Astrocytes and Tinnitus
Abstract
:1. Introduction
2. Tinnitus Models
3. Astrocytes
4. What Do Astrocytes Do?
5. Astrocytes and Synaptic Transmission
6. Astrocytes and Neuroinflammation
7. Conclusions—Astrocytes and Tinnitus
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- McFerran, D.J.; Stockdale, D.; Holme, R.; Large, C.H.; Baguley, D.M. Why Is There No Cure for Tinnitus? Front. Neurosci. 2019, 13, 802. [Google Scholar] [CrossRef]
- Koops, E.A.; Eggermont, J.J. The thalamus and tinnitus: Bridging the gap between animal data and findings in humans. Hear. Res. 2021, 407, 108280. [Google Scholar] [CrossRef]
- Husain, F.T.; Khan, R.A. Review and Perspective on Brain Bases of Tinnitus. J. Assoc. Res. Otolaryngol. 2023, 24, 549–562. [Google Scholar] [CrossRef]
- Reisinger, L.; Demarchi, G.; Weisz, N. Eavesdropping on Tinnitus Using MEG: Lessons Learned and Future Perspectives. J. Assoc. Res. Otolaryngol. 2023, 24, 531–547. [Google Scholar] [CrossRef]
- Galazyuk, A.; Brozoski, T.J. Animal Models of Tinnitus: A Review. Otolaryngol. Clin. N. Am. 2020, 53, 469–480. [Google Scholar] [CrossRef]
- Eggermont, J.J. Hearing loss, hyperacusis, or tinnitus: What is modeled in animal research? Hear. Res. 2013, 295, 140–149. [Google Scholar] [CrossRef]
- Wake, N.; Shiramatsu, T.I.; Takahashi, H. Map plasticity following noise exposure in auditory cortex of rats: Implications for disentangling neural correlates of tinnitus and hyperacusis. Front. Neurosci. 2024, 18, 1385942. [Google Scholar] [CrossRef]
- Noreña, A.J.; Moffat, G.; Blanc, J.L.; Pezard, L.; Cazals, Y. Neural changes in the auditory cortex of awake guinea pigs after two tinnitus inducers: Salicylate and acoustic trauma. Neuroscience 2010, 166, 1194–1209. [Google Scholar] [CrossRef]
- Salvi, R.; Auerbach, B.D.; Lau, C.; Chen, Y.C.; Manohar, S.; Liu, X.; Ding, D.; Chen, G.D. Functional Neuroanatomy of Salicylate- and Noise-Induced Tinnitus and Hyperacusis. In The Behavioral Neuroscience of Tinnitus; Current Topics in Behavioral Neurosciences; Springer: Berlin/Heidelberg, Germany, 2021; Volume 51, pp. 133–160. [Google Scholar] [CrossRef]
- Noreña, A.J.; Farley, B.J. Tinnitus-related neural activity: Theories of generation, propagation, and centralization. Hear. Res. 2013, 295, 161–171. [Google Scholar] [CrossRef]
- Auerbach, B.D.; Rodrigues, P.V.; Salvi, R.J. Central gain control in tinnitus and hyperacusis. Front. Neurol. 2014, 5, 206. [Google Scholar] [CrossRef]
- De Ridder, D.; Vanneste, S.; Langguth, B.; Llinas, R. Thalamocortical Dysrhythmia: A Theoretical Update in Tinnitus. Front. Neurol. 2015, 6, 124. [Google Scholar] [CrossRef]
- Rauschecker, J.P.; May, E.S.; Maudoux, A.; Ploner, M. Frontostriatal Gating of Tinnitus and Chronic Pain. Trends Cogn. Sci. 2015, 19, 567–578. [Google Scholar] [CrossRef]
- Sedley, W.; Friston, K.J.; Gander, P.E.; Kumar, S.; Griffiths, T.D. An Integrative Tinnitus Model Based on Sensory Precision. Trends Neurosci. 2016, 39, 799–812. [Google Scholar] [CrossRef]
- Schilling, A.; Sedley, W.; Gerum, R.; Metzner, C.; Tziridis, K.; Maier, A.; Schulze, H.; Zeng, F.-G.; Friston, K.J.; Krauss, P. Predictive coding and stochastic resonance as fundamental principles of auditory phantom perception. Brain 2023, 146, 4809–4825. [Google Scholar] [CrossRef]
- Möhrle, D.; Hofmeier, B.; Amend, M.; Wolpert, S.; Ni, K.; Bing, D.; Klose, U.; Pichler, B.; Knipper, M.; Rüttiger, L. Enhanced Central Neural Gain Compensates Acoustic Trauma-induced Cochlear Impairment, but Unlikely Correlates with Tinnitus and Hyperacusis. Neuroscience 2019, 407, 146–169. [Google Scholar] [CrossRef]
- Friston, K. The free-energy principle: A unified brain theory? Nat. Rev. Neurosci. 2010, 11, 127–138. [Google Scholar] [CrossRef]
- Mikulasch, F.A.; Rudelt, L.; Wibral, M.; Priesemann, V. Where is the error? Hierarchical predictive coding through dendritic error computation. Trends Neurosci. 2023, 46, 45–59. [Google Scholar] [CrossRef]
- Van Heusden, E.; Smoorenburg, G.F. Eighth-nerve action potentials evoked by tone bursts in cats before and after inducement of an acute noise trauma. Hear. Res. 1981, 5, 1–23. [Google Scholar] [CrossRef]
- Kuffler, S.W. Neuroglial cells: Physiological properties and a potassium mediated effect of neuronal activity on the glial membrane potential. Proc. R. Soc. Lond. B Biol. Sci. 1967, 168, 1–21. [Google Scholar] [CrossRef]
- Stedehouder, J.; Roberts, B.M.; Raina, S.; Bossi, S.; Liu, A.K.L.; Doig, N.M.; McGerty, K.; Magill, P.J.; Parkkinen, L.; Cragg, S.J. Rapid modulation of striatal cholinergic interneurons and dopamine release by satellite astrocytes. Nat. Commun. 2024, 15, 10017. [Google Scholar] [CrossRef]
