Neurological Biomarker Profiles in Royal Canadian Air Force (RCAF) Pilots and Aircrew
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Experimental Design and Procedures
2.3. Blood Collection, Processing, and Storage
2.4. Plasma Neurological Biomarker Analyses
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Blood Neurological Biomarker Profiles
4. Discussion
4.1. Astrocyte Activation and Neuroinflammation
4.2. Axonal Damage and White Matter Changes
4.3. Upregulation of PRDX-6 with Oxidative Stress and Brain Injury
4.4. Elevated Tau and Risk of Neurodegeneration in Aviators
4.5. S100b, NSE, and UCHL-1 Trends
4.6. Implications for Cognitive Function and Long-Term Risks
4.7. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin, T.; Glanfield, M. The physiological effects of altitude. In Aeromedical Transportation; CRC Press: Boca Raton, FL, USA, 2017; pp. 61–76. [Google Scholar]
- Bailey, D.M.; Laneelle, D.; Trihan, J.E.; Marchi, N.; Stacey, B.S.; Tamiya, K.; Washio, T.; Tuaillon, E.; Hirtz, C.; Lehmann, S.; et al. Gravitational Transitions Increase Posterior Cerebral Perfusion and Systemic Oxidative-nitrosative Stress: Implications for Neurovascular Unit Integrity. Neuroscience 2020, 441, 142–160. [Google Scholar] [CrossRef]
- Shaw, D.M.; Harrell, J.W. Integrating physiological monitoring systems in military aviation: A brief narrative review of its importance, opportunities, and risks. Ergonomics 2023, 66, 2242–2254. [Google Scholar] [CrossRef]
- Temme, L.A.; Still, D.L.; Acromite, M.T. Hypoxia and flight performance of military instructor pilots in a flight simulator. Aviat. Space Environ. Med. 2010, 81, 654–659. [Google Scholar] [CrossRef]
- Hodkinson, P.D. Acute exposure to altitude. J. R. Army Med. Corps 2011, 157, 85–91. [Google Scholar] [CrossRef]
- Guadagno, A.G.; Morgagni, F.; Vicenzini, E.; Davi, L.; Ciniglio Appiani, G.; Tomao, E. Cerebral vascular response in airmen exposed to hypobaric hypoxia. Aviat. Space Environ. Med. 2011, 82, 1138–1142. [Google Scholar] [CrossRef]
- Nisha, S.N.; Fathinul Fikri, A.S.; Aida, A.R.; Salasiah, M.; Hamed, S.; Rohit, T.; Amei Farina, A.R.; Loh, J.L.; Mazlyfarina, M.; Subapriya, S. The objective assessment of the effects on cognition functioning among military personnel exposed to hypobaric-hypoxia: A pilot fMRI study. Med. J. Malays. 2020, 75, 62–67. [Google Scholar]
- Maltez-Laurienti, A.; Minniear, A.; Moore, R.; McGovern, T.; Newman, P.; Brearly, T. Exploring Neurocognitive Performance Differences in Military Aviation Personnel. Aerosp. Med. Hum. Perform. 2021, 92, 702–709. [Google Scholar] [CrossRef]
- Shaw, D.M.; Cabre, G.; Gant, N. Hypoxic Hypoxia and Brain Function in Military Aviation: Basic Physiology and Applied Perspectives. Front. Physiol. 2021, 12, 665821. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, J.; Gassmann, M.; Ehrenreich, H.; Hüfner, K.; Kopp, M.; Burtscher, M. Cognitive effects of altitude exposure. J. Travel. Med. 2024, taae112. [Google Scholar] [CrossRef]
- Foster, P.P.; Butler, B.D. Decompression to altitude: Assumptions, experimental evidence, and future directions. J. Appl. Physiol. (1985) 2009, 106, 678–690. [Google Scholar] [CrossRef] [PubMed]
- Jersey, S.L.; Hundemer, G.L.; Stuart, R.P.; West, K.N.; Michaelson, R.S.; Pilmanis, A.A. Neurological altitude decompression sickness among U-2 pilots: 2002 2009. Aviat. Space Environ. Med. 2011, 82, 673–682. [Google Scholar] [CrossRef]
- Petrassi, F.A.; Hodkinson, P.D.; Walters, P.L.; Gaydos, S.J. Hypoxic hypoxia at moderate altitudes: Review of the state of the science. Aviat. Space Environ. Med. 2012, 83, 975–984. [Google Scholar] [CrossRef] [PubMed]
- Milledge, J. Hypobaria–High Altitude, Aviation Physiology, and Medicine. In Cotes’ Lung Function; Maynard, R.L., Pearce, S.J., Nemery, B., Wagner, P.D., Cooper, B.G., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020; pp. 615–637. [Google Scholar] [CrossRef]
- Sullivan-Kwantes, W.; Cramer, M.; Bouak, F.; Goodman, L. Environmental Stress in Military Settings. In Handbook of Military Sciences; Sookermany, A.M., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–27. [Google Scholar] [CrossRef]
