Dissociable Effects of Endogenous and Exogenous Attention on Crowding: Evidence from Event-Related Potentials
Abstract
:1. Introduction
2. Method
2.1. Participants
2.2. Stimuli
2.3. Design and Procedure
2.4. Electrophysiological Recording and Analysis
3. Results
3.1. Behavioral Results
3.2. ERP Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Levi, D.M. Crowding—An essential bottleneck for object recognition: A mini-review. Vis. Res. 2008, 48, 635–654. [Google Scholar] [CrossRef] [PubMed]
- Whitney, D.; Levi, D.M. Visual crowding: A fundamental limit on conscious perception and object recognition. Trends Cogn. Sci. 2011, 15, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Livne, T.; Sagi, D. Configuration influence on crowding. J. Vis. 2007, 7, 4. [Google Scholar] [CrossRef] [PubMed]
- Pelli, D.G.; Palomares, M.; Majaj, N.J. Crowding is unlike ordinary masking: Distinguishing feature integration from detection. J. Vis. 2004, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- Põder, E. Crowding with detection and coarse discrimination of simple visual features. J. Vis. 2008, 8, 24. [Google Scholar] [CrossRef]
- Levi, D.M.; Carney, T. Crowding in peripheral vision: Why bigger is better. Curr. Biol. 2009, 19, 1988–1993. [Google Scholar] [CrossRef]
- Felisberti, F.M.; Solomon, J.A.; Morgan, M.J. The role of target salience in crowding. Perception 2005, 34, 823–833. [Google Scholar] [CrossRef]
- Põder, E. Effect of colour pop-out on the recognition of letters in crowding conditions. Psychol. Res. 2007, 71, 641–645. [Google Scholar] [CrossRef]
- Gong, M.; Liu, T.; Liu, X.; Huangfu, B.; Geng, F. Attention relieves visual crowding: Dissociable effects of peripheral and central cues. J. Vis. 2023, 23, 9. [Google Scholar] [CrossRef]
- He, S.; Cavanagh, P.; Intriligator, J. Attentional resolution and the locus of visual awareness. Nature 1996, 383, 334–337. [Google Scholar] [CrossRef]
- Scolari, M.; Kohnen, A.; Barton, B.; Awh, E. Spatial attention, preview, and popout: Which factors influence critical spacing in crowded displays? J. Vis. 2007, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Scolari, M.; Awh, E. Object-based biased competition during covert spatial orienting. Atten. Percept. Psychophys. 2019, 81, 1366–1385. [Google Scholar] [CrossRef] [PubMed]
- Yeshurun, Y.; Rashal, E. Precueing attention to the target location diminishes crowding and reduces the critical distance. J. Vis. 2010, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Posner, M.I. Orienting of attention. Q. J. Exp. Psychol. 1980, 32, 3–25. [Google Scholar] [CrossRef] [PubMed]
- Dugué, L.; Merriam, E.P.; Heeger, D.J.; Carrasco, M. Differential impact of endogenous and exogenous attention on activity in human visual cortex. Sci. Rep. 2020, 10, 21274. [Google Scholar] [CrossRef]
- Carrasco, M. Visual attention: The past 25 years. Vis. Res. 2011, 51, 1484–1525. [Google Scholar] [CrossRef]
- Jonides, J. Voluntary vs. automatic control over the mind’s eye’s. In Attention and Performance IX; Long, J.B., Baddeley, A.D., Eds.; Erlbaum: Hillsdale, NJ, USA, 1981; pp. 187–203. [Google Scholar]
- Giordano, A.M.; McElree, B.; Carrasco, M. On the automaticity and flexibility of covert attention: A speed-accuracy trade-off analysis. J. Vis. 2009, 9, 30. [Google Scholar] [CrossRef]
- Hein, E.; Rolke, B.; Ulrich, R. Visual attention and temporal discrimination: Differential effects of automatic and voluntary cueing. Vis. Cogn. 2006, 13, 29–50. [Google Scholar] [CrossRef]
