. 2017, 7, 2947. [Google Scholar] [CrossRef] [PubMed]
- Mylius, V.; Jung, M.; Menzler, K.; Haag, A.; Khader, P.H.; Oertel, W.H.; Rosenow, F.; Lefaucheur, J.P. Effects of transcranial direct current stimulation on pain perception and working memory. Eur. J. Pain 2012, 16, 974–982. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; Prisma-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Rev. Esp. Nutr. Humana Diet. 2016, 20, 148–160. [Google Scholar] [CrossRef]
- Cashin, A.G.; McAuley, J.H. Clinimetrics: Physiotherapy Evidence Database (PEDro) Scale. J. Physiother. 2020, 66, 59. [Google Scholar] [CrossRef]
- Balshem, H.; Helfand, M.; Schünemann, H.J.; Oxman, A.D.; Kunz, R.; Brozek, J.; Vist, G.E.; Falck-Ytter, Y.; Meerpohl, J.; Norris, S.; et al. GRADE guidelines: 3. Rating the quality of evidence. J. Clin. Epidemiol. 2011, 64, 401–406. [Google Scholar] [CrossRef]
- Andrews, J.; Guyatt, G.; Oxman, A.D.; Alderson, P.; Dahm, P.; Falck-Ytter, Y.; Nasser, M.; Meerpohl, J.; Post, P.N.; Kunz, R.; et al. GRADE guidelines: 14. Going from evidence to recommendations: The significance and presentation of recommendations. J. Clin. Epidemiol. 2013, 66, 719–725. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
- Schünemann, H.J.; Oxman, A.D.; Brozek, J.; Glasziou, P.; Bossuyt, P.; Chang, S.; Muti, P.; Jaeschke, R.; Guyatt, G.H. GRADE: Assessing the quality of evidence for diagnostic recommendations. BMJ Evid.-Based Med. 2008, 13, 162–163. [Google Scholar] [CrossRef] [PubMed]
- Austin, T.M.; Richter, R.R.; Sebelski, C.A. Introduction to the GRADE approach for guideline development: Considerations for physical therapist practice. Phys. Ther. 2014, 94, 1652–1659. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Wan, X.; Liu, J.; Tong, T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat. Methods Med. Res. 2018, 27, 1785–1805. [Google Scholar] [CrossRef]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef]
- Chapter 6: Choosing Effect Measures and Computing Estimates of Effect. Available online: https://training.cochrane.org/handbook/current/chapter-06 (accessed on 10 March 2023).
- Deeks, J.; Higgins, J.; Altman, D. Chapter 10: Analysing data and undertaking meta-analyses. In Cochrane Handbook for Systematic Reviews of Interventions; Version 6.2.; Wiley: Hoboken, NJ, USA, 2021. [Google Scholar]
- Lagos, L.R.; Arribas-Romano, A.; Fernández-Carnero, J.; González-Zamorano, Y.; Val, S.L. Effects of Percutaneous and Transcutaneous Electrical Nerve Stimulation on Endogenous Pain Mechanisms in Patients with Musculoskeletal Pain: A Systematic Review and Meta-Analysis. Pain Med. 2022, 24, 397–414. [Google Scholar] [CrossRef]
- Balk, E.M.; Earley, A.; Patel, K.; Trikalinos, T.A.; Dahabreh, I.J. Empirical Assessment of Within-Arm Correlation Imputation in Trials of Continuous Outcomes; (AHRQ Methods for Ef-fective Health Care); Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2012.