- Wen, X.; Long, P. Editorial: Neurological dysfunction and diseases in high altitude. Front. Neurol. 2024, 14, 1343786. [Google Scholar] [CrossRef]
- Tarver, W.J.; Volner, K.; Cooper, J.S. Aerospace Pressure Effects. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Kutz, C.J.; Kirby, I.J.; Grover, I.R.; Tanaka, H.L. Aviation Decompression Sickness in Aerospace and Hyperbaric Medicine. Aerosp. Med. Hum. Perform. 2023, 94, 11–17. [Google Scholar] [CrossRef]
- de la Cruz, R.A.; Clemente Fuentes, R.W.; Wonnum, S.J.; Cooper, J.S. Aerospace Decompression Illness. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Yu, X.; Xu, J.; Huang, G.; Zhang, K.; Qing, L.; Liu, W.; Xu, W. Bubble-Induced Endothelial Microparticles Promote Endothelial Dysfunction. PLoS ONE 2017, 12, e0168881. [Google Scholar] [CrossRef]
- Connolly, D.M.; Madden, L.A.; Edwards, V.C.; D’Oyly, T.J.; Harridge, S.D.R.; Smith, T.G.; Lee, V.M. Early Human Pathophysiological Responses to Exertional Hypobaric Decompression Stress. Aerosp. Med. Hum. Perform. 2023, 94, 738–749. [Google Scholar] [CrossRef]
- Connolly, D.; Davagnanam, I.; Wylezinska-Arridge, M.; Mallon, D.; Wastling, S.; Lee, V.M. Brain Magnetic Resonance Imaging Responses to Nonhypoxic Hypobaric Decompression. Aerosp. Med. Hum. Perform. 2024, 95, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Kadry, H.; Noorani, B.; Cucullo, L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 2020, 17, 69. [Google Scholar] [CrossRef] [PubMed]
- Kempuraj, D.; Ahmed, M.E.; Selvakumar, G.P.; Thangavel, R.; Dhaliwal, A.S.; Dubova, I.; Mentor, S.; Premkumar, K.; Saeed, D.; Zahoor, H.; et al. Brain Injury-Mediated Neuroinflammatory Response and Alzheimer’s Disease. Neuroscientist 2020, 26, 134–155. [Google Scholar] [CrossRef]
- Sulhan, S.; Lyon, K.A.; Shapiro, L.A.; Huang, J.H. Neuroinflammation and blood-brain barrier disruption following traumatic brain injury: Pathophysiology and potential therapeutic targets. J. Neurosci. Res. 2020, 98, 19–28. [Google Scholar] [CrossRef]
- McGuire, S.A.; Sherman, P.M.; Brown, A.C.; Robinson, A.Y.; Tate, D.F.; Fox, P.T.; Kochunov, P.V. Hyperintense white matter lesions in 50 high-altitude pilots with neurologic decompression sickness. Aviat. Space Environ. Med. 2012, 83, 1117–1122. [Google Scholar] [CrossRef]
- Jersey, S.L.; Jesinger, R.A.; Palka, P. Brain magnetic resonance imaging anomalies in U-2 pilots with neurological decompression sickness. Aviat. Space Environ. Med. 2013, 84, 3–11. [Google Scholar] [CrossRef]
- McGuire, S.; Sherman, P.; Profenna, L.; Grogan, P.; Sladky, J.; Brown, A.; Robinson, A.; Rowland, L.; Hong, E.; Patel, B.; et al. White matter hyperintensities on MRI in high-altitude U-2 pilots. Neurology 2013, 81, 729–735. [Google Scholar] [CrossRef] [PubMed]
- McGuire, S.A.; Sherman, P.M.; Wijtenburg, S.A.; Rowland, L.M.; Grogan, P.M.; Sladky, J.H.; Robinson, A.Y.; Kochunov, P.V. White matter hyperintensities and hypobaric exposure. Ann. Neurol. 2014, 76, 719–726. [Google Scholar] [CrossRef] [PubMed]
- McGuire, S.A.; Tate, D.F.; Wood, J.; Sladky, J.H.; McDonald, K.; Sherman, P.M.; Kawano, E.S.; Rowland, L.M.; Patel, B.; Wright, S.N.; et al. Lower neurocognitive function in U-2 pilots: Relationship to white matter hyperintensities. Neurology 2014, 83, 638–645. [Google Scholar] [CrossRef]
- McGuire, S.A.; Boone, G.R.; Sherman, P.M.; Tate, D.F.; Wood, J.D.; Patel, B.; Eskandar, G.; Wijtenburg, S.A.; Rowland, L.M.; Clarke, G.D.; et al. White Matter Integrity in High-Altitude Pilots Exposed to Hypobaria. Aerosp. Med. Hum. Perform. 2016, 87, 983–988. [Google Scholar] [CrossRef]
- McGuire, S.A.; Ryan, M.C.; Sherman, P.M.; Sladky, J.H.; Rowland, L.M.; Wijtenburg, S.A.; Hong, L.E.; Kochunov, P.V. White matter and hypoxic hypobaria in humans. Hum. Brain Mapp. 2019, 40, 3165–3173. [Google Scholar] [CrossRef]
- Ottestad, W.; Hansen, T.A.; Ksin, J.I. Hypobaric Decompression and White Matter Hyperintensities: An Evaluation of the NATO Standard. Aerosp. Med. Hum. Perform. 2021, 92, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Sekhon, S.; Lui, F.; Cascella, M. White Matter Lesions. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Steinman, Y.; van den Oord, M.; Frings-Dresen, M.H.W.; Sluiter, J.K. Flight Performance During Exposure to Acute Hypobaric Hypoxia. Aerosp. Med. Hum. Perform. 2017, 88, 760–767. [Google Scholar] [CrossRef] [PubMed]
