Increasing the Construct Validity of Computational Phenotypes of Mental Illness Through Active Inference and Brain Imaging
Abstract
:1. Introduction: The Utility of Brain Imaging in Understanding Mental Illness
2. Computational Psychiatry and Computational Phenotyping
3. Current Limitations of Computational Phenotyping
3.1. Structural Longitudinal Changes in Parameters of Computational Phenotypes in Healthy Subjects and Schizophrenia Patients
3.2. Increasing Construct Validity of Computational Phenotypes Through Causal Understanding of Structural Longitudinal Changes
4. Future Directions: Causal Understanding of Structural Longitudinal Changes in Computational Phenotypes Through the Integration of Active Inference and Functional Brain Imaging
5. Concluding Remarks: From Computational Psychiatry to Computational Psychopathology
Funding
Acknowledgments
Conflicts of Interest
References
- Holman, B.L.; Devous, M.D. Functional Brain SPECT: The Emergence of A Powerful Clinical Method. J. Nucl. Med. 1992, 33, 1888–1904. [Google Scholar] [PubMed]
- Dolan, R.J.; Bench, C.J.; Liddle, P.; Friston, K.; Frith, C.; Grasby, P.; Frackowiak, R. Dorsolateral prefrontal cortex dysfunction in the major psychoses; symptom or disease specificity? J. Neurol. Neurosurg. Psychiatry 1993, 56, 1290–1294. [Google Scholar] [CrossRef] [PubMed]
- Qingfeng, L.; Lijuan, J.; Kaini, Q.; Yang, H.; Bing, C.; Xiaochen, Z.; Yue, D.; Zhi, Y.; Chunbo, L. INCloud: Integrated neuroimaging cloud for data collection, management, analysis and clinical translations. Gen. Psychiatry 2021, 34, e100651. [Google Scholar] [CrossRef]
- Jacob, S.; Wolff, J.J.; Steinbach, M.S.; Doyle, C.B.; Kumar, V.; Elison, J.T. Neurodevelopmental heterogeneity and computational approaches for understanding autism. Transl. Psychiatry 2019, 9, 63. [Google Scholar] [CrossRef]
- Ressler, K.J.; Williams, L.M. Big data in psychiatry: Multiomics, neuroimaging, computational modeling, and digital phenotyping. Neuropsychopharmacology 2021, 46, 1–2. [Google Scholar] [CrossRef]
- Koppe, G.; Meyer-Lindenberg, A.; Durstewitz, D. Deep learning for small and big data in psychiatry. Neuropsychopharmacology 2021, 46, 176–190. [Google Scholar] [CrossRef]
- Janiri, D.; Moser, D.A.; Doucet, G.E.; Luber, M.J.; Rasgon, A.; Lee, W.H.; Murrough, J.W.; Sani, G.; Eickhoff, S.B.; Frangou, S. Shared Neural Phenotypes for Mood and Anxiety Disorders: A Meta-analysis of 226 Task-Related Functional Imaging Studies. JAMA Psychiatry 2020, 77, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Boisvert, M.; Dugré, J.R.; Potvin, S. Patterns of abnormal activations in severe mental disorders a transdiagnostic data-driven meta-analysis of task-based fMRI studies. Psychol. Med. 2024, 54, 3612–3623. [Google Scholar] [CrossRef]
- Barch, D.; Liston, C. Neuroimaging in psychiatry: Toward mechanistic insights and clinical utility. Neuropsychopharmacology 2024, 50, 1–2. [Google Scholar] [CrossRef]
- Henderson, T.A.; van Lierop, M.J.; McLean, M.; Uszler, J.M.; Thornton, J.F.; Siow, Y.H.; Pavel, D.G.; Cardaci, J.; Cohen, P. Functional Neuroimaging in Psychiatry-Aiding in Diagnosis and Guiding Treatment. What the American Psychiatric Association Does Not Know. Front. Psychiatry 2020, 11, 276. [Google Scholar] [CrossRef] [PubMed]
- First, M.B.; Drevets, W.C.; Carter, C.; Dickstein, D.P.; Kasoff, L.; Kim, K.L.; McConathy, J.; Rauch, S.; Saad, Z.S.; Savitz, J.; et al. Clinical Applications of Neuroimaging in Psychiatric Disorders. Am. J. Psychiatry 2018, 175, 915–916. [Google Scholar] [CrossRef] [PubMed]