- Aslaksen, P.M.; Vasylenko, O.; Fagerlund, A.J. The effect of transcranial direct current stimulation on experimentally induced heat pain. Exp. Brain Res. 2014, 232, 1865–1873. [Google Scholar] [CrossRef]
- Bachmann, C.G.; Muschinsky, S.; Nitsche, M.A.; Rolke, R.; Magerl, W.; Treede, R.-D.; Paulus, W.; Happe, S. Transcranial direct current stimulation of the motor cortex induces distinct changes in thermal and mechanical sensory percepts. Clin. Neurophysiol. 2010, 121, 2083–2089. [Google Scholar] [CrossRef]
- Borckardt, J.J.; Bikson, M.; Frohman, H.; Reeves, S.T.; Datta, A.; Bansal, V.; Madan, A.; Barth, K.; George, M.S. A pilot study of the tolerability and effects of high-definition transcranial direct current stimulation (HD-tDCS) on pain perception. J. Pain 2011, 13, 112–120. [Google Scholar] [CrossRef]
- Brasil-Neto, J.P.; Iannone, A.; Caixeta, F.V.; Cavendish, B.A.; Cruz, A.P.d.M.; Buratto, L.G. Acute offline transcranial direct current stimulation does not change pain or anxiety produced by the cold pressor test. Neurosci. Lett. 2020, 736, 135300. [Google Scholar] [CrossRef]
- Flix-Díez, L.; Delicado-Miralles, M.; Gurdiel-Álvarez, F.; Velasco, E.; Galán-Calle, M.; Lara, S.L. Reversed Polarity bi-tDCS over M1 during a Five Days Motor Task Training Did Not Influence Motor Learning. A Triple-Blind Clinical Trial. Brain Sci. 2021, 11, 691. [Google Scholar] [CrossRef] [PubMed]
- Grundmann, L.; Rolke, R.; Nitsche, M.A.; Pavlakovic, G.; Happe, S.; Treede, R.-D.; Paulus, W.; Bachmann, C.G. Effects of transcranial direct current stimulation of the primary sensory cortex on somatosensory perception. Brain Stimul. 2011, 4, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Hamner, J.; Villamar, M.F.; Fregni, F.; Taylor, J.A. Transcranial direct current stimulation (tDCS) and the cardiovascular responses to acute pain in humans. Clin. Neurophysiol. 2015, 126, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Henriques, I.A.D.; Lattari, E.; Torres, G.; Rodrigues, G.M.; Oliveira, B.R.R.; Neto, G.A.M.; Neto, S.R.M.; Machado, S. Can transcranial direct current stimulation improve range of motion and modulate pain perception in healthy individuals? Neurosci. Lett. 2019, 707, 134311. [Google Scholar] [CrossRef] [PubMed]
- Kold, S.; Kragh, A.J.; Graven-Nielsen, C.S.; Elnegaard, F.S.; Lund, F.; Vittrup, I.V.; Cliff, K.L.; Sivarooban, R.; Petrini, L. Neuromodulation of somatosensory pain thresholds of the neck musculature using a novel transcranial direct current stimulation montage: A randomized double-blind, sham controlled study. Scand. J. Pain 2022, 22, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lin, X.; Yao, J.; Chen, S.; Hu, Y.; Liu, J.; Jin, R. Effects of High-Definition Transcranial Direct Current Stimulation Over the Primary Motor Cortex on Cold Pain Sensitivity Among Healthy Adults. Front. Mol. Neurosci. 2022, 15, 853509. [Google Scholar] [CrossRef] [PubMed]
- Reidler, J.S.; Mendonca, M.E.; Santana, M.B.; Wang, X.; Lenkinski, R.; Motta, A.F.; Marchand, S.; Latif, L.; Fregni, F. Effects of motor cortex modulation and descending inhibitory systems on pain thresholds in healthy subjects. J. Pain 2012, 13, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Steyaert, A.; Lenoir, C.; Lavand’homme, P.; Broeke, E.N.v.D.; Mouraux, A. Multichannel transcranial direct current stimulation over the left dorsolateral prefrontal cortex may modulate the induction of secondary hyperalgesia, a double-blinded cross-over study in healthy volunteers. PLoS ONE 2022, 17, e0270047. [Google Scholar] [CrossRef]