- Liu, T.; Stevens, S.T.; Carrasco, M. Comparing the time course and efficacy of spatial and feature-based attention. Vis. Res. 2007, 47, 108–113. [Google Scholar] [CrossRef]
- Anton-Erxleben, K.; Carrasco, M. Attentional enhancement of spatial resolution: Linking behavioural and neurophysiological evidence. Nat. Rev. Neurosci. 2013, 14, 188–200. [Google Scholar] [CrossRef]
- Dakin, S.C.; Bex, P.J.; Cass, J.R.; Watt, R.J. Dissociable effects of attention and crowding on orientation averaging. J. Vis. 2009, 9, 28. [Google Scholar] [CrossRef]
- Freeman, J.; Pelli, D.G. An escape from crowding. J. Vis. 2007, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Kewan-Khalayly, B.; Migó, M.; Yashar, A. Transient attention equally reduces visual crowding in radial and tangential axes. J. Vis. 2022, 22, 3. [Google Scholar] [CrossRef]
- Tkacz-Domb, S.; Yeshurun, Y. Spatial attention alleviates temporal crowding, but neither temporal nor spatial uncertainty are necessary for the emergence of temporal crowding. J. Vis. 2017, 17, 9. [Google Scholar] [CrossRef] [PubMed]
- Montaser-Kouhsari, L.; Rajimehr, R. Subliminal attentional modulation in crowding condition. Vis. Res. 2005, 45, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Bowen, J.D.; Alforque, C.V.; Silver, M.A. Effects of involuntary and voluntary attention on critical spacing of visual crowding. J. Vis. 2023, 23, 2. [Google Scholar] [CrossRef]
- Chicherov, V.; Plomp, G.; Herzog, M.H. Neural correlates of visual crowding. Neuroimage 2014, 93, 23–31. [Google Scholar] [CrossRef]
- Peng, C.; Hu, C.; Chen, Y. The temporal dynamic relationship between attention and crowding: Electrophysiological evidence from an event-related potential study. Front. Neurosci. 2018, 12, 844. [Google Scholar] [CrossRef]
- Ronconi, L.; Bertoni, S.; Marotti, R.B. The neural origins of visual crowding as revealed by event-related potentials and oscillatory dynamics. Cortex 2016, 79, 87–98. [Google Scholar] [CrossRef]
- Isreal, J.B.; Chesney, G.L.; Wickens, C.D.; Donchin, E. P300 and tracking difficulty: Evidence for multiple resources in dual-task performance. Psychophysiology 1980, 17, 259–273. [Google Scholar] [CrossRef]
- Kok, A. On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology 2001, 38, 557. [Google Scholar] [CrossRef] [PubMed]
- Vila-Chã, C.; Vaz, C.; Oliveira, A.S. Electrocortical activity in older adults is more influenced by cognitive task complexity than concurrent walking. Front. Aging Neurosci. 2022, 13, 718648. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, M.; Barbot, A. How attention affects spatial resolution. In Cold Spring Harbor Symposia on Quantitative Biology; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2014; pp. 149–160. [Google Scholar]
- Cheal, M.; Lyon, D.R. Central and peripheral precuing of forced-choice discrimination. Q. J. Exp. Psychol. 1991, 43, 859–880. [Google Scholar] [CrossRef] [PubMed]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef]
- Kim, H.; Luo, J.; Chu, S.; Cannard, C.; Hoffmann, S.; Miyakoshi, M. ICA’s bug: How ghost ICs emerge from effective rank deficiency caused by EEG electrode interpolation and incorrect re-referencing. Front. Signal Process. 2023, 3, 1064138. [Google Scholar] [CrossRef]