- Nour, M.M.; Liu, Y.; Dolan, R.J. Functional neuroimaging in psychiatry and the case for failing better. Neuron 2022, 110, 2524–2544. [Google Scholar] [CrossRef]
- Reddy, S.; Kabotyanski, K.E.; Hirani, S.; Liu, T.; Naqvi, Z.; Giridharan, N.; Hasen, M.; Provenza, N.R.; Banks, G.P.; Mathew, S.J.; et al. Efficacy of Deep Brain Stimulation for Treatment-Resistant Depression: Systematic Review and Meta-Analysis. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2024, 9, 1239–1248. [Google Scholar] [CrossRef]
- Cole, E.J.; Phillips, A.L.; Bentzley, B.S.; Stimpson, K.H.; Nejad, R.; Barmak, F.; Veerapal, C.; Khan, N.; Cherian, K.; Felber, E.; et al. Stanford Neuromodulation Therapy (SNT): A Double-Blind Randomized Controlled Trial. Am. J. Psychiatry 2022, 179, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Eisenberger, N.I. Meta-analytic evidence for the role of the anterior cingulate cortex in social pain. Soc. Cogn. Affect. Neurosci. 2014, 10, 1–2. [Google Scholar] [CrossRef]
- Edes, A.E.; McKie, S.; Szabo, E.; Kokonyei, G.; Pap, D.; Zsombok, T.; Magyar, M.; Csepany, E.; Hullam, G.; Szabo, A.G.; et al. Increased activation of the pregenual anterior cingulate cortex to citalopram challenge in migraine: An fMRI study. BMC Neurol. 2019, 19, 237. [Google Scholar] [CrossRef] [PubMed]
- Smárason, O.; Boedeker, P.J.; Guzick, A.G.; Tendler, A.; Sheth, S.A.; Goodman, W.K.; Storch, E.A. Depressive symptoms during deep transcranial magnetic stimulation or sham treatment for obsessive-compulsive disorder. J. Affect. Disord. 2024, 344, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Brucar, L.R.; Feczko, E.; Fair, D.A.; Zilverstand, A. Current Approaches in Computational Psychiatry for the Data-Driven Identification of Brain-Based Subtypes. Biol. Psychiatry 2023, 93, 704–716. [Google Scholar] [CrossRef] [PubMed]
- Montague, P.R.; Dolan, R.J.; Friston, K.J.; Dayan, P. Computational psychiatry. Trends Cogn. Sci. 2012, 16, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Karvelis, P.; Paulus, M.P.; Diaconescu, A.O. Individual differences in computational psychiatry: A review of current challenges. Neurosci. Biobehav. Rev. 2023, 148, 105137. [Google Scholar] [CrossRef] [PubMed]
- Chekroud, A.M.; Lane, C.E.; Ross, D.A. Computational Psychiatry: Embracing Uncertainty and Focusing on Individuals, Not Averages. Biol. Psychiatry 2017, 82, e45–e47. [Google Scholar] [CrossRef] [PubMed]
- Paulus, M.P.; Huys, Q.J.M.; Maia, T.V. A Roadmap for the Development of Applied Computational Psychiatry. Biol. Psychiatry: Cogn. Neurosci. Neuroimaging 2016, 1, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Corlett, P.R.; Fletcher, P.C. Computational psychiatry: A Rosetta Stone linking the brain to mental illness. Lancet Psychiatry 2014, 1, 399–402. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.A.; Huys, Q.J.M.; Roiser, J.P. Computational Psychiatry: Towards a mathematically informed understanding of mental illness. J. Neurol. Neurosurg. Psychiatry 2016, 87, 53. [Google Scholar] [CrossRef]
- Friston, K.J. Precision Psychiatry. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2017, 2, 640–643. [Google Scholar] [CrossRef]
- Friston, K.J.; Redish, A.D.; Gordon, J.A. Computational Nosology and Precision Psychiatry. Comput. Psychiatry 2017, 1, 2–23. [Google Scholar] [CrossRef]