- Toufexis, C.; Macgregor, M.; Lewis, A.; Flood, A. The effects of high-definition transcranial direct current stimulation on pain modulation and stress-induced hyperalgesia. Br. J. Pain 2023, 17, 244–254. [Google Scholar] [CrossRef]
- Vaseghi, B.; Zoghi, M.; Jaberzadeh, S. How does anodal transcranial direct current stimulation of the pain neuromatrix affect brain excitability and pain perception? A randomised, double-blind, sham-control study. PLoS ONE 2015, 10, e0118340. [Google Scholar] [CrossRef]
- Vo, L.; Ilich, N.; Fujiyama, H.; Drummond, P.D. Anodal Transcranial Direct Current Stimulation Reduces Secondary Hyperalgesia Induced by low Frequency Electrical Stimulation in Healthy Volunteers. J. Pain 2022, 23, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Wan, R.; Wang, Y.; Feng, B.; Jiang, X.; Xu, Y.; Zhang, Z.; Liu, Y.; Wang, Y. Effect of High-definition Transcranial Direct Current Stimulation on Conditioned Pain Modulation in Healthy Adults: A Crossover Randomized Controlled Trial. Neuroscience 2021, 479, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Li, X.; Zhang, W.; Lin, X.; Lyu, X.; Lou, W.; Peng, W. Analgesia induced by anodal tDCS and high-frequency tRNS over the motor cortex: Immediate and sustained effects on pain perception. Brain Stimul. 2021, 14, 1174–1183. [Google Scholar] [CrossRef] [PubMed]
- Zandieh, A.; Parhizgar, S.E.; Fakhri, M.; Taghvaei, M.; Miri, S.; Shahbabaie, A.; Esteghamati, S.; Ekhtiari, H. Modulation of cold pain perception by transcranial direct current stimulation in healthy individuals. Neuromodul. Technol. Neural Interface 2012, 16, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Giannoni-Luza, S.; Pacheco-Barrios, K.; Cardenas-Rojas, A.; Mejia-Pando, P.F.; Luna-Cuadros, M.A.; Barouh, J.L.; Gnoatto-Medeiros, M.; Candido-Santos, L.; Barra, A.; Caumo, W.; et al. Noninvasive motor cortex stimulation effects on quantitative sensory testing in healthy and chronic pain subjects: A systematic review and meta-analysis. Pain 2020, 161, 1955–1975. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yao, J.; Zhang, W.; Chen, S.; Peng, W. Effects of transcranial direct current stimulation on experimental pain perception: A systematic review and meta-analysis. Clin. Neurophysiol. 2021, 132, 2163–2175. [Google Scholar] [CrossRef] [PubMed]
- Vaseghi, B.; Zoghi, M.; Jaberzadeh, S. A meta-analysis of site-specific effects of cathodal transcranial direct current stimulation on sensory perception and pain. PLoS ONE 2015, 10, e0123873. [Google Scholar] [CrossRef] [PubMed]
- Bushnell, M.C.; Ceko, M.; Low, L.A. Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 2013, 14, 502–511. [Google Scholar] [CrossRef]
- Oliviero, A.; Esteban, M.R.; de la Cruz, F.S.; Cabredo, L.F.; Di Lazzaro, V. Short-lasting impairment of temperature perception by high frequency rTMS of the sensorimotor cortex. Clin. Neurophysiol. 2005, 116, 1072–1076. [Google Scholar] [CrossRef]
- Summers, J.; Johnson, S.; Pridmore, S.; Oberoi, G. Changes to cold detection and pain thresholds following low and high frequency transcranial magnetic stimulation of the motor cortex. Neurosci. Lett. 2004, 368, 197–200. [Google Scholar] [CrossRef]
- Lefaucheur, J.P. Transcranial magnetic stimulation. Handb. Clin. Neurol. 2019, 160, 559–580. [Google Scholar] [CrossRef] [PubMed]