- Gaur, P.; Prasad, S.; Kumar, B.; Sharma, S.K.; Vats, P. High-altitude hypoxia induced reactive oxygen species generation, signaling, and mitigation approaches. Int. J. Biometeorol. 2021, 65, 601–615. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, J.; Lin, Y.; Li, Y.; Wang, H.; Wang, Z.; Liu, H.; Hu, Y.; Liu, L. Mechanism, prevention and treatment of cognitive impairment caused by high altitude exposure. Front. Physiol. 2023, 14, 1191058. [Google Scholar] [CrossRef] [PubMed]
- Iacono, D.; Murphy, E.K.; Sherman, P.M.; Chapapas, H.; Cerqueira, B.; Christensen, C.; Perl, D.P.; Sladky, J. High altitude is associated with pTau deposition, neuroinflammation, and myelin loss. Sci. Rep. 2022, 12, 6839. [Google Scholar] [CrossRef]
- Kuhn, S.; Sonksen, S.E.; Noble, H.J.; Knopf, H.; Frischmuth, J.; Waldeck, S.; Muller-Forell, W.; Weber, F.; Bressem, L. Incidental Findings in Head and Brain MRI of Military Pilots and Applicants: Consequences for Medical Flight Fitness. Aerosp. Med. Hum. Perform. 2022, 93, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Sherman, P. Warfighter Brain Health In Hypobaric Environments Post Nato Hfm RTG-274. Aerosp. Med. Hum. Perform. 2024, 95, p608. [Google Scholar]
- Sherman, P. Review of the effects of extreme hypobaric environments upon the brain in aviators and high-altitude special operators in the past decade. Aerosp. Med. Hum. Perform. 2024, 95, p608. [Google Scholar]
- Zuidema, T.R.; Huibregtse, M.E.; Kawata, K. Blood Biomarkers May Have Found a New Frontier in Spaceflight. JAMA Neurol. 2022, 79, 632. [Google Scholar] [CrossRef] [PubMed]
- Ghaith, H.S.; Nawar, A.A.; Gabra, M.D.; Abdelrahman, M.E.; Nafady, M.H.; Bahbah, E.I.; Ebada, M.A.; Ashraf, G.M.; Negida, A.; Barreto, G.E. A Literature Review of Traumatic Brain Injury Biomarkers. Mol. Neurobiol. 2022, 59, 4141–4158. [Google Scholar] [CrossRef] [PubMed]
- Kocik, V.I.; Dengler, B.A.; Rizzo, J.A.; Ma Moran, M.; Willis, A.M.; April, M.D.; Schauer, S.G. A Narrative Review of Existing and Developing Biomarkers in Acute Traumatic Brain Injury for Potential Military Deployed Use. Mil. Med. 2024, 189, e1374–e1380. [Google Scholar] [CrossRef]
- Newcombe, V.; Richter, S.; Whitehouse, D.P.; Bloom, B.M.; Lecky, F. Fluid biomarkers and neuroimaging in mild traumatic brain injury: Current uses and potential future directions for clinical use in emergency medicine. Emerg. Med. J. 2023, 40, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Zetterberg, H. Neurofilament Light: A Dynamic Cross-Disease Fluid Biomarker for Neurodegeneration. Neuron 2016, 91, 1–3. [Google Scholar] [CrossRef]
- Oris, C.; Kahouadji, S.; Durif, J.; Bouvier, D.; Sapin, V. S100B, Actor and Biomarker of Mild Traumatic Brain Injury. Int. J. Mol. Sci. 2023, 24, 6602. [Google Scholar] [CrossRef] [PubMed]
- Lange, R.T.; Lippa, S.; Brickell, T.A.; Gill, J.; French, L.M. Serum Tau, Neurofilament Light Chain, Glial Fibrillary Acidic Protein, and Ubiquitin Carboxyl-Terminal Hydrolase L1 Are Associated with the Chronic Deterioration of Neurobehavioral Symptoms after Traumatic Brain Injury. J. Neurotrauma 2023, 40, 482–492. [Google Scholar] [CrossRef]
- Park, Y.; Kc, N.; Paneque, A.; Cole, P.D. Tau, Glial Fibrillary Acidic Protein, and Neurofilament Light Chain as Brain Protein Biomarkers in Cerebrospinal Fluid and Blood for Diagnosis of Neurobiological Diseases. Int. J. Mol. Sci. 2024, 25, 6295. [Google Scholar] [CrossRef]
- Sherman, P.; Sladky, J. Acute and chronic effects of hypobaric exposure upon the brain. IntechOpen 2018, 4, 45–70. [Google Scholar]
- Graham, N.S.; Blissitt, G.; Zimmerman, K.; Orton, L.; Friedland, D.; Coady, E.; Laban, R.; Veleva, E.; Heslegrave, A.J.; Zetterberg, H.; et al. Poor long-term outcomes and abnormal neurodegeneration biomarkers after military traumatic brain injury: The ADVANCE study. J. Neurol. Neurosurg. Psychiatry 2024. [Google Scholar] [CrossRef] [PubMed]
- Garbino, A.; Norcross, J. Evidence Report: Risk of Reduced Crew Health and Performance Due to Decompression Sickness and Hypoxia. 2023. Available online: https://humanresearchroadmap.nasa.gov/ (accessed on 20 December 2024).