- Chang, S.-S.; Chou, T. A Dynamical Bifurcation Model of Bipolar Disorder Based on Learned Expectation and Asymmetry in Mood Sensitivity. Comput. Psychiatry 2018, 2, 205–222. [Google Scholar] [CrossRef] [PubMed]
- Colombo, M. Computational Modelling for Alcohol Use Disorder. Erkenntnis 2024, 89, 271–291. [Google Scholar] [CrossRef]
- Pauli, R.; Lockwood, P.L. The computational psychiatry of antisocial behaviour and psychopathy. Neurosci. Biobehav. Rev. 2023, 145, 104995. [Google Scholar] [CrossRef]
- Patzelt, E.H.; Hartley, C.A.; Gershman, S.J. Computational Phenotyping: Using Models to Understand Individual Differences in Personality, Development, and Mental Illness. Personal. Neurosci. 2018, 1, e18. [Google Scholar] [CrossRef] [PubMed]
- Limongi, R.; Jeon, P.; Mackinley, M.; Das, T.; Dempster, K.; Théberge, J.; Bartha, R.; Wong, D.; Palaniyappan, L. Glutamate and Dysconnection in the Salience Network: Neurochemical, Effective-connectivity, and Computational Evidence in Schizophrenia. Biol. Psychiatry 2020, 88, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Limongi, R.; Silva, A.M.; Mackinley, M.; Ford, S.D.; Palaniyappan, L. Active Inference, Epistemic Value, and Uncertainty in Conceptual Disorganization in First-Episode Schizophrenia. Schizophr. Bull. 2023, 49, S115–S124. [Google Scholar] [CrossRef] [PubMed]
- Lanillos, P.; Oliva, D.; Philippsen, A.; Yamashita, Y.; Nagai, Y.; Cheng, G. A review on neural network models of schizophrenia and autism spectrum disorder. Neural Netw. 2020, 122, 338–363. [Google Scholar] [CrossRef] [PubMed]
- Na, S.J.; Rhoads, S.A.; Yu, A.N.C.; Fiore, V.G.; Gu, X.S. Towards a neurocomputational account of social controllability: From models to mental health. Neurosci. Biobehav. Rev. 2023, 148, 105139. [Google Scholar] [CrossRef]
- Noel, J.P.; Shivkumar, S.; Dokka, K.; Haefner, R.M.; Angelaki, D.E. Aberrant causal inference and presence of a compensatory mechanism in autism spectrum disorder. eLife 2022, 11, e71866. [Google Scholar] [CrossRef] [PubMed]
- Tarasi, L.; Martelli, M.E.; Bortoletto, M.; di Pellegrino, G.; Romei, V. Neural Signatures of Predictive Strategies Track Individuals Along the Autism-Schizophrenia Continuum. Schizophr. Bull. 2023, 49, 1294–1304. [Google Scholar] [CrossRef]
- Van Schalkwyk, G.I.; Volkmar, F.R.; Corlett, P.R. A Predictive Coding Account of Psychotic Symptoms in Autism Spectrum Disorder. J. Autism Dev. Disord. 2017, 47, 1323–1340. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.; Pérez, M.P.; Castro, I.; Moreira, P.; Ribeiro, S.; Mota, N.B.; Morgado, P. Speech graph analysis in obsessive-compulsive disorder: The relevance of dream reports. J. Psychiatr. Res. 2023, 161, 358–363. [Google Scholar] [CrossRef]
- Loosen, A.M.; Hauser, T.U. Towards a computational psychiatry of juvenile obsessive-compulsive disorder. Neurosci. Biobehav. Rev. 2020, 118, 631–642. [Google Scholar] [CrossRef] [PubMed]
- Szalisznyo, K.; Silverstein, D.N.N. Computational Predictions for OCD Pathophysiology and Treatment: A Review. Front. Psychiatry 2021, 12, 687062. [Google Scholar] [CrossRef] [PubMed]
- Chou, K.P.; Wilson, R.C.; Smith, R. The influence of anxiety on exploration: A review of computational modeling studies. Neurosci. Biobehav. Rev. 2024, 167, 105940. [Google Scholar] [CrossRef]
- Clark, J.E.; Watson, S. Modelling mood updating: A proof of principle study. Br. J. Psychiatry 2023, 222, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Gagne, C.; Dayan, P. Peril, prudence and planning as risk, avoidance and worry. J. Math. Psychol. 2022, 106, 102617. [Google Scholar] [CrossRef]