- Shore, S.E.; Wu, C. Mechanisms of Noise-Induced Tinnitus: Insights from Cellular Studies. Neuron 2019, 103, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Henton, A.; Tzounopoulos, T. What’s the buzz? The neuroscience and the treatment of tinnitus. Physiol. Rev. 2021, 101, 1609–1632. [Google Scholar] [CrossRef] [PubMed]
- Andersen, J.V.; Schousboe, A. Milestone Review: Metabolic dynamics of glutamate and GABA mediated neurotransmission—The essential roles of astrocytes. J. Neurochem. 2023, 166, 109–137. [Google Scholar] [CrossRef] [PubMed]
- Volterra, A.; Meldolesi, J. Astrocytes, from brain glue to communication elements: The revolution continues. Nat. Rev. Neurosci. 2005, 6, 626–640. [Google Scholar] [CrossRef]
- Barres, B.A. The mystery and magic of glia: A perspective on their roles in health and disease. Neuron 2008, 60, 430–440. [Google Scholar] [CrossRef]
- Wu, C.; Stefanescu, R.A.; Martel, D.T.; Shore, S.E. Tinnitus: Maladaptive auditory-somatosensory plasticity. Hear. Res. 2016, 334, 20–29. [Google Scholar] [CrossRef]
- Mennink, L.M.; Aalbers, M.W.; van Dijk, P.; van Dijk, J.M.C. The Role of Inflammation in Tinnitus: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 1000. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, L.S.; Zinsmaier, A.K.; Patterson, G.; Leptich, E.J.; Shoemaker, S.L.; Yatskievych, T.A.; Gibboni, R.; Pace, E.; Luo, H.; et al. Neuroinflammation mediates noise-induced synaptic imbalance and tinnitus in rodent models. PLoS Biol. 2019, 17, e3000307. [Google Scholar] [CrossRef] [PubMed]
- Ferro, A.; Auguste, Y.S.S.; Cheadle, L. Microglia, Cytokines, and Neural Activity: Unexpected Interactions in Brain Development and Function. Front. Immunol. 2021, 12, 703527. [Google Scholar] [CrossRef]
- Borges, B.C.; Meng, X.; Long, P.; Kanold, P.O.; Corfas, G. Loss of oligodendrocyte ErbB receptor signaling leads to hypomyelination, reduced density of parvalbumin-expressing interneurons, and inhibitory function in the auditory cortex. Glia 2023, 71, 187–204. [Google Scholar] [CrossRef]
- Sofroniew, M.V.; Vinters, H.V. Astrocytes: Biology and pathology. Acta Neuropathol. 2010, 119, 7–35. [Google Scholar] [CrossRef] [PubMed]
- Schiera, G.; Di Liegro, C.M.; Schirò, G.; Sorbello, G.; Di Liegro, I. Involvement of Astrocytes in the Formation, Maintenance, and Function of the Blood-Brain Barrier. Cells 2024, 13, 150. [Google Scholar] [CrossRef] [PubMed]
- Sofroniew, M.V. Astrocyte Reactivity: Subtypes, States, and Functions in CNS Innate Immunity. Trends Immunol. 2020, 41, 758–770. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.A.; Burda, J.E.; Ren, Y.; Ao, Y.; O’Shea, T.M.; Kawaguchi, R.; Coppola, G.; Khakh, B.S.; Deming, T.J.; Sofroniew, M.V. Astrocyte scar formation aids central nervous system axon regeneration. Nature 2016, 532, 195–200. [Google Scholar] [CrossRef]
- Mishra, A.; Gordon, G.R.; MacVicar, B.A.; Newman, E.A. Astrocyte Regulation of Cerebral Blood Flow in Health and Disease. Cold Spring Harb. Perspect. Biol. 2024, 16, a041354. [Google Scholar] [CrossRef]
- Pellerin, L. Brain energetics (thought needs food). Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 701–705. [Google Scholar] [CrossRef]
- Almeida, A.; Jimenez-Blasco, D.; Bolaños, J.P. Cross-talk between energy and redox metabolism in astrocyte-neuron functional cooperation. Essays Biochem. 2023, 67, 17–26. [Google Scholar] [CrossRef]
- Dezonne, R.S.; Lima, F.R.; Trentin, A.G.; Gomes, F.C. Thyroid hormone and astroglia: Endocrine control of the neural environment. J. Neuroendocrinol. 2015, 27, 435–445. [Google Scholar] [CrossRef]
- Reemst, K.; Noctor, S.; Lucassen, P.; Hol, E. The indispensable roles of microglia and astrocytes during brain development. Front. Hum. Neurosci. 2016, 10, 566. [Google Scholar] [CrossRef]
- Wang, F.; Smith, N.A.; Xu, Q.; Fujita, T.; Baba, A.; Matsuda, T.; Takano, T.; Bekar, L.; Nedergaard, M. Astrocytes modulate neural network activity by Ca2+-dependent uptake of extracellular K+. Sci. Signal. 2012, 5, ra26. [Google Scholar] [CrossRef]
- Jessen, N.A.; Munk, A.S.; Lundgaard, I.; Nedergaard, M. The Glymphatic System: A Beginner’s Guide. Neurochem. Res. 2015, 40, 2583–2599. [Google Scholar] [CrossRef] [PubMed]
- Araque, A.; Parpura, V.; Sanzgiri, R.P.; Haydon, P.G. Tripartite synapses: Glia, the unacknowledged partner. Trends Neurosci. 1999, 22, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Benveniste, E. Immune function of astrocytes. Glia 2001, 36, 180–190. [Google Scholar] [CrossRef]