- Ramirez, J.; Vartanian, O.; Holmes, M.F.; Palmer, M.; Scott, C.J.M.; Rhind, S.G.; Gray, G.; Black, S.E.; Saary, J. Prevalence and correlates of white matter hyperintensities in royal canadian airforce pilots and aircrew. Cereb. Circ. Cogn. Behav. 2024, 6, 100102. [Google Scholar] [CrossRef]
- Saary, J.; Ramirez, J.; Scott, C.; Gao, F.; Rhind, S.; Vartanian, O.; Gray, G.; Allen, S.; Black, S. Fighter pilots have elevated white matter hyperintensities on mri--but why? Aerosp. Med. Hum. Perform. 2024, 95, p608. [Google Scholar]
- Buonora, J.E.; Mousseau, M.; Jacobowitz, D.M.; Lazarus, R.C.; Yarnell, A.M.; Olsen, C.H.; Pollard, H.B.; Diaz-Arrastia, R.; Latour, L.; Mueller, G.P. Autoimmune Profiling Reveals Peroxiredoxin 6 as a Candidate Traumatic Brain Injury Biomarker. J. Neurotrauma 2015, 32, 1805–1814. [Google Scholar] [CrossRef]
- Di Battista, A.P.; Buonora, J.E.; Rhind, S.G.; Hutchison, M.G.; Baker, A.J.; Rizoli, S.B.; Diaz-Arrastia, R.; Mueller, G.P. Blood Biomarkers in Moderate-To-Severe Traumatic Brain Injury: Potential Utility of a Multi-Marker Approach in Characterizing Outcome. Front. Neurol. 2015, 6, 110. [Google Scholar] [CrossRef]
- Di Battista, A.P.; Moes, K.A.; Shiu, M.Y.; Hutchison, M.G.; Churchill, N.; Thomas, S.G.; Rhind, S.G. High-Intensity Interval Training Is Associated With Alterations in Blood Biomarkers Related to Brain Injury. Front. Physiol. 2018, 9, 1367. [Google Scholar] [CrossRef] [PubMed]
- Di Battista, A.P.; Rhind, S.G.; Baker, A.J.; Jetly, R.; Debad, J.D.; Richards, D.; Hutchison, M.G. An investigation of neuroinjury biomarkers after sport-related concussion: From the subacute phase to clinical recovery. Brain Inj. 2018, 32, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Messing, A.; Brenner, M. GFAP at 50. ASN Neuro 2020, 12, 1759091420949680. [Google Scholar] [CrossRef] [PubMed]
- Abdelhak, A.; Foschi, M.; Abu-Rumeileh, S.; Yue, J.K.; D’Anna, L.; Huss, A.; Oeckl, P.; Ludolph, A.C.; Kuhle, J.; Petzold, A.; et al. Blood GFAP as an emerging biomarker in brain and spinal cord disorders. Nat. Rev. Neurol. 2022, 18, 158–172. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Shin, K.Y.; Chang, K.A. GFAP as a Potential Biomarker for Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Cells 2023, 12, 1309. [Google Scholar] [CrossRef]
- Zheng, X.; Yang, J.; Hou, Y.; Shi, X.; Liu, K. Prediction of clinical progression in nervous system diseases: Plasma glial fibrillary acidic protein (GFAP). Eur. J. Med. Res. 2024, 29, 51. [Google Scholar] [CrossRef]
- Abou-Donia, M.B.; Abou-Donia, M.M.; ElMasry, E.M.; Monro, J.A.; Mulder, M.F. Autoantibodies to nervous system-specific proteins are elevated in sera of flight crew members: Biomarkers for nervous system injury. J. Toxicol. Environ. Health A 2013, 76, 363–380. [Google Scholar] [CrossRef] [PubMed]
- Leyns, C.E.G.; Holtzman, D.M. Glial contributions to neurodegeneration in tauopathies. Mol. Neurodegener. 2017, 12, 50. [Google Scholar] [CrossRef] [PubMed]
- Ozcelikay-Akyildiz, G.; Karadurmus, L.; Cetinkaya, A.; Uludag, I.; Ozcan, B.; Unal, M.A.; Sezginturk, M.K.; Ozkan, S.A. The Evaluation of Clinical Applications for the Detection of the Alzheimer’s Disease Biomarker GFAP. Crit. Rev. Anal. Chem. 2024, 1–12. [Google Scholar] [CrossRef]
- Stacey, B.S.; Hoiland, R.L.; Caldwell, H.G.; Howe, C.A.; Vermeulen, T.; Tymko, M.M.; Vizcardo-Galindo, G.A.; Bermudez, D.; Figueroa-Mujíica, R.J.; Gasho, C.; et al. Lifelong exposure to high-altitude hypoxia in humans is associated with improved redox homeostasis and structural-functional adaptations of the neurovascular unit. J. Physiol. 2023, 601, 1095–1120. [Google Scholar] [CrossRef] [PubMed]
- Bakker-Dyos, J.; Vanstone, S.; Mellor, A.J. High altitude adaptation and illness: Military implications. J. R. Nav. Med. Serv. 2016, 102, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Hossain, I.; Marklund, N.; Czeiter, E.; Hutchinson, P.; Buki, A. Blood biomarkers for traumatic brain injury: A narrative review of current evidence. Brain Spine 2024, 4, 102735. [Google Scholar] [CrossRef]