- Rainville, P.; Feine, J.S.; Bushnell, M.C.; Duncan, G.H. A psychophysical comparison of sensory and affective responses to four modalities of experimental pain. Somatosens. Mot. Res. 1992, 9, 265–277. [Google Scholar] [CrossRef]
- Dos Santos, M.F.; Love, T.M.; Martikainen, I.K.; Nascimento, T.D.; Fregni, F.; Cummiford, C.; Deboer, M.D.; Zubieta, J.-K.; DaSilva, A.F.M. Immediate effects of tDCS on the μ-opioid system of a chronic pain patient. Front. Psychiatry 2012, 3, 93. [Google Scholar] [CrossRef]
- Naegel, S.; Biermann, J.; Theysohn, N.; Kleinschnitz, C.; Diener, H.-C.; Katsarava, Z.; Obermann, M.; Holle, D. Polarity-specific modulation of pain processing by transcranial direct current stimulation—A blinded longitudinal fMRI study. J. Headache Pain 2018, 19, 99. [Google Scholar] [CrossRef]
- Rainville, P.; Duncan, G.H.; Price, D.D.; Carrier, B.; Bushnell, M.C. Pain affect encoded in human anterior cingulate but not soma-tosensory cortex. Science 1997, 277, 968–971. [Google Scholar] [CrossRef] [PubMed]
- Ostrowsky, K.; Magnin, M.; Ryvlin, P.; Isnard, J.; Guenot, M.; Mauguière, F. Representation of pain and somatic sensation in the human insula: A study of responses to direct electrical cortical stimulation. Cereb. Cortex 2002, 12, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, T.; Siessmeier, T.; Lautenbacher, S.; Berthele, A.; Munz, F.; Willoch, F.; Schwaiger, M.; Conrad, B.; Bartenstein, P.; Tölle, T.R.; et al. Region-specific encoding of sensory and affective components of pain in the human brain: A positron emission tomography correlation analysis. Ann. Neurol. 1999, 45, 40–47. [Google Scholar] [CrossRef]
- Zubieta, J.K.; Smith, Y.R.; Bueller, J.A.; Xu, Y.; Kilbourn, M.R.; Jewett, D.M.; Meyer, C.R.; Koeppe, R.A.; Stohler, C.S. Regional μ opioid receptor regulation of sensory and affective dimensions of pain. Science 2001, 293, 311–315. [Google Scholar] [CrossRef]
Author, Year, Design, N | Sessions, Age (Years) | Current Parameters (Intensity, Duration, Current Density, Technique, and Location) | Measurements | Results |
---|---|---|---|---|
Aslaksen et al., 2014, Double-blinded RCT, N = 75 [40] | 1 session, Age: 23.5 | I = 2 mA, D = 7 min, CD = 0.057 mA/cm2, a-tDCS over M1 | VAS, HPT | a-tDCS reduced pain intensity but did not increase the HPT. |
Bachmann. C, 2010, Single-blinded RCT, N = 8 [41] | 1 session, Age: 32.8 | I = 1 mA, D = 15 min, CD = 0.028 mA/cm2, c-tDCS over M1 | PPT, HPT, CPT, CDT, MDT, MPT | c-tDCS significantly increased CDT, mechanical detection threshold (MDT), and mechanical pain threshold (MPT). |
Borckardt et al., 2012, Single-blinded RCT, N = 24 [42] | 1 session, Age: 26.5 | I = 2 mA, D = 20 min, CD = not specified, anodic HD-tDCS 4 × 1 over M1 | CDT, CPT, WDT, HPT, MPT, TSP | a-TDCS significantly decreased WDT and CDT, reduced TSP, and marginally increased CPT. |
Brasil et al., 2020, Single-blinded RCT N = 30 [43] | 1 session, Age: 18.5 | I = 2 mA; D = 20 min; CD = 0.057 mA/cm2, a-tDCS over M1, a-tDCS over DLPFC | CPT, VAS | tDCS over M1 or DLPFC shows no difference in analgesic effects, pain resistance, and pain tolerance compared to sham tDCS. |
Braulio et al., 2018, Double-blinded RCT, N = 48 [5] | 1 session, Age: 26.4 | I = 2 mA, D = 20 min, CD = 0.057 mA/cm2, a-tDCS over M1 | NRS, CPM, HPT, TSP | The application of a-tDCS on M1 blocked the disconnection of the descending pain modulatory system. |