- Oberheim, N.; Goldman, S. Heterogeneity of Astrocytic Form and Function; Springer: Berlin/Heidelberg, Germany, 2011; pp. 23–45. [Google Scholar] [CrossRef]
- Black, J.A.; Waxman, S.G. The perinodal astrocyte. Glia 1988, 1, 169–183. [Google Scholar] [CrossRef]
- Hassanpoor, H.; Fallah, A.; Raza, M. Mechanisms of hippocampal astrocytes mediation of spatial memory and theta rhythm by gliotransmitters and growth factors. Cell Biol. Int. 2014, 38, 1355–1366. [Google Scholar] [CrossRef] [PubMed]
- Lefton, K.B.; Wu, Y.; Yen, A.; Okuda, T.; Zhang, Y.; Dai, Y.; Walsh, S.; Manno, R.; Dougherty, J.D.; Samineni, V.K.; et al. Norepinephrine Signals Through Astrocytes To Modulate Synapses. bioRxiv 2024. [Google Scholar] [CrossRef]
- Aydin, A.G.; Alexander Lemenze, A.; Bieszczad, K.M. Functional diversities within neurons and astrocytes in the adult rat auditory cortex revealed by single-nucleus RNA sequencing. bioRxiv 2024. [Google Scholar] [CrossRef]
- Palay, S.; Chan-Palay, V. Cerebellar Cortex; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1974. [Google Scholar]
- Haim, L.; Rowitch, D. Functional diversity of astrocytes in neural circuit regulation. Nat. Rev. Neurosci. 2017, 18, 31–41. [Google Scholar] [CrossRef]
- Fraher, J.P. The CNS-PNS transitional zone of the rat. Morphometric studies at cranial and spinal levels. Prog. Neurobiol. 1992, 38, 261–316. [Google Scholar] [CrossRef]
- Sekiya, T.; Matsumoto, M.; Kojima, K.; Ono, K.; Kikkawa, Y.S.; Kada, S.; Ogita, H.; Horie, R.T.; Viola, A.; Holley, M.C.; et al. Mechanical stress-induced reactive gliosis in the auditory nerve and cochlear nucleus. J. Neurosurg. 2011, 114, 414–425. [Google Scholar] [CrossRef]
- Matsunaga, T.; Kanzaki, J.; Hosoda, Y. Gliosis of the eighth nerve transitional region in patients with cerebellopontine angle schwannoma. Acta Otolaryngol. 1994, 114, 393–398. [Google Scholar] [CrossRef] [PubMed]
- King, A.M.; Cooper, J.N.; Oganezova, K.; Mittal, J.; McKenna, K.; Godur, D.A.; Zalta, M.; Danesh, A.A.; Mittal, R.; Eshraghi, A.A. Vestibular Schwannoma and Tinnitus: A Systematic Review of Microsurgery Compared to Gamma Knife Radiosurgery. J. Clin. Med. 2024, 13, 3065. [Google Scholar] [CrossRef]
- Masuda, M.; Tanaka, K.F.; Kanzaki, S.; Wakabayashi, K.; Oishi, N.; Suzuki, T.; Ikenaka, K.; Ogawa, K. GFAP aggregates in the cochlear nerve increase the noise vulnerability of sensory cells in the organ of Corti in the murine model of Alexander disease. Neurosci. Res. 2008, 62, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Buffo, A.; Rossi, F. Origin, lineage and function of cerebellar glia. Prog. Neurobiol. 2013, 109, 42–63. [Google Scholar] [CrossRef] [PubMed]
- Goodman, T.; Hajihosseini, M.K. Hypothalamic tanycytes-masters and servants of metabolic, neuroendocrine, and neurogenic functions. Front. Neurosci. 2015, 9, 387. [Google Scholar] [CrossRef] [PubMed]
- Oertel, D.; Young, E.D. What’s a cerebellar circuit doing in the auditory system? Trends Neurosci. 2004, 27, 104–110. [Google Scholar] [CrossRef]
- Mao, M.; Montgomery, J.M.; Kubke, M.F.; Thorne, P.R. The Structural Development of the Mouse Dorsal Cochlear Nucleus. J. Assoc. Res. Otolaryngol. 2015, 16, 473–486. [Google Scholar] [CrossRef]
- Perin, P.; Rossetti, R.; Ricci, C.; Cossellu, D.; Lazzarini, S.; Bethge, P.; Voigt, F.F.; Helmchen, F.; Batti, L.; Gantar, I.; et al. 3D Reconstruction of the Clarified Rat Hindbrain Choroid Plexus. Front. Cell Dev. Biol. 2021, 9, 692617. [Google Scholar] [CrossRef]
- Brozoski, T.J.; Wisner, K.W.; Sybert, L.T.; Bauer, C.A. Bilateral dorsal cochlear nucleus lesions prevent acoustic-trauma induced tinnitus in an animal model. J. Assoc. Res. Otolaryngol. 2011, 13, 55–66. [Google Scholar] [CrossRef]
- Brozoski, T.; Brozoski, D.; Wisner, K.; Bauer, C. Chronic tinnitus and unipolar brush cell alterations in the cerebellum and dorsal cochlear nucleus. Hear. Res. 2017, 350, 139–151. [Google Scholar] [CrossRef]
- Bazargani, N.; Attwell, D. Astrocyte calcium signaling: The third wave. Nat. Neurosci. 2016, 19, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.; Nagelhus, E.A.; Amiry-Moghaddam, M.; Bourque, C.; Agre, P.; Ottersen, O.P. Specialized membrane domains for water transport in glial cells: High-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J. Neurosci. 1997, 17, 171–180. [Google Scholar] [CrossRef]
- Mathiisen, T.M.; Lehre, K.P.; Danbolt, N.C.; Ottersen, O.P. The perivascular astroglial sheath provides a complete covering of the brain microvessels: An electron microscopic 3D reconstruction. Glia 2010, 58, 1094–1103. [Google Scholar] [CrossRef] [PubMed]