- Mastandrea, P.; Mengozzi, S.; Bernardini, S. Systematic review and meta-analysis of observational studies evaluating glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCHL1) as blood biomarkers of mild acute traumatic brain injury (mTBI) or sport-related concussion (SRC) in adult subjects. Diagnosis 2024. [Google Scholar] [CrossRef]
- Barro, C.; Chitnis, T.; Weiner, H.L. Blood neurofilament light: A critical review of its application to neurologic disease. Ann. Clin. Transl. Neurol. 2020, 7, 2508–2523. [Google Scholar] [CrossRef]
- Trifilio, E.; Bottari, S.; McQuillan, L.E.; Barton, D.J.; Lamb, D.G.; Robertson, C.; Rubenstein, R.; Wang, K.K.; Wagner, A.K.; Williamson, J.B. Temporal Profile of Serum Neurofilament Light (NF-L) and Heavy (pNF-H) Level Associations With 6-Month Cognitive Performance in Patients With Moderate-Severe Traumatic Brain Injury. J. Head. Trauma. Rehabil. 2024, 39, E470–E480. [Google Scholar] [CrossRef]
- Moore, E.E.; Hohman, T.J.; Badami, F.S.; Pechman, K.R.; Osborn, K.E.; Acosta, L.M.Y.; Bell, S.P.; Babicz, M.A.; Gifford, K.A.; Anderson, A.W.; et al. Neurofilament relates to white matter microstructure in older adults. Neurobiol. Aging 2018, 70, 233–241. [Google Scholar] [CrossRef]
- Hermesdorf, M.; Wulms, N.; Maceski, A.; Leppert, D.; Benkert, P.; Wiendl, H.; Kuhle, J.; Berger, K. Serum neurofilament light and white matter characteristics in the general population: A longitudinal analysis. Geroscience 2024, 46, 463–472. [Google Scholar] [CrossRef]
- Rhind, S.G.; Tenn, C.; Nakashima, A.; Vartanian, O. Scientific Letter—Increased Blood Neurological Injury Biomarkers in CAF Breacher Instructors and Range Staff exposed to Repetitive Low-Level Explosive Blasts DRDC-RDDC-2017-L364; DRDC TRC: Toronto, ON, Canada, 2017; p. 7. [Google Scholar]
- Farragher, C.D.; Ku, Y.; Powers, J.E. The Potential Role of Neurofilament Light in Mild Traumatic Brain Injury Diagnosis: A Systematic Review. Cureus 2022, 14, e31301. [Google Scholar] [CrossRef]
- Khalil, M.; Teunissen, C.E.; Otto, M.; Piehl, F.; Sormani, M.P.; Gattringer, T.; Barro, C.; Kappos, L.; Comabella, M.; Fazekas, F.; et al. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol. 2018, 14, 577–589. [Google Scholar] [CrossRef]
- Wang, K.K.W.; Barton, D.J.; McQuillan, L.E.; Kobeissy, F.; Cai, G.; Xu, H.; Yang, Z.; Trifilio, E.; Williamson, J.B.; Rubenstein, R.; et al. Parallel Cerebrospinal Fluid and Serum Temporal Profile Assessment of Axonal Injury Biomarkers Neurofilament-Light Chain and Phosphorylated Neurofilament-Heavy Chain: Associations With Patient Outcome in Moderate-Severe Traumatic Brain Injury. J. Neurotrauma 2024, 41, 1609–1627. [Google Scholar] [CrossRef] [PubMed]
- Yuan, A.; Nixon, R.A. Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies. Front. Neurosci. 2021, 15, 689938. [Google Scholar] [CrossRef] [PubMed]
- Walsh, P.; Sudre, C.H.; Fiford, C.M.; Ryan, N.S.; Lashley, T.; Frost, C.; Barnes, J.; Investigators, A. The age-dependent associations of white matter hyperintensities and neurofilament light in early- and late-stage Alzheimer’s disease. Neurobiol. Aging 2021, 97, 10–17. [Google Scholar] [CrossRef]
- Khalil, M.; Pirpamer, L.; Hofer, E.; Voortman, M.M.; Barro, C.; Leppert, D.; Benkert, P.; Ropele, S.; Enzinger, C.; Fazekas, F.; et al. Serum neurofilament light levels in normal aging and their association with morphologic brain changes. Nat. Commun. 2020, 11, 812. [Google Scholar] [CrossRef]
- Holmegaard, L.; Jensen, C.; Pedersen, A.; Blomstrand, C.; Blennow, K.; Zetterberg, H.; Jood, K.; Jern, C. Circulating levels of neurofilament light chain as a biomarker of infarct and white matter hyperintensity volumes after ischemic stroke. Sci. Rep. 2024, 14, 16180. [Google Scholar] [CrossRef]