- Goldway, N.; Eldar, E.; Shoval, G.; Hartley, C.A. Computational Mechanisms of Addiction and Anxiety: A Developmental Perspective. Biol. Psychiatry 2023, 93, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Hedley, F.E.; Larsen, E.; Mohanty, A.; Liu, J.Z.; Jin, J.W. Understanding anxiety through uncertainty quantification. Br. J. Psychol. 2024; 1–14, early view. [Google Scholar] [CrossRef]
- Howlett, J.R.; Paulus, M.P. Out of control: Computational dynamic control dysfunction in stress- and anxiety-related disorders. Discov. Ment. Health 2024, 4, 5. [Google Scholar] [CrossRef]
- Hunter, L.E.; Meer, E.A.; Gillan, C.M.; Hsu, M.; Daw, N.D. Increased and biased deliberation in social anxiety. Nat. Hum. Behav. 2022, 6, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Pike, A.C.; Robinson, O.J. Reinforcement Learning in Patients With Mood and Anxiety Disorders vs Control Individuals A Systematic Review and Meta-analysis. JAMA Psychiatry 2022, 79, 313–322. [Google Scholar] [CrossRef]
- Shimizu, N.; Mochizuki, Y.; Chen, C.; Hagiwara, K.; Matsumoto, K.; Oda, Y.; Hirotsu, M.; Okabe, E.; Matsubara, T.; Nakagawa, S. The effect of positive autobiographical memory retrieval on decision-making under risk: A computational model-based analysis. Front. Psychiatry 2022, 13, 930466. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Thompson, W.; Paulus, M.P. Computational Dysfunctions in Anxiety: Failure to Differentiate Signal From Noise. Biol. Psychiatry 2017, 82, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Pine, D.S. Clinical Advances From a Computational Approach to Anxiety. Biol. Psychiatry 2017, 82, 385–387. [Google Scholar] [CrossRef] [PubMed]
- Hales, C.A.; Clark, L.; Winstanley, C.A. Computational approaches to modeling gambling behaviour: Opportunities for understanding disordered gambling. Neurosci. Biobehav. Rev. 2023, 147, 105083. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, T.R.; Xiao, B.; Lawson, R.P. Transdiagnostic computations of uncertainty: Towards a new lens on intolerance of uncertainty. Neurosci. Biobehav. Rev. 2023, 148, 105123. [Google Scholar] [CrossRef]
- Vilares, I.; Nolte, T.; Hula, A.; Cui, Z.Y.; Fonagy, P.; Zhu, L.S.; Chiu, P.; King-Casas, B.; Lohrenz, T.; Dayan, P.; et al. Computational Phenotyping in Borderline Personality Using a Role-Based Social Hierarchy Probe. Biol. Psychiatry 2019, 85, S108. [Google Scholar] [CrossRef]
- Charlton, C.E.; Karvelis, P.; McIntyre, R.S.; Diaconescu, A.O. Suicide prevention and ketamine: Insights from computational modeling. Front. Psychiatry 2023, 14, 1214018. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Takahashi, T.; Nakagawa, S.; Inoue, T.; Kusumi, I. Reinforcement learning in depression: A review of computational research. Neurosci. Biobehav. Rev. 2015, 55, 247–267. [Google Scholar] [CrossRef]
- Kishimoto, T.; Takamiya, A.; Liang, K.C.; Funaki, K.; Fujita, T.; Kitazawa, M.; Yoshimura, M.; Tazawa, Y.; Horigome, T.; Eguchi, Y.; et al. The project for objective measures using computational psychiatry technology (PROMPT): Rationale, design, and methodology. Contemp. Clin. Trials Commun. 2020, 19, 100649. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.J.; Fang, J.; Zhang, J.P.; Zhang, X.H.; Piao, W.Y.; Liu, Y.K. Resting-State Electroencephalogram Depression Diagnosis Based on Traditional Machine Learning and Deep Learning: A Comparative Analysis. Sensors 2024, 24, 6815. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, M.L.; Ironside, M.; Amemori, K.; McGrath, C.L.; Kang, M.S.; Graybiel, A.M.; Pizzagalli, D.A.; Frank, M.J. Computational phenotyping of brain-behavior dynamics underlying approach-avoidance conflict in major depressive disorder. PLoS Comput. Biol. 2021, 17, e1008955. [Google Scholar] [CrossRef]