- Engelhardt, B.; Vajkoczy, P.; Weller, R. The movers and shapers in immune privilege of the CNS. Nat. Immunol. 2017, 18, 123–131. [Google Scholar] [CrossRef]
- Theis, M.; Giaume, C. Connexin-based intercellular communication and astrocyte heterogeneity. Brain Res. 2012, 1487, 88–98. [Google Scholar] [CrossRef]
- Ma, B.; Buckalew, R.; Du, Y.; Kiyoshi, C.M.; Alford, C.C.; Wang, W.; McTigue, D.M.; Enyeart, J.J.; Terman, D.; Zhou, M. Gap junction coupling confers isopotentiality on astrocyte syncytium. Glia 2016, 64, 214–226. [Google Scholar] [CrossRef]
- Ventura, R.; Harris, K.M. Three-dimensional relationships between hippocampal synapses and astrocytes. J. Neurosci. 1999, 19, 6897–6906. [Google Scholar] [CrossRef]
- Butt, A.M.; Duncan, A.; Berry, M. Astrocyte associations with nodes of Ranvier: Ultrastructural analysis of HRP-filled astrocytes in the mouse optic nerve. J. Neurocytol. 1994, 23, 486–499. [Google Scholar] [CrossRef] [PubMed]
- Mazaud, D.; Capano, A.; Rouach, N. The many ways astroglial connexins regulate neurotransmission and behavior. Glia 2021, 69, 2527–2545. [Google Scholar] [CrossRef]
- Ikezu, T.; Yang, Y.; Verderio, C.; Krämer-Albers, E.M. Extracellular Vesicle-Mediated Neuron-Glia Communications in the Central Nervous System. J. Neurosci. 2024, 44, e1170242024. [Google Scholar] [CrossRef]
- Mohammad, Z.B.; Yudin, S.C.Y.; Goldberg, B.J.; Serra, K.L.; Klegeris, A. Exploring neuroglial signaling: Diversity of molecules implicated in microglia-to-astrocyte neuroimmune communication. Rev. Neurosci. 2024. [Google Scholar] [CrossRef] [PubMed]
- Giaume, C.; Koulakoff, A.; Roux, L.; Holcman, D.; Rouach, N. Astroglial networks: A step further in neuroglial and gliovascular interactions. Nat. Rev. Neurosci. 2010, 11, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.R.; Zhang, Y.K.; Zhou, J.W. The Structure and Function of Glial Networks: Beyond the Neuronal Connections. Neurosci. Bull. 2023, 39, 531–540. [Google Scholar] [CrossRef]
- Navabpour, S.; Kwapis, J.L.; Jarome, T.J. A neuroscientist’s guide to transgenic mice and other genetic tools. Neurosci. Biobehav. Rev. 2020, 108, 732–748. [Google Scholar] [CrossRef]
- Roth, B.L. DREADDs for Neuroscientists. Neuron 2016, 89, 683–694. [Google Scholar] [CrossRef]
- Heffernan, K.S.; Martinez, I.; Jaeger, D.; Khakh, B.S.; Smith, Y.; Galvan, A. Scaled Complexity of Mammalian Astrocytes: Insights From Mouse and Macaque. J. Comp. Neurol. 2024, 532, e25665. [Google Scholar] [CrossRef]
- Semyanov, A.; Henneberger, C.; Agarwal, A. Making sense of astrocytic calcium signals—From acquisition to interpretation. Nat. Rev. Neurosci. 2020, 21, 551–564. [Google Scholar] [CrossRef]
- Schoknecht, K.; Eilers, J. Brain-to-blood transport of fluorescein in vitro. Sci. Rep. 2024, 14, 25572. [Google Scholar] [CrossRef] [PubMed]
- Kanner, S.; Goldin, M.; Galron, R.; Ben Jacob, E.; Bonifazi, P.; Barzilai, A. Astrocytes restore connectivity and synchronization in dysfunctional cerebellar networks. Proc. Natl. Acad. Sci. USA 2018, 115, 8025–8030. [Google Scholar] [CrossRef]
- Oberheim, N.A.; Takano, T.; Han, X.; He, W.; Lin, J.H.C.; Wang, F.; Xu, Q.; Wyatt, J.D.; Pilcher, W.; Ojemann, J.; et al. Uniquely hominid features of adult human astrocytes. J. Neurosci. 2009, 29, 3276–3287. [Google Scholar] [CrossRef]
- Verkhratsky, A.; Butt, A.; Li, B.; Illes, P.; Zorec, R.; Semyanov, A.; Tang, Y.; Sofroniew, M.V. Astrocytes in human central nervous system diseases: A frontier for new therapies. Signal Transduct. Target. Ther. 2023, 8, 396. [Google Scholar] [CrossRef] [PubMed]
- Shibasaki, H. Human brain mapping: Hemodynamic response and electrophysiology. Clin. Neurophysiol. 2008, 119, 731–743. [Google Scholar] [CrossRef] [PubMed]
- Takata, N.; Sugiura, Y.; Yoshida, K.; Koizumi, M.; Hiroshi, N.; Honda, K.; Yano, R.; Komaki, Y.; Matsui, K.; Suematsu, M.; et al. Optogenetic astrocyte activation evokes BOLD fMRI response with oxygen consumption without neuronal activity modulation. Glia 2018, 66, 2013–2023. [Google Scholar] [CrossRef]
- Helms, G. Segmentation of human brain using structural MRI. MAGMA 2016, 29, 111–124. [Google Scholar] [CrossRef]
- Di Biase, M.A.; Geaghan, M.P.; Reay, W.R.; Seidlitz, J.; Weickert, C.S.; Pébay, A.; Green, M.J.; Quidé, Y.; Atkins, J.R.; Coleman, M.J.; et al. Cell type-specific manifestations of cortical thickness heterogeneity in schizophrenia. Mol. Psychiatry 2022, 27, 2052–2060. [Google Scholar] [CrossRef]