- Lim, D.; Park, J.; Choi, W.H.; Bang, D.H.; Jung, O.M.; Kang, S. Asymptomatic brain lesions in pilots: A comparative study with non-flying personnel using brain MRI. Aviat. Space Environ. Med. 2012, 83, 865–871. [Google Scholar] [CrossRef]
- Connolly, D.M.; Lupa, H.T. Prospective Study of White Matter Health for an Altitude Chamber Research Program. Aerosp. Med. Hum. Perform. 2021, 92, 215–222. [Google Scholar] [CrossRef]
- Chen, X.; Chu, Q.; Meng, Q.; Xu, P.; Zhang, S. Alterations in white matter fiber tracts and their correlation with flying cadet behavior. Cereb. Cortex 2024, 34, bhad548. [Google Scholar] [CrossRef]
- Prins, N.D.; Scheltens, P. White matter hyperintensities, cognitive impairment and dementia: An update. Nat. Rev. Neurol. 2015, 11, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Calcetas, A.T.; Thomas, K.R.; Edmonds, E.C.; Holmqvist, S.L.; Edwards, L.; Bordyug, M.; Delano-Wood, L.; Brickman, A.M.; Bondi, M.W.; Bangen, K.J.; et al. Increased regional white matter hyperintensity volume in objectively-defined subtle cognitive decline and mild cognitive impairment. Neurobiol. Aging 2022, 118, 1–8. [Google Scholar] [CrossRef]
- Guo, W.; Shi, J. White matter hyperintensities volume and cognition: A meta-analysis. Front. Aging Neurosci. 2022, 14, 949763. [Google Scholar] [CrossRef] [PubMed]
- Erdem, I.; Yildiz, S.; Uzun, G.; Sonmez, G.; Senol, M.G.; Mutluoglu, M.; Mutlu, H.; Oner, B. Cerebral white-matter lesions in asymptomatic military divers. Aviat. Space Environ. Med. 2009, 80, 2–4. [Google Scholar] [CrossRef]
- Alperin, N.; Bagci, A.M.; Lee, S.H. Spaceflight-induced changes in white matter hyperintensity burden in astronauts. Neurology 2017, 89, 2187–2191. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Q.; Wang, J.; Liu, J.; Zhang, W.; Qi, S.; Xu, H.; Li, C.; Zhang, J.; Zhao, H.; et al. Cognitive and neuroimaging changes in healthy immigrants upon relocation to a high altitude: A panel study. Hum. Brain Mapp. 2017, 38, 3865–3877. [Google Scholar] [CrossRef]
- McGregor, H.R.; Hupfeld, K.E.; Pasternak, O.; Beltran, N.E.; De Dios, Y.E.; Bloomberg, J.J.; Wood, S.J.; Mulavara, A.P.; Riascos, R.F.; Reuter-Lorenz, P.A.; et al. Impacts of spaceflight experience on human brain structure. Sci. Rep. 2023, 13, 7878. [Google Scholar] [CrossRef]
- Kartau, M.; Melkas, S.; Kartau, J.; Arola, A.; Laakso, H.; Pitkanen, J.; Lempiainen, J.; Koikkalainen, J.; Lotjonen, J.; Korvenoja, A.; et al. Neurofilament light level correlates with brain atrophy, and cognitive and motor performance. Front. Aging Neurosci. 2022, 14, 939155. [Google Scholar] [CrossRef] [PubMed]
- Dhana, A.; DeCarli, C.; Dhana, K.; Desai, P.; Wilson, R.S.; Evans, D.A.; Rajan, K.B. White matter hyperintensity, neurofilament light chain, and cognitive decline. Ann. Clin. Transl. Neurol. 2022, 10, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Nabizadeh, F.; Balabandian, M.; Rostami, M.R.; Kankam, S.B.; Ranjbaran, F.; Pourhamzeh, M.; Alzheimer’s Disease Neuroimaging Initiative. Plasma neurofilament light levels correlate with white matter damage prior to Alzheimer’s disease: Results from ADNI. Aging Clin. Exp. Res. 2022, 34, 2363–2372. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J. The human brain in a high altitude natural environment: A review. Front. Hum. Neurosci. 2022, 16, 915995. [Google Scholar] [CrossRef]
- Xue, M.; Huang, X.; Zhu, T.; Zhang, L.; Yang, H.; Shen, Y.; Feng, L. Unveiling the Significance of Peroxiredoxin 6 in Central Nervous System Disorders. Antioxidants 2024, 13, 449. [Google Scholar] [CrossRef]
- Fisher, A.B. Peroxiredoxin 6: A Bifunctional Enzyme with Glutathione Peroxidase and Phospholipase A2 Activities. Antioxid. Redox Signal. 2010, 15, 831–844. [Google Scholar] [CrossRef]
- Lien, Y.C.; Feinstein, S.I.; Dodia, C.; Fisher, A.B. The roles of peroxidase and phospholipase A2 activities of peroxiredoxin 6 in protecting pulmonary microvascular endothelial cells against peroxidative stress. Antioxid. Redox Signal 2012, 16, 440–451. [Google Scholar] [CrossRef]