- Rutledge, R.B.; Moutoussis, M.; Smittenaar, P.; Zeidman, P.; Taylor, T.; Hrynkiewicz, L.; Lam, J.; Skandali, N.; Siegel, J.Z.; Ousdal, O.T.; et al. Association of Neural and Emotional Impacts of Reward Prediction Errors With Major Depression. JAMA Psychiatry 2017, 74, 790–797. [Google Scholar] [CrossRef] [PubMed]
- Barch, D.M.; Culbreth, A.J.; Sheffield, J.M. Cognitive Control in Schizophrenia: Advances in Computational Approaches. Curr. Dir. Psychol. Sci. 2024, 33, 35–42. [Google Scholar] [CrossRef]
- Grunze, H.; Cetkovich-Bakmas, M. “Apples and pears are similar, but still different things”. Bipolar disorder and schizophrenia- discrete disorders or just dimensions? J. Affect. Disord. 2021, 290, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Gütlin, D.C.; McDermott, H.H.; Grundei, M.; Auksztulewicz, R. Model-Based Approaches to Investigating Mismatch Responses in Schizophrenia. Clin. EEG Neurosci. 2024. [Google Scholar] [CrossRef] [PubMed]
- Humpston, C.S.; Adams, R.A.; Benrimoh, D.; Broome, M.R.; Corlett, P.R.; Gerrans, P.; Horga, G.; Parr, T.; Pienkos, E.; Powers, A.R.; et al. From Computation to the First-Person: Auditory-Verbal Hallucinations and Delusions of Thought Interference in Schizophrenia-Spectrum Psychoses. Schizophr. Bull. 2019, 45, S56–S66. [Google Scholar] [CrossRef] [PubMed]
- Humpston, C.S.; Broome, M.R. Thinking, believing, and hallucinating self in schizophrenia. Lancet Psychiatry 2020, 7, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Krystal, J.H.; Murray, J.D.; Chekroud, A.M.; Corlett, P.R.; Yang, G.; Wang, X.J.; Anticevic, A. Computational Psychiatry and the Challenge of Schizophrenia. Schizophr. Bull. 2017, 43, 473–475. [Google Scholar] [CrossRef] [PubMed]
- Möller, T.J.; Georgie, Y.K.; Schillaci, G.; Voss, M.; Hafner, V.V.; Kaltwasser, L. Computational models of the “active self” and its disturbances in schizophrenia. Conscious. Cogn. 2021, 93, 103155. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.D.; Anticevic, A. Toward understanding thalamocortical dysfunction in schizophrenia through computational models of neural circuit dynamics. Schizophr. Res. 2017, 180, 70–77. [Google Scholar] [CrossRef]
- Pan, Y.F.; Wen, Y.L.; Jin, J.W.; Chen, J. The interpersonal computational psychiatry of social coordination in schizophrenia. Lancet Psychiatry 2023, 10, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Wolff, A.; Northoff, G. Temporal imprecision of phase coherence in schizophrenia and psychosis-dynamic mechanisms and diagnostic marker. Mol. Psychiatry 2024, 29, 425–438. [Google Scholar] [CrossRef]
- Alonso, M.; Limongi, R.; Gati, J.; Palaniyappan, L. Language network self-inhibition and semantic similarity in first-episode schizophrenia: A computational-linguistic and effective connectivity approach. Schizophr. Res. 2022, 259, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Jeon, P.; Limongi, R.; Ford, S.D.; Branco, C.; Mackinley, M.; Gupta, M.; Powe, L.; Théberge, J.; Palaniyappan, L. Glutathione as a Molecular Marker of Functional Impairment in Patients with At-Risk Mental State: 7-Tesla 1H-MRS Study. Brain Sci. 2021, 11, 941. [Google Scholar] [CrossRef] [PubMed]