- Schmidt, S.; Gull, S.; Herrmann, K.-H.; Boehme, M.; Irintchev, A.; Urbach, A.; Reichenbach, J.R.; Klingner, C.M.; Gaser, C.; Witte, O.W. Experience-dependent structural plasticity in the adult brain: How the learning brain grows. Neuroimage 2021, 225, 117502. [Google Scholar] [CrossRef]
- Farhy-Tselnicker, I.; Allen, N.J. Astrocytes, neurons, synapses: A tripartite view on cortical circuit development. Neural Dev. 2018, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Noriega-Prieto, J.A.; Araque, A. Sensing and Regulating Synaptic Activity by Astrocytes at Tripartite Synapse. Neurochem. Res. 2021, 46, 2580–2585. [Google Scholar] [CrossRef]
- Martin-Fernandez, M.; Jamison, S.; Robin, L.M.; Zhao, Z.; Martín, E.D.; Aguilar, J.; Benneyworth, M.A.; Marsicano, G.; Araque, A. Synapse-specific astrocyte gating of amygdala-related behavior. Nat. Neurosci. 2017, 20, 1540–1548. [Google Scholar] [CrossRef]
- Gómez-Gonzalo, M.; Navarrete, M.; Perea, G.; Covelo, A.; Martín-Fernández, M.; Shigemoto, R.; Luján, R.; Araque, A. Endocannabinoids Induce Lateral Long-Term Potentiation of Transmitter Release by Stimulation of Gliotransmission. Cereb. Cortex. 2015, 25, 3699–3712. [Google Scholar] [CrossRef]
- Navarrete, M.; Araque, A. Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes. Neuron 2010, 68, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Covelo, A.; Araque, A. Neuronal activity determines distinct gliotransmitter release from a single astrocyte. Elife 2018, 7, e32237. [Google Scholar] [CrossRef] [PubMed]
- Badia-Soteras, A.; Heistek, T.S.; Kater, M.S.; Mak, A.; Negrean, A.; Oever, M.C.v.D.; Mansvelder, H.D.; Khakh, B.S.; Min, R.; Smit, A.B.; et al. Retraction of Astrocyte Leaflets from the Synapse Enhances Fear Memory. Biol. Psychiatry 2023, 94, 226–238. [Google Scholar] [CrossRef] [PubMed]
- Bushong, E.A.; Martone, M.E.; Jones, Y.Z.; Ellisman, M.H. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. 2002, 22, 183–192. [Google Scholar] [CrossRef]
- Semyanov, A. Spatiotemporal pattern of calcium activity in astrocytic network. Cell Calcium. 2019, 78, 15–25. [Google Scholar] [CrossRef]
- Ahmadpour, N.; Kantroo, M.; Stobart, J.L. Extracellular Calcium Influx Pathways in Astrocyte Calcium Microdomain Physiology. Biomolecules 2021, 11, 1467. [Google Scholar] [CrossRef]
- Cornell-Bell, A.H.; Finkbeiner, S.M.; Cooper, M.S.; Smith, S.J. Glutamate induces calcium waves in cultured astrocytes: Long-range glial signaling. Science 1990, 247, 470–473. [Google Scholar] [CrossRef]
- Hastings, N.; Yu, Y.; Huang, B.; Middya, S.; Inaoka, M.; Erkamp, N.A.; Mason, R.J.; Carnicer-Lombarte, A.; Rahman, S.; Knowles, T.P.J.; et al. Electrophysiological In Vitro Study of Long-Range Signal Transmission by Astrocytic Networks. Adv. Sci. 2023, 10, e2301756. [Google Scholar] [CrossRef]
- Lines, J.; Baraibar, A.; Nanclares, C.; Martín, E.D.; Aguilar, J.; Kofuji, P.; Navarrete, M.; Araque, A. A spatial threshold for astrocyte calcium surge. bioRxiv 2024. [Google Scholar] [CrossRef]
- Peterson, E.J. What can astrocytes compute? bioRxiv 2021. [Google Scholar] [CrossRef]
- Han, R.T.; Kim, R.D.; Molofsky, A.V.; Liddelow, S.A. Astrocyte-immune cell interactions in physiology and pathology. Immunity 2021, 54, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.; Smedlund, K.; Zhou, Q.-G.; Cai, W.; Hill, J.W. Astrocyte involvement in metabolic regulation and disease. Trends Endocrinol. Metab. 2024, S1043–S2760. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, R.N.; Asiminas, A.; Carlsen, E.M.M.; Kjaerby, C.; Smith, N.A. Astrocytes: Integrators of arousal state and sensory context. Trends Neurosci. 2023, 46, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Hansel, C.; Yuste, R. Neural ensembles: Role of intrinsic excitability and its plasticity. Front. Cell Neurosci. 2024, 18, 1440588. [Google Scholar] [CrossRef]
- Grella, S.L.; Donaldson, T.N. Contextual memory engrams, and the neuromodulatory influence of the locus coeruleus. Front. Mol. Neurosci. 2024, 17, 1342622. [Google Scholar] [CrossRef] [PubMed]
- Bouret, S.; Sara, S.J. Network reset: A simplified overarching theory of locus coeruleus noradrenaline function. Trends Neurosci. 2005, 28, 574–582. [Google Scholar] [CrossRef]
- Ding, F.; O’donnell, J.; Thrane, A.S.; Zeppenfeld, D.; Kang, H.; Xie, L.; Wang, F.; Nedergaard, M. α1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice. Cell Calcium 2013, 54, 387–394. [Google Scholar] [CrossRef]
- Feinstein, D.L.; Kalinin, S.; Braun, D. Causes, consequences, and cures for neuroinflammation mediated via the locus coeruleus: Noradrenergic signaling system. J. Neurochem. 2016, 139 (Suppl. S2), 154–178. [Google Scholar] [CrossRef]