Flix et al., 2021, Triple-blinded RCT N = 28 [44] | 5 sessions, Age: 18–35 | I = 1 mA, D = 20 min, CD = 0.04 mA/cm2, a-tDCS over M1 | PPT, MDT | tDCS over M1 did not produce changes in the somatosensory variables assessed. |
Flood et al., 2016, Double-blinded RCT, N = 30 [23] | 1 session, Age: 23.9 (4.56) | I = 2 mA, D = 10 min, CD = not specified, anodic HD-tDCS 4 × 1 over M1 | PPT, CPM | a-tDCS reduced the pain perceived in the CPM protocol and increased the PPT. |
García-Barajas et al., 2021, Double-blinded RCT, N = 40 [19] | 1 session, Age: 23.4 (3,6) | I = 1.5 mA; D = 20 min; CD = 0.042 mA/cm2; a-tDCS over M1, a-tDCS over S0 | PPT, CPT, CPM, HPT | tDCS over M1 or S0 reduced thermal pain intensity to cold, but not to heat or mechanical pain. tDCS showed no effect on CPM. |
Grundmann et al., 2011, Single-blinded RCT, N = 12 [45] | 1 session, Age: 30 | I = 1 mA, D = 15 min, CD = 0.028 mA/cm2, a-tDCS, or c-tDCS over S1 | CPT, CDT, HPT, PPT | c-tDCS over S1 increased CDT, but not a-tDCS or sham tDCS. |
Gurdiel-Álvarez et al., 2021, Triple-blind, crossover N = 30 [20] | 1 session, Age: 21.9 | I = 2 mA; D = 20 min; CD = 0.1 mA/cm2, a-TDCS M1+DLPFC or a-TDCS M1 | UDP, CPM, TSP, cold pain intensity | Neither a-TDCS over M1+DLPFC nor a-TDCS over M1 succeed in modulating UDP, CPM, TSP, or cold pain intensity. |
Hamner et al., 2015, Single-blinded RCT, N = 15 [46] | 1 session, Age: 25.5 | I = 2 mA, D = 40 min, CD = 0.057 mA/cm2, a-tDCS over M1 | VAS | a-tDCS reduced pain intensity (cold pressor test) compared to sham. |
Henriques et al., 2019, Single-blinded RCT, N = 10 [47] | 1 session, Age: 24 (4). | I = 2 mA, D = 20 min, CD = 0.057 mA/cm2, c-tDCS M1 + a-tDCS DLPFC, or c-tDCS DLPFC + a-tDCS M1 bilateral | VAS | c-tDCS M1 + a-tDCS DLPFC reduced pain intensity, but not a-tDCS M1 + c-tDCS DLPFC or sham tDCS. |
Ihle et al., 2014, Double-blinded RCT, N = 16 [24] | 3 sessions, Age: 27 | I = 1 mA, D = 15 min, CD = 0.028 mA/cm2, c-tDCS or a-tDCS over M1 | NRS, HPT, TSP | Neither c-TDCS nor a-tDCS on M1 significantly modified nociceptive processing nor decreased pain intensity compared to sham. |
Jiang et al., 2022, Double-blinded RCT, N = 26 [22] | 3 sessions, Age: 22.38 | I = 2 mA; D = 20 min; CD = /, anodic HD-tDCS 4 × 1 over M1 or over DLPFC | CPT, CPM, PPT | HD-tDCS over M1 improves CPM, while over DLPFC it had no significant effect. |
Jürgens et al., 2012, Single-blinded RCT, N = 17 [21] | 1 session, Age: 24.9 | I = 1 mA, D = 15 min, CD = 0.028 mA/cm2, a-tDCS or c-tDCS over M1 | VAS, PPT, HPT, TS | a-tDCS and c-tDCS on M1 did not increase PPT and HPT and did not reduce perceived pain intensity in VAS. |
Kold and Nielsenl, 2021, Double-blinded RCT, N = 81 [9] | 3 sessions, Age: 25.1 (5.6) | I = 2 mA; D = 20 min; CD = /, anodic HD-tDCS 4 × 1 tDCS over M1, DLPFC or M1+DLPFC | PPT, CPM HPT, CPT | HD-tDCS has not been shown to have an effect on the modulation of somatosensory sensitivity and pain over sham in either M1 or DLPFC. |
Kold et al., 2022, Double-blinded RCT N = 20 [48] | 1 session, Age: 21.9 | I = 2 mA; D = 20 min; CD = /, a-tDCS over M1 and c-tDCS over S1 | PPT, HPT, CPT | No effect on PPT, CPT, or HPT on the neck was seen after M1-S1 tDCS compared to sham. |
Li et al., 2022, Double-blinded RCT, N = 28 [49] | 1 session, Age: 22.92 | I = 1 mA; D = 20 min; CD = /, anodic or cathodic HD-tDCS 4 × 1 tDCS over M1 | CPT, NRS | Only anodal HD-tDCS significantly increased the cold pain threshold when compared with sham stimulation. Neither anodal nor cathodal HD-tDCS showed significant analgesic effects on CPT or pain intensity. |