- Limongi, R.; Mackinley, M.; Dempster, K.; Khan, A.R.; Gati, J.S.; Palaniyappan, L. Frontal-striatal connectivity and positive symptoms of schizophrenia: Implications for the mechanistic basis of prefrontal rTMS. Eur. Arch. Psychiatry Clin. Neurosci. 2020, 271, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Pu, W.; Chen, X.; Huang, X.; Cai, Y.; Tao, H.; Xue, Z.; Mackinley, M.; Limongi, R.; Liu, Z.; et al. Morphological Profiling of Schizophrenia: Cluster Analysis of MRI-Based Cortical Thickness Data. Schizophr. Bull. 2020, 271, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.M.; Limongi, R.; MacKinley, M.; Ford, S.D.; Alonso-Sánchez, M.F.; Palaniyappan, L. Syntactic complexity of spoken language in the diagnosis of schizophrenia: A probabilistic Bayes network model. Schizophr. Res. 2023, 259, 88–96. [Google Scholar] [CrossRef]
- Silva, A.M.; Limongi, R.; MacKinley, M.; Palaniyappan, L. Small Words That Matter: Linguistic Style and Conceptual Disorganization in Untreated First-Episode Schizophrenia. Schizophr. Bull. Open 2021, 2, sgab010. [Google Scholar] [CrossRef]
- Whitton, A.E.; Cooper, J.A.; Merchant, J.T.; Treadway, M.T.; Lewandowski, K.E. Using Computational Phenotyping to Identify Divergent Strategies for Effort Allocation Across the Psychosis Spectrum. Schizophr. Bull. 2024, 50, 1127–1136. [Google Scholar] [CrossRef]
- De Lacy, N.; Ramshaw, M.J.; McCauley, E.; Kerr, K.F.; Kaufman, J.; Kutz, J.N. Predicting individual cases of major adolescent psychiatric conditions with artificial intelligence. Transl. Psychiatry 2023, 13, 314. [Google Scholar] [CrossRef]
- Maia, T.V.; Frank, M.J. From reinforcement learning models to psychiatric and neurological disorders. Nat. Neurosci. 2011, 14, 154–162. [Google Scholar] [CrossRef]
- Ging-Jehli, N. Utility of Computational Phenotyping for Psychiatric Disorders With Low Essentiality: Empirical Findings for Attention-Deficit/Hyperactivity Disorder and Depressive Disorders. Neuropsychopharmacology 2023, 48, 30. [Google Scholar]
- Pessiglione, M.; Le Bouc, R.; Vinckier, F. When decisions talk: Computational phenotyping of motivation disorders. Curr. Opin. Behav. Sci. 2018, 22, 50–58. [Google Scholar] [CrossRef]
- Benrimoh, D.; Fisher, V.; Mourgues, C.; Sheldon, A.D.; Smith, R.; Powers, A.R. Barriers and solutions to the adoption of translational tools for computational psychiatry. Mol. Psychiatry 2023, 28, 2189–2196. [Google Scholar] [CrossRef] [PubMed]
- Hitchcock, P.F.; Fried, E.I.; Frank, M.J. Computational Psychiatry Needs Time and Context. Annu. Rev. Psychol. 2022, 73, 243–270. [Google Scholar] [CrossRef] [PubMed]
- Germine, L.; Strong, R.W.; Singh, S.; Sliwinski, M.J. Toward dynamic phenotypes and the scalable measurement of human behavior. Neuropsychopharmacology 2021, 46, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Baca-Garcia, E.; Perez-Rodriguez, M.M.; Basurte-Villamor, I.; Fernandez Del Moral, A.L.; Jimenez-Arriero, M.A.; Gonzalez De Rivera, J.L.; Saiz-Ruiz, J.; Oquendo, M.A. Diagnostic stability of psychiatric disorders in clinical practice. Br. J. Psychiatry 2007, 190, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Cheung, G.W.; Cooper-Thomas, H.D.; Lau, R.S.; Wang, L.C. Reporting reliability, convergent and discriminant validity with structural equation modeling: A review and best-practice recommendations. Asia Pac. J. Manag. 2024, 41, 745–783. [Google Scholar] [CrossRef]