- Kitayama, I.T.; Otani, M.; Murase, S. Degeneration of the locus ceruleus noradrenergic neurons in the stress-induced depression of rats. Ann. N. Y. Acad. Sci. 2008, 1148, 95–98. [Google Scholar] [CrossRef]
- Natalini, E.; Fioretti, A.; Riedl, D.; Moschen, R.; Eibenstein, A. Tinnitus and Metacognitive Beliefs-Results of a Cross-Sectional Observational Study. Brain Sci. 2020, 11, 3. [Google Scholar] [CrossRef]
- Wang, H.; Brozoski, T.J.; Caspary, D.M. Inhibitory neurotransmission in animal models of tinnitus: Maladaptive plasticity. Hear. Res. 2011, 279, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Caspary, D.M.; Llano, D.A. Auditory thalamic circuits and GABAA receptor function: Putative mechanisms in tinnitus pathology. Hear. Res. 2017, 349, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Morais, T.P.; Coelho, D.; Vaz, S.H.; Sebastião, A.M.; Valente, C.A. Glycine Receptor Activation Impairs ATP-Induced Calcium Transients in Cultured Cortical Astrocytes. Front. Mol. Neurosci. 2018, 10, 444. [Google Scholar] [CrossRef] [PubMed]
- Kwak, H.; Koh, W.; Kim, S.; Song, K.; Shin, J.-I.; Lee, J.M.; Lee, E.H.; Bae, J.Y.; Ha, G.E.; Oh, J.-E.; et al. Astrocytes Control Sensory Acuity via Tonic Inhibition in the Thalamus. Neuron 2020, 108, 691–706.e10. [Google Scholar] [CrossRef] [PubMed]
- Mederos, S.; Perea, G. GABAergic-astrocyte signaling: A refinement of inhibitory brain networks. Glia 2019, 67, 1842–1851. [Google Scholar] [CrossRef]
- Wilson, C.S.; Mongin, A.A. The signaling role for chloride in the bidirectional communication between neurons and astrocytes. Neurosci. Lett. 2019, 689, 33–44. [Google Scholar] [CrossRef]
- Untiet, V.; Verkhratsky, A. How astrocytic chloride modulates brain states. Bioessays 2024, 46, e2400004. [Google Scholar] [CrossRef]
- Okada, Y.; Sato, K.; Numata, T. Pathophysiology and puzzles of the volume-sensitive outwardly rectifying anion channel. J. Physiol. 2009, 587, 2141–2149. [Google Scholar] [CrossRef]
- Schober, A.L.; Wilson, C.S.; Mongin, A.A. Molecular composition and heterogeneity of the LRRC8-containing swelling-activated osmolyte channels in primary rat astrocytes. J. Physiol. 2017, 595, 6939–6951. [Google Scholar] [CrossRef]
- Tighilet, B.; Dutheil, S.; Siponen, M.I.; Noreña, A.J. Reactive Neurogenesis and Down-Regulation of the Potassium-Chloride Cotransporter KCC2 in the Cochlear Nuclei after Cochlear Deafferentation. Front. Pharmacol. 2016, 7, 281. [Google Scholar] [CrossRef]
- Parameshwarappa, V.; Siponen, M.I.; Watabe, I.; Karkaba, A.; Galazyuk, A.; Noreña, A.J. Noise-induced hearing loss alters potassium-chloride cotransporter KCC2 and GABA inhibition in the auditory centers. Sci. Rep. 2024, 14, 10689. [Google Scholar] [CrossRef] [PubMed]
- Coull, J.A.M.; Boudreau, D.; Bachand, K.; Prescott, S.A.; Nault, F.; Sík, A.; De Koninck, P.; De Koninck, Y. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 2003, 424, 938–942. [Google Scholar] [CrossRef] [PubMed]
- Kitayama, T. The Role of Astrocytes in the Modulation ofK+-Cl−-Cotransporter-2 Function. Int. J. Mol. Sci. 2020, 21, 9539. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.D.; Ishibashi, M.; Sinha, A.S.; Watanabe, M.; Kato, D.; Horiuchi, H.; Wake, H.; Fukuda, A. Astrocytic NKCC1 inhibits seizures by buffering Cl− and antagonizing neuronal NKCC1 at GABAergic synapses. Epilepsia 2023, 64, 3389–3403. [Google Scholar] [CrossRef] [PubMed]
- Nambu, M.F.; Lin, Y.J.; Reuschenbach, J.; Tanaka, K.Z. What does engram encode?: Heterogeneous memory engrams for different aspects of experience. Curr. Opin. Neurobiol. 2022, 75, 102568. [Google Scholar] [CrossRef]
- Murthy, B.K.B.; Somatakis, S.; Ulivi, A.F.; Klimmt, H.; Castello-Waldow, T.P.; Haynes, N.; Huettl, R.E.; Chen, A.; Attardo, A. Arc-driven mGRASP highlights CA1 to CA3 synaptic engrams. Front. Behav. Neurosci. 2023, 16, 1072571. [Google Scholar] [CrossRef]
- Kim, J.; Sung, Y.; Park, H. Astrocytic connection to engram neurons Increased after learning. bioRxiv 2023. [Google Scholar] [CrossRef]
- Pacholko, A.G.; Wotton, C.A.; Bekar, L.K. Astrocytes-The Ultimate Effectors of Long-Range Neuromodulatory Networks? Front. Cell Neurosci. 2020, 14, 581075. [Google Scholar] [CrossRef]
- Marina, N.; Turovsky, E.; Christie, I.N.; Hosford, P.S.; Hadjihambi, A.; Korsak, A.; Ang, R.; Mastitskaya, S.; Sheikhbahaei, S.; Theparambil, S.M.; et al. Brain metabolic sensing and metabolic signaling at the level of an astrocyte. Glia 2018, 66, 1185–1199. [Google Scholar] [CrossRef]
- Murphy-Royal, C.; Ching, S.; Papouin, T. A conceptual framework for astrocyte function. Nat. Neurosci. 2023, 26, 1848–1856. [Google Scholar] [CrossRef]