Mordillo-Mateos et al., 2017, Double-blinded RCT, N = 20 [25] | 1 session, Age: 31.9 | I = 2/1 mA, D = 15/5 min, CD = 0.057 mA/cm2, a-tDCS over M1 | CPT | a-tDCS on M1 could modify CPT, but no effect on pain thresholds was observed. |
Mylius et al., 2012, Single-blinded RCT, N = 24 [26] | 1 session, Age: 22.7 | I = 2 mA, D = 20 min, CD = 0.057 mA/cm2, a-tDCS or c-tDCS over DLPFC | HPT | a-tDCS over DLPFC increased HPT, but not c-tDCS or sham tDCS. |
Reidler et al., 2012, Double-blinded RCT, N = 15 [50] | 1 session, Age: 36.7 | I = 2 mA, D = 20 min, CD = 0.057 mA/cm2, a-tDCS over M1 | CPM | a-TDCS over M1 reduced pain intensity and increased UDP in the CPM protocol. |
Steyaert et al., 2022 crossover, double-blinded study, N = 19 [51] | 3 sessions, Age: 23.5 (4) | I = 2 mA, D = 20 min, CD =/; multichannel a-tDCS over left DLPFC | NRS | a-tDCS over DLPFC modulates the size of the HFS-induced area of secondary mechanical hyperalgesia but does not reduce pain intensity. |
Toufexis et al., 2023, Single-blinded RCT, N = 40 [52] | 1 session, Age: 22.2 | I: 2 mA; D = 10 min; CD = /, anodal HD-tDCS over DLPFC | CPM, PPT | tDCS produced a significant increase in pain modulation capacity. No significant changes were observed in pain sensitivity and stress-induced hyperalgesia. |
Vaseghi B, 2015, Double-blinded RCT, N = 12 [53] | 4 sessions, Age: 23.6 | I = 0.3 mA, D = 20 min, CD = 0.1 mA/cm2, a-tDCS over M1, a-tDCS over DLPFC, a-tDCS over S1. | PPT | tDCS anodal stimulation did not increase the PPTs for any group. |
Vo et al., 2022, Double-blinded RCT, N = 39 [54] | 4 sessions, Age: 26.87 (9.26) | I = 1 mA; D = 20 min; CD = /; a-tDCS over M1, a-tDCS over DLPFC, a-tDCS over M1+DLPFC, | VAS | tDCS on M1 increased moderate evoked pain threshold, tDCS on DLPFC eliminated secondary hyperalgesia. Their combined application does not produce better results. |
Wan et al., 2021, Single-blinded RCT, N = 35 [55] | 1 session, Age: 23.5 (2.28) | I = 2 mA; D = 20 min; CD = /; anodic HD-tDCS over M1 | CPM, PPT | HD-tDCS on M1 improved the analgesic efficacy of CPM in healthy subjects. |
Xiong et al., 2022, Double-blinded RCT, N = 66 [17] | 1 session, Age: 20.5 (2.4) | I = 2 mA; D = 20 min; CD = /; anodic or cathodic HD-tDCS over Anterior Cingulate Cortex | PPT, HPT, CPT | Cathodic HD-tDCS over the anterior cingulate cortex increased PPT compared to sham tDCS. |
Yao et al., 2021, Double-blinded RCT, N = 150 [56] | 1 session, Age: 19.82 (0.13) | I = 1 mA; D = 20 min; CD = 0.04 mA/cm2; a-tDCS over M1 | NRS | a-tDCS immediately reduced pain sensation, and this effect was more pronounced when pain expectation was uncertain. |
Zandieh. A, 2013, Single-blinded RCT, N = 22 [57] | 1 session, Age: 27.9 | I = 2 mA, D = 15 min, CD = 0.057 mA/cm2, a-tDCS or c-tDCS over M1 | CPT, Time latencies to pain threshold and tolerance | a-tDCS over M1 increased the CPT, but not c-tDCS or sham tDCS. a-tDCS increases the time latencies for threshold cold and pain tolerance, in contrast to cathodic stimulation. tDCS does not alter subjective pain tolerance scores. |
Author, Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Aslaksen et al., 2014 [40] | X | X | X | X | X | X | X | X | X | X | 9 | |
Bachmann et al., 2010 [41] | X | X | X | X | X | X | X | X | X | 8 | ||
Borckardt et al., 2012 [42] | X | X | X | X | X | X | X | X | 7 | |||
Brasil et al., 2020 [43] | X | X | X | X | X | X | 5 | |||||