- Shanshan, Y.; Beibei, J.; Li, T.; Minna, G.; Shipeng, L.; Li, P.; Yong, Z. Phospholipase A2 of Peroxiredoxin 6 Plays a Critical Role in Cerebral Ischemia/Reperfusion Inflammatory Injury. Front. Cell Neurosci. 2017, 11, 99. [Google Scholar] [CrossRef]
- Hou, J.Y.; Zhou, X.L.; Wang, X.Y.; Liang, J.; Xue, Q. Peroxiredoxin-6 Released by Astrocytes Contributes to Neuroapoptosis During Ischemia. Neuroscience 2023, 512, 59–69. [Google Scholar] [CrossRef]
- Sharma, P.; Pandey, P.; Kumari, P.; Sharma, N.K. Introduction to High Altitude and Hypoxia. In High Altitude Sickness—Solutions from Genomics, Proteomics and Antioxidant Interventions; Sharma, N.K., Arya, A., Eds.; Springer Nature: Singapore, 2022; pp. 1–17. [Google Scholar] [CrossRef]
- Turovsky, E.A.; Varlamova, E.G.; Plotnikov, E.Y. Mechanisms Underlying the Protective Effect of the Peroxiredoxin-6 Are Mediated via the Protection of Astrocytes during Ischemia/Reoxygenation. Int. J. Mol. Sci. 2021, 22, 8805. [Google Scholar] [CrossRef] [PubMed]
- Power, J.H.; Asad, S.; Chataway, T.K.; Chegini, F.; Manavis, J.; Temlett, J.A.; Jensen, P.H.; Blumbergs, P.C.; Gai, W.P. Peroxiredoxin 6 in human brain: Molecular forms, cellular distribution and association with Alzheimer’s disease pathology. Acta Neuropathol. 2008, 115, 611–622. [Google Scholar] [CrossRef]
- Pham, K.; Parikh, K.; Heinrich, E.C. Hypoxia and Inflammation: Insights From High-Altitude Physiology. Front. Physiol. 2021, 12, 676782. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Zhang, Y.; Chen, X.; Zhang, J. The Roles of Peroxiredoxin 6 in Brain Diseases. Mol. Neurobiol. 2021, 58, 4348–4364. [Google Scholar] [CrossRef]
- Netzer, N.C.; Jaekel, H.; Popp, R.; Gostner, J.M.; Decker, M.; Eisendle, F.; Turner, R.; Netzer, P.; Patzelt, C.; Steurer, C.; et al. Oxidative Stress Reaction to Hypobaric-Hyperoxic Civilian Flight Conditions. Biomolecules 2024, 14, 481. [Google Scholar] [CrossRef] [PubMed]
- Gangwar, A.; Paul, S.; Ahmad, Y.; Bhargava, K. Intermittent hypoxia modulates redox homeostasis, lipid metabolism associated inflammatory processes and redox post-translational modifications: Benefits at high altitude. Sci. Rep. 2020, 10, 7899. [Google Scholar] [CrossRef] [PubMed]
- Mhatre, S.D.; Iyer, J.; Puukila, S.; Paul, A.M.; Tahimic, C.G.T.; Rubinstein, L.; Lowe, M.; Alwood, J.S.; Sowa, M.B.; Bhattacharya, S.; et al. Neuro-consequences of the spaceflight environment. Neurosci. Biobehav. Rev. 2022, 132, 908–935. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, T.; Motoi, M.; Toyoshima, H.; Kishida, F.; Shin, S.; Katsumura, T.; Nakayama, K.; Oota, H.; Higuchi, S.; Watanuki, S.; et al. Endocrine, inflammatory and immune responses and individual differences in acute hypobaric hypoxia in lowlanders. Sci. Rep. 2023, 13, 12659. [Google Scholar] [CrossRef]
- Asuni, A.A.; Guridi, M.; Sanchez, S.; Sadowski, M.J. Antioxidant peroxiredoxin 6 protein rescues toxicity due to oxidative stress and cellular hypoxia in vitro, and attenuates prion-related pathology in vivo. Neurochem. Int. 2015, 90, 152–165. [Google Scholar] [CrossRef] [PubMed]
- Shykoff, B.E.; Lee, R.L. Risks from Breathing Elevated Oxygen. Aerosp. Med. Hum. Perform. 2019, 90, 1041–1049. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, Y.; Wang, Z.; Chen, Y.; Li, R. Intermittent hyperbaric oxygen exposure mobilizing peroxiredoxin 6 to prevent oxygen toxicity. J. Physiol. Sci. 2019, 69, 779–790. [Google Scholar] [CrossRef]
- Goedert, M.; Crowther, R.A.; Scheres, S.H.; Spillantini, M.G. Tau and neurodegeneration. Cytoskeleton 2024, 81, 95–102. [Google Scholar] [CrossRef]
- Blanks, W.; Hanshaw, M.; Perez-Chadid, D.A.; Lucke-Wold, B. Emerging frontiers in Chronic Traumatic Encephalopathy: Early diagnosis and implications for neurotherapeutic interventions. Expert. Rev. Neurother. 2024, 24, 953–961. [Google Scholar] [CrossRef] [PubMed]