- Tian, Y.; Klein, R.M.; Satel, J.; Xu, P.; Yao, D. Electrophysiological explorations of the cause and effect of inhibition of return in a cue–target paradigm. Brain Topogr. 2011, 24, 164–182. [Google Scholar] [CrossRef]
- Vogel, E.K.; Luck, S.J. The visual N1 component as an index of a discrimination process. Psychophysiology 2000, 37, 190–203. [Google Scholar] [CrossRef]
- Luck, S.J.; Hillyard, S.A. Spatial filtering during visual search: Evidence from human electrophysiology. J. Exp. Psychol. Hum. Percept. Perform. 1994, 20, 1000. [Google Scholar] [CrossRef]
- Luck, S.J.; Hillyard, S.A.; Mouloua, M.; Woldorff, M.G.; Clark, V.P.; Hawkins, H.L. Effects of spatial cuing on luminance detectability: Psychophysical and electrophysiological evidence for early selection. J. Exp. Psychol. Hum. Percept. Perform. 1994, 20, 887. [Google Scholar] [CrossRef]
- Mangun, G.R.; Hillyard, S.A. Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. J. Exp. Psychol. Hum. Percept. Perform. 1991, 17, 1057. [Google Scholar] [CrossRef]
- Müller, H.J.; Rabbitt, P.M. Reflexive and voluntary orienting of visual attention: Time course of activation and resistance to interruption. J. Exp. Psychol. Hum. Percept. Perform. 1989, 15, 315. [Google Scholar] [CrossRef] [PubMed]
- Kinchla, R. The measurement of attention. In Attention and Performance VIII; Psychology Press: Hove, East Sussex, UK, 2014; pp. 213–238. [Google Scholar]
- Sperling, G.; Melchner, M.J. The attention operating characteristic: Examples from visual search. Science 1978, 202, 315–318. [Google Scholar] [CrossRef] [PubMed]
- Busse, L.; Katzner, S.; Treue, S. Temporal dynamics of neuronal modulation during exogenous and endogenous shifts of visual attention in macaque area MT. Proc. Natl. Acad. Sci. USA 2008, 105, 16380–16385. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Z.; Webb, B.S.; Astle, A.T.; McGraw, P.V. Perceptual learning reduces crowding in amblyopia and in the normal periphery. J. Neurosci. 2012, 32, 474–480. [Google Scholar] [CrossRef]
- Hickey, C.; Van Zoest, W.; Theeuwes, J. The time course of exogenous and endogenous control of covert attention. Exp. Brain Res. 2010, 201, 789–796. [Google Scholar] [CrossRef]
Variable | Endogenous Cue | Exogenous Cue | ||
---|---|---|---|---|
Short SOA | Long SOA | Short SOA | Long SOA | |
Invalid cue | 810.64 (166.16) | 795.68 (144.00) | 844.10 (180.29) | 840.72 (200.00) |
Valid cue | 764.52 (137.17) ** | 745.35 (140.55) *** | 755.41 (167.26) *** | 750.32 (176.22) *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, M.; Liu, T.; Chen, Y.; Sun, Y. Dissociable Effects of Endogenous and Exogenous Attention on Crowding: Evidence from Event-Related Potentials. Brain Sci. 2024, 14, 956. https://doi.org/10.3390/brainsci14100956
Gong M, Liu T, Chen Y, Sun Y. Dissociable Effects of Endogenous and Exogenous Attention on Crowding: Evidence from Event-Related Potentials. Brain Sciences. 2024; 14(10):956. https://doi.org/10.3390/brainsci14100956
Chicago/Turabian StyleGong, Mingliang, Tingyu Liu, Yingbing Chen, and Yingying Sun. 2024. "Dissociable Effects of Endogenous and Exogenous Attention on Crowding: Evidence from Event-Related Potentials" Brain Sciences 14, no. 10: 956. https://doi.org/10.3390/brainsci14100956
APA StyleGong, M., Liu, T., Chen, Y., & Sun, Y. (2024). Dissociable Effects of Endogenous and Exogenous Attention on Crowding: Evidence from Event-Related Potentials. Brain Sciences, 14(10), 956. https://doi.org/10.3390/brainsci14100956