- Andrich, D.; Marais, I. Reliability and Validity in Classical Test Theory. In A Course in Rasch Measurement Theory: Measuring in the Educational, Social and Health Sciences; Andrich, D., Marais, I., Eds.; Springer Nature: Singapore, 2019; pp. 41–53. [Google Scholar]
- Slaney, K. Construct Validation: View from the “Trenches”. In Validating Psychological Constructs: Historical, Philosophical, and Practical Dimensions; Slaney, K., Ed.; Palgrave Macmillan: London, UK, 2017; pp. 237–269. [Google Scholar]
- Schurr, R.; Reznik, D.; Hillman, H.; Bhui, R.; Gershman, S.J. Dynamic computational phenotyping of human cognition. Nat. Hum. Behav. 2024, 8, 917–931. [Google Scholar] [CrossRef]
- Ratcliff, R.; McKoon, G. The Diffusion Decision Model: Theory and Data for Two-Choice Decision Tasks. Neural Comput. 2008, 20, 873–922. [Google Scholar] [CrossRef] [PubMed]
- Gershman, S.J. Uncertainty and exploration. Decision 2019, 6, 277–286. [Google Scholar] [CrossRef]
- Alonso-Sánchez, M.F.; Ford, S.D.; MacKinley, M.; Silva, A.; Limongi, R.; Palaniyappan, L. Progressive changes in descriptive discourse in First Episode of Schizophrenia: A longitudinal computational semantics study. medRxiv 2021, 8, 1–9. [Google Scholar] [CrossRef]
- Liang, S.; Huang, Z.; Wang, Y.; Wu, Y.; Chen, Z.; Zhang, Y.; Guo, W.; Zhao, Z.; Ford, S.D.; Palaniyappan, L.; et al. Using a longitudinal network structure to subgroup depressive symptoms among adolescents. BMC Psychol. 2024, 12, 46. [Google Scholar] [CrossRef]
- Wang, M.; Barker, P.B.; Cascella, N.G.; Coughlin, J.M.; Nestadt, G.; Nucifora, F.C.; Sedlak, T.W.; Kelly, A.; Younes, L.; Geman, D.; et al. Longitudinal changes in brain metabolites in healthy controls and patients with first episode psychosis: A 7-Tesla MRS study. Mol. Psychiatry 2023, 28, 2018–2029. [Google Scholar] [CrossRef]
- Pearson, K. Mathematical contributions to the theory of evolution.—On a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc. R. Soc. Lond. 1897, 60, 489–498. [Google Scholar] [CrossRef]
- Pearl, J. Causality: Models, Reasoning, and Inference, 2nd ed.; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Pearl, J. An Introduction to Causal Inference. Int. J. Biostat. 2010, 6, 7. [Google Scholar] [CrossRef]
- Genin, K.; Grote, T.; Wolfers, T. Computational psychiatry and the evolving concept of a mental disorder. Synthese 2024, 204, 88. [Google Scholar] [CrossRef]
- Treadway, M.T. Computational psychiatry and the lived experience of mental illness. Nat. Rev. Psychol. 2023, 2, 67–68. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, O.; Zhu, H.; He, Y.; Chang, X.; Sun, L.; Jia, Y.; Sun, H.; Wang, Y.; Xu, Q.; et al. Associations between brain imaging–derived phenotypes and cognitive functions. Cereb. Cortex 2024, 34, bhae297. [Google Scholar] [CrossRef]
- Ito, M.; Doya, K. Validation of Decision-Making Models and Analysis of Decision Variables in the Rat Basal Ganglia. J. Neurosci. 2009, 29, 9861–9874. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.; Friston, K.J.; Whyte, C.J. A step-by-step tutorial on active inference and its application to empirical data. J. Math. Psychol. 2022, 107, 102632. [Google Scholar] [CrossRef]
- Friston, K.J.; FitzGerald, T.; Rigoli, F.; Schwartenbeck, P.; Pezzulo, G. Active Inference: A Process Theory. Neural Comput. 2016, 23, 1–49. [Google Scholar] [CrossRef]