- Goldberg, M.; De Pittà, M.; Volman, V.; Berry, H.; Ben-Jacob, E. Nonlinear gap junctions enable long-distance propagation of pulsating calcium waves in astrocyte networks. PLoS Comput. Biol. 2010, 6, e1000909. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.; Blutstein, T.; Lee, S.; Erneux, C.; Halassa, M.M.; Haydon, P. Astrocytic IP3/Ca2+ Signaling Modulates Theta Rhythm and REM Sleep. Front. Neural Circuits. 2017, 11, 3. [Google Scholar] [CrossRef] [PubMed]
- Makovkin, S.; Kozinov, E.; Ivanchenko, M.; Gordleeva, S. Controlling synchronization of gamma oscillations by astrocytic modulation in a model hippocampal neural network. Sci. Rep. 2022, 12, 6970. [Google Scholar] [CrossRef]
- Mapunda, J.A.; Tibar, H.; Regragui, W.; Engelhardt, B. How Does the Immune System Enter the Brain? Front. Immunol. 2022, 13, 805657. [Google Scholar] [CrossRef]
- Mathias, K.; Machado, R.S.; Cardoso, T.; Tiscoski, A.D.B.; Piacentini, N.; Prophiro, J.S.; Generoso, J.S.; Barichello, T.; Petronilho, F. The Blood-Cerebrospinal Fluid Barrier Dysfunction in Brain Disorders and Stroke: Why, How, What For? Neuromol. Med. 2024, 26, 38. [Google Scholar] [CrossRef]
- Rua, R.; McGavern, D.B. Advances in Meningeal Immunity. Trends Mol. Med. 2018, 24, 542–559. [Google Scholar] [CrossRef]
- Proulx, S.T. Cerebrospinal Fluid Outflow: A Review of the Historical and Contemporary Evidence for Arachnoid Villi, Perineural Routes, and Dural Lymphatics. Cell Mol Life Sci 2021, 78, 2429–2457. [Google Scholar] [CrossRef] [PubMed]
- Galea, E.; Graeber, M.B. Neuroinflammation: The Abused Concept. ASN Neuro 2023, 15, 17590914231197523. [Google Scholar] [CrossRef] [PubMed]
- Oliver, D.L.; Cant, N.B.; Fay, R.R.; Popper, A.N. The Mammalian Auditory Pathways; Springer: New York, NY, USA, 2018; Volume 65, ISBN 978-3-319-71798-2. [Google Scholar] [CrossRef]
- Xia, C.; Yin, M.; Wu, C.; Ji, Y.; Zhou, Y. Neuroglial activation in the auditory cortex and medial geniculate body of salicylate-induced tinnitus rats. Am. J. Transl. Res. 2020, 12, 6043–6059. [Google Scholar]
- Almasabi, F.; Alosaimi, F.; Corrales-Terrón, M.; Wolters, A.; Strikwerda, D.; Smit, J.V.; Temel, Y.; Janssen, M.L.F.; Jahanshahi, A. Post-Mortem Analysis of Neuropathological Changes in Human Tinnitus. Brain Sci. 2022, 12, 1024. [Google Scholar] [CrossRef]
- Farina, C.; Aloisi, F.; Meinl, E. Astrocytes are active players in cerebral innate immunity. Trends Immunol. 2007, 28, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Jensen, C.J.; Massie, A.; De Keyser, J. Immune players in the CNS: The astrocyte. J. Neuroimmune Pharmacol. 2013, 8, 824–839. [Google Scholar] [CrossRef]
- Wiese, S.; Karus, M.; Faissner, A. Astrocytes as a source for extracellular matrix molecules and cytokines. Front. Pharmacol. 2012, 3, 120. [Google Scholar] [CrossRef] [PubMed]
- Fisher, T.M.; Liddelow, S.A. Emerging roles of astrocytes as immune effectors in the central nervous system. Trends Immunol. 2024, 45, 824–836. [Google Scholar] [CrossRef] [PubMed]
- Liddelow, S.A.; Marsh, S.E.; Stevens, B. Microglia and Astrocytes in Disease: Dynamic Duo or Partners in Crime? Trends Immunol. 2020, 41, 820–835. [Google Scholar] [CrossRef]
- Matejuk, A.; Ransohoff, R.M. Crosstalk Between Astrocytes and Microglia: An Overview. Front. Immunol. 2020, 11, 1416. [Google Scholar] [CrossRef]
- Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 2006, 7, 41–53. [Google Scholar] [CrossRef]
- Kalinin, S.; Feinstein, D.L.; Xu, H.; Huesa, G.; Pelligrino, D.A.; Galea, E. Degeneration of noradrenergic fibres from the locus coeruleus causes tight-junction disorganisation in the rat brain. Eur. J. Neurosci. 2006, 24, 3393–3400. [Google Scholar] [CrossRef]
- Rostami, J.; Fotaki, G.; Sirois, J.; Mzezewa, R.; Bergström, J.; Essand, M.; Healy, L.; Erlandsson, A. Astrocytes have the capacity to act as antigen-presenting cells in the Parkinson’s disease brain. J. Neuroinflamm. 2020, 17, 119. [Google Scholar] [CrossRef]
- Sutter, P.A.; Crocker, S.J. Glia as antigen-presenting cells in the central nervous system. Curr. Opin. Neurobiol. 2022, 77, 102646. [Google Scholar] [CrossRef]
- Perin, P.; Tagne, A.M.; Enrico, P.; Marino, F.; Cosentino, M.; Pizzala, R.; Boselli, C. Cannabinoids, inner ear, hearing, and tinnitus: A neuroimmunological perspective. Front. Neurol. 2020, 11, 505995. [Google Scholar] [CrossRef] [PubMed]