Braulio et al., 2018 [5] | X | X | X | X | X | X | X | X | X | X | X | 10 |
Flix-Díez et al., 2021 [44] | X | X | X | X | X | X | X | X | X | X | 9 | |
Flood et al., 2016 [23] | X | X | X | X | X | X | X | X | X | 8 | ||
García-Barajas et al., 2021 [19] | X | X | X | X | X | X | X | X | X | 8 | ||
Grundmann et al., 2011 [45] | X | X | X | X | X | X | X | X | X | 8 | ||
Gurdiel-Álvarez et al., 2021 [20] | X | X | X | X | X | X | X | X | X | 8 | ||
Hamner et al., 2015 [46] | X | X | X | X | X | X | X | X | X | 8 | ||
Henriques et al., 2019 [47] | X | X | X | X | X | X | X | X | X | 8 | ||
Ihle et al., 2014 [24] | X | X | X | X | X | X | X | X | X | X | 9 | |
Jiang et al., 2022 [22] | X | X | X | X | X | X | X | X | X | 8 | ||
Jürgens et al., 2012 [21] | X | X | X | X | X | X | X | X | X | 8 | ||
Kold and Nielsen, 2021 [9] | X | X | X | X | X | X | X | X | 7 | |||
Kold et al., 2022 [48] | X | X | X | X | X | X | X | X | X | 9 | ||
Li et al., 2022 [49] | X | X | X | X | X | X | X | X | 8 | |||
Mordillo-Mateos et al., 2017 [25] | X | X | X | X | X | X | X | X | X | 8 | ||
Mylius et al., 2011 [26] | X | X | X | X | X | X | X | X | X | 8 | ||
Reidler et al., 2012 [50] | X | X | X | X | X | X | X | X | X | X | 9 | |
Steyaert et al., 2022 [51] | X | X | X | X | X | X | X | X | X | X | 9 | |
Toufexis et al., 2023 [52] | X | X | X | X | X | X | X | X | X | 8 | ||
Vaseghi et al., 2015 [53] | X | X | X | X | X | X | X | X | X | X | X | 10 |
Vo et al., 2022 [54] | X | X | X | X | X | X | X | X | 7 | |||
Wan et al., 2021 [55] | X | X | X | X | X | X | X | X | X | X | 9 | |
Xiong et al., 2022 [17] | X | X | X | X | X | X | X | X | X | 8 | ||
Yao et al., 2021 [56] | X | X | X | X | X | X | X | X | 7 | |||
Zandieh et al., 2013 [57] | X | X | X | X | X | X | X | X | X | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurdiel-Álvarez, F.; González-Zamorano, Y.; Lerma-Lara, S.; Gómez-Soriano, J.; Sánchez-González, J.L.; Fernández-Carnero, J.; Navarro-López, V. Transcranial Direct Current Stimulation (tDCS) Effects on Quantitative Sensory Testing (QST) and Nociceptive Processing in Healthy Subjects: A Systematic Review and Meta-Analysis. Brain Sci. 2024, 14, 9. https://doi.org/10.3390/brainsci14010009
Gurdiel-Álvarez F, González-Zamorano Y, Lerma-Lara S, Gómez-Soriano J, Sánchez-González JL, Fernández-Carnero J, Navarro-López V. Transcranial Direct Current Stimulation (tDCS) Effects on Quantitative Sensory Testing (QST) and Nociceptive Processing in Healthy Subjects: A Systematic Review and Meta-Analysis. Brain Sciences. 2024; 14(1):9. https://doi.org/10.3390/brainsci14010009
Chicago/Turabian StyleGurdiel-Álvarez, Francisco, Yeray González-Zamorano, Sergio Lerma-Lara, Julio Gómez-Soriano, Juan Luis Sánchez-González, Josué Fernández-Carnero, and Víctor Navarro-López. 2024. "Transcranial Direct Current Stimulation (tDCS) Effects on Quantitative Sensory Testing (QST) and Nociceptive Processing in Healthy Subjects: A Systematic Review and Meta-Analysis" Brain Sciences 14, no. 1: 9. https://doi.org/10.3390/brainsci14010009
APA StyleGurdiel-Álvarez, F., González-Zamorano, Y., Lerma-Lara, S., Gómez-Soriano, J., Sánchez-González, J. L., Fernández-Carnero, J., & Navarro-López, V. (2024). Transcranial Direct Current Stimulation (tDCS) Effects on Quantitative Sensory Testing (QST) and Nociceptive Processing in Healthy Subjects: A Systematic Review and Meta-Analysis. Brain Sciences, 14(1), 9. https://doi.org/10.3390/brainsci14010009