- Champion, T.; Grześ, M.; Bowman, H. Realizing Active Inference in Variational Message Passing: The Outcome-Blind Certainty Seeker. Neural Comput. 2021, 33, 2762–2826. [Google Scholar] [CrossRef]
- Parr, T.; Markovic, D.; Kiebel, S.J.; Friston, K.J. Neuronal message passing using Mean-field, Bethe, and Marginal approximations. Sci. Rep. 2019, 9, 1889. [Google Scholar] [CrossRef] [PubMed]
- Van de Laar, T.W.; de Vries, B. Simulating Active Inference Processes by Message Passing. Front. Robot. AI 2019, 6, 20. [Google Scholar] [CrossRef]
- Parr, T.; Pezzulo, G.; Friston, K.J. Active Inference: The Free Energy Principle in Mind, Brain, and Behavior; MIT Press: Cambridge, MA, USA, 2022. [Google Scholar]
- McCrone, J. Friston’s theory of everything. Lancet Neurol. 2022, 21, 494. [Google Scholar] [CrossRef] [PubMed]
- Bitzer, S.; Park, H.; Blankenburg, F.; Kiebel, S. Perceptual decision making: Drift-diffusion model is equivalent to a Bayesian model. Front. Hum. Neurosci. 2014, 8, 102. [Google Scholar] [CrossRef]
- Friston, K.J.; Daunizeau, J.; Kiebel, S.J. Reinforcement Learning or Active Inference? PLoS ONE 2009, 4, e6421. [Google Scholar] [CrossRef]
- Koller, D.; Friedman, N. Probabilistic Graphical Models: Principles and Techniques; Massachusetts Institute of Technology: Cambridge, MA, USA, 2009. [Google Scholar]
- Pearl, J. Probabilistic Reasoning in Intelligent Systems: Netwokrs of Plausible Inference; Morgan Kaufmann Publishers, Inc.: San Francisco, CA, USA, 1988. [Google Scholar]
- Vowels, M.J.; Camgoz, N.C.; Bowden, R. D’ya Like DAGs? A Survey on Structure Learning and Causal Discovery. ACM Comput. Surv. 2022, 55, 82. [Google Scholar] [CrossRef]
- Ossola, P.; Pike, A.C. Editorial: What is computational psychopathology, and why do we need it? Neurosci. Biobehav. Rev. 2023, 152, 105170. [Google Scholar] [CrossRef]
Psychiatry Disorder | Computational Psychiatry Study |
---|---|
Autism | [4,33,34,35,36,37] |
Obsessive–compulsive disorders | [38,39,40] |
Anxiety | [41,42,43,44,45,46,47,48,49,50,51] |
Abnormal gambling | [52] |
Intolerance of uncertainty | [20,53] |
Border personality disorder | [54] |
Major depression disorder | [55,56,57,58,59,60] |
Schizophrenia | [31,32,36,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77] |
Attention-deficit/hyperactivity disorder | [78,79,80] |
Motivation disorder | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Limongi, R.; Skelton, A.B.; Tzianas, L.H.; Silva, A.M. Increasing the Construct Validity of Computational Phenotypes of Mental Illness Through Active Inference and Brain Imaging. Brain Sci. 2024, 14, 1278. https://doi.org/10.3390/brainsci14121278
Limongi R, Skelton AB, Tzianas LH, Silva AM. Increasing the Construct Validity of Computational Phenotypes of Mental Illness Through Active Inference and Brain Imaging. Brain Sciences. 2024; 14(12):1278. https://doi.org/10.3390/brainsci14121278
Chicago/Turabian StyleLimongi, Roberto, Alexandra B. Skelton, Lydia H. Tzianas, and Angelica M. Silva. 2024. "Increasing the Construct Validity of Computational Phenotypes of Mental Illness Through Active Inference and Brain Imaging" Brain Sciences 14, no. 12: 1278. https://doi.org/10.3390/brainsci14121278
APA StyleLimongi, R., Skelton, A. B., Tzianas, L. H., & Silva, A. M. (2024). Increasing the Construct Validity of Computational Phenotypes of Mental Illness Through Active Inference and Brain Imaging. Brain Sciences, 14(12), 1278. https://doi.org/10.3390/brainsci14121278