- Antel, J.P.; Becher, B.; Ludwin, S.K.; Prat, A.; Quintana, F.J. Glial Cells as Regulators of Neuroimmune Interactions in the Central Nervous System. J. Immunol. 2020, 204, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Jha, M.K.; Jo, M.; Kim, J.H.; Suk, K. Microglia-Astrocyte Crosstalk: An Intimate Molecular Conversation. Neuroscientist 2019, 25, 227–240. [Google Scholar] [CrossRef] [PubMed]
- Rupareliya, V.P.; Singh, A.A.; Butt, A.M.; Hariharan, A.; Kumar, H. The “molecular soldiers” of the CNS: Astrocytes, a comprehensive review on their roles and molecular signatures. Eur. J. Pharmacol. 2023, 959, 176048. [Google Scholar] [CrossRef]
- Hasel, P.; Aisenberg, W.H.; Bennett, F.C.; Liddelow, S.A. Molecular and metabolic heterogeneity of astrocytes and microglia. Cell Metab. 2023, 35, 555–570. [Google Scholar] [CrossRef]
- Clarke, B.E.; Taha, D.M.; Tyzack, G.E.; Patani, R. Regionally encoded functional heterogeneity of astrocytes in health and disease: A perspective. Glia 2021, 69, 20–27. [Google Scholar] [CrossRef]
- Xiong, X.Y.; Tang, Y.; Yang, Q.W. Metabolic changes favor the activity and heterogeneity of reactive astrocytes. Trends Endocrinol. Metab. 2022, 33, 390–400. [Google Scholar] [CrossRef]
- Hasel, P.; Rose, I.V.L.; Sadick, J.S.; Kim, R.D.; Liddelow, S.A. Neuroinflammatory astrocyte subtypes in the mouse brain. Nat. Neurosci. 2021, 24, 1475–1487. [Google Scholar] [CrossRef]
- Mennink, L.M.; Albakri, L.B.M.; Aalbers, M.W.; Dijk, P.V.; van Dijk, J.M.C. Cross-sectional screening for inflammation in tinnitus with near-normal hearing. Hear. Res. 2024, 453, 109124. [Google Scholar] [CrossRef]
- Sanmarco, L.M.; Wheeler, M.A.; Gutiérrez-Vázquez, C.; Polonio, C.M.; Linnerbauer, M.; Pinho-Ribeiro, F.A.; Li, Z.; Giovannoni, F.; Batterman, K.V.; Scalisi, G.; et al. Gut-licensed IFNγ + NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature 2021, 590, 473–479. [Google Scholar] [CrossRef]
- Même, W.; Calvo, C.; Froger, N.; Ezan, P.; Amigou, E.; Koulakoff, A.; Giaume, C. Proinflammatory cytokines released from microglia inhibit gap junctions in astrocytes: Potentiation by beta-amyloid. FASEB J. 2006, 20, 494–496. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Huang, Y.; Cao, Y.; Yang, J. Astrocyte-Mediated Neuroinflammation in Neurological Conditions. Biomolecules 2024, 14, 1204. [Google Scholar] [CrossRef] [PubMed]
- Geloso, M.C.; Zupo, L.; Corvino, V. Crosstalk between peripheral inflammation and brain: Focus on the responses of microglia and astrocytes to peripheral challenge. Neurochem. Int. 2024, 180, 105872. [Google Scholar] [CrossRef]
- Zhou, X.; Xiao, Q.; Xie, L.; Yang, F.; Wang, L.; Tu, J. Astrocyte, a promising target for mood disorder interventions. Front. Mol. Neurosci. 2019, 12, 136. [Google Scholar] [CrossRef]
- Kao, L.T.; Shih, J.H.; Yeh, C.B.; Wang, C.H.; Chen, H.C.; Chien, W.C.; Li, I.H. Association between major depressive disorder and subsequent tinnitus: A population-based study. J. Affect. Disord. 2019, 263, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Zhang, D.; Zhang, X.; Li, X. Tinnitus-associated cognitive and psychological impairments: A comprehensive review meta-analysis. Front. Neurosci. 2024, 18, 1275560. [Google Scholar] [CrossRef]
- Li, Y.; Que, M.; Wang, X.; Zhan, G.; Zhou, Z.; Luo, X.; Li, S. Exploring Astrocyte-Mediated Mechanisms in Sleep Disorders and Comorbidity. Biomedicines 2023, 11, 2476. [Google Scholar] [CrossRef]
- Wang, C.; Li, S.; Shi, M.; Qin, Z.; Wang, D.; Li, W.M.; Wang, R.M.; Xie, L.; Li, Y. Association between sleep and tinnitus in US adults: Data from the NHANES (2007–2012). Medicine 2024, 103, e40303. [Google Scholar] [CrossRef] [PubMed]
- Hsu, A.; Tsou, Y.-A.; Wang, T.-C.; Chang, W.-D.; Lin, C.-L.; Tyler, R.S. Hypothyroidism and related comorbidities on the risks of developing tinnitus. Sci. Rep. 2022, 12, 3401. [Google Scholar] [CrossRef]
- Wang, T.-C.; Chiu, C.-J.; Chen, P.-C.; Chang, T.-Y.; Tyler, R.S.; Rojas-Roncancio, E.; Coelho, C.B.; Mancini, P.C.; Lin, C.-L.; Lin, C.-D.; et al. Increased Incidence of Tinnitus Following a Hyperthyroidism Diagnosis: A Population-Based Longitudinal Study. Front. Endocrinol. 2021, 12, 741719. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perin, P.; Pizzala, R. Astrocytes and Tinnitus. Brain Sci. 2024, 14, 1213. https://doi.org/10.3390/brainsci14121213
Perin P, Pizzala R. Astrocytes and Tinnitus. Brain Sciences. 2024; 14(12):1213. https://doi.org/10.3390/brainsci14121213
Chicago/Turabian StylePerin, Paola, and Roberto Pizzala. 2024. "Astrocytes and Tinnitus" Brain Sciences 14, no. 12: 1213. https://doi.org/10.3390/brainsci14121213
APA StylePerin, P., & Pizzala, R. (2024). Astrocytes and Tinnitus. Brain Sciences, 14(12), 1213. https://doi.org/10.3390/brainsci14121213