- McKee, A.C.; Stein, T.D.; Huber, B.R.; Crary, J.F.; Bieniek, K.; Dickson, D.; Alvarez, V.E.; Cherry, J.D.; Farrell, K.; Butler, M.; et al. Chronic traumatic encephalopathy (CTE): Criteria for neuropathological diagnosis and relationship to repetitive head impacts. Acta Neuropathol. 2023, 145, 371–394. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yu, Y. Tau and neuroinflammation in Alzheimer’s disease: Interplay mechanisms and clinical translation. J. Neuroinflammation 2023, 20, 165. [Google Scholar] [CrossRef]
- Hanrahan, J.G.; Burford, C.; Nagappan, P.; Adegboyega, G.; Rajkumar, S.; Kolias, A.; Helmy, A.; Hutchinson, P.J. Is dementia more likely following traumatic brain injury? A systematic review. J. Neurol. 2023, 270, 3022–3051. [Google Scholar] [CrossRef]
- Behzadi, F.; Luy, D.D.; Zywiciel, J.F.; Schaible, P.A.; Puccio, A.M.; Germanwala, A.V. A Systematic Review and Meta-Analysis of Tau Protein and Other Major Biomarkers that Predict Unfavorable Outcomes in Severe Traumatic Brain Injury. 2024; preprint. [Google Scholar]
- Vile, A.R.; Atkinson, L. Chronic Traumatic Encephalopathy: The cellular sequela to repetitive brain injury. J. Clin. Neurosci. 2017, 41, 24–29. [Google Scholar] [CrossRef]
- Holper, S.; Watson, R.; Yassi, N. Tau as a Biomarker of Neurodegeneration. Int. J. Mol. Sci. 2022, 23, 7307. [Google Scholar] [CrossRef] [PubMed]
- Pena, E.; San Martin-Salamanca, R.; El Alam, S.; Flores, K.; Arriaza, K. Tau Protein Alterations Induced by Hypobaric Hypoxia Exposure. Int. J. Mol. Sci. 2024, 25, 889. [Google Scholar] [CrossRef]
- Park, J.; Jung, S.; Kim, S.M.; Park, I.Y.; Bui, N.A.; Hwang, G.S.; Han, I.O. Repeated hypoxia exposure induces cognitive dysfunction, brain inflammation, and amyloidbeta/p-Tau accumulation through reduced brain O-GlcNAcylation in zebrafish. J. Cereb. Blood Flow. Metab. 2021, 41, 3111–3126. [Google Scholar] [CrossRef]
- Ruchika, F.; Shah, S.; Neupane, D.; Vijay, R.; Mehkri, Y.; Lucke-Wold, B. Understanding the Molecular Progression of Chronic Traumatic Encephalopathy in Traumatic Brain Injury, Aging and Neurodegenerative Disease. Int. J. Mol. Sci. 2023, 24, 1847. [Google Scholar] [CrossRef]
- Rosén, A.; Gennser, M.; Oscarsson, N.; Kvarnström, A.; Sandström, G.; Seeman-Lodding, H.; Simrén, J.; Zetterberg, H. Protein tau concentration in blood increases after SCUBA diving: An observational study. Eur. J. Appl. Physiol. 2022, 122, 993–1005. [Google Scholar] [CrossRef] [PubMed]
- Bruebake, M.; Razmara, A.; Mason, S.; Osborne, S.; Tarver, W.; Tsung, A. Brain biomarkers to understand spaceflight impact. Aerosp. Med. Hum. Perform. 2024, 95, p511. [Google Scholar]
- Sharma, T.L.; Kerrigan, J.M.; McArthur, D.L.; Bickart, K.; Broglio, S.P.; McAllister, T.W.; McCrea, M.; Giza, C.C.; Investigators, C.C. Flying After Concussion and Symptom Recovery in College Athletes and Military Cadets. JAMA Netw. Open 2020, 3, e2025082. [Google Scholar] [CrossRef]
- Dukes, S.F.; Bridges, E.; Johantgen, M. Occurrence of secondary insults of traumatic brain injury in patients transported by critical care air transport teams from Iraq/Afghanistan: 2003–2006. Mil. Med. 2013, 178, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Maddry, J.K.; Arana, A.A.; Reeves, L.K.; Mora, A.G.; Gutierrez, X.E.; Perez, C.A.; Ng, P.C.; Griffiths, S.A.; Bebarta, V.S. Patients With Traumatic Brain Injury Transported by Critical Care Air Transport Teams: The Influence of Altitude and Oxygenation during Transport. Mil. Med. 2020, 185, e1646–e1653. [Google Scholar] [CrossRef]
- Goodman, M.D.; Makley, A.T.; Lentsch, A.B.; Barnes, S.L.; Dorlac, G.R.; Dorlac, W.C.; Johannigman, J.A.; Pritts, T.A. Traumatic brain injury and aeromedical evacuation: When is the brain fit to fly? J. Surg. Res. 2010, 164, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Ojo, J.O.; Mouzon, B.; Algamal, M.; Leary, P.; Lynch, C.; Abdullah, L.; Evans, J.; Mullan, M.; Bachmeier, C.; Stewart, W. Chronic repetitive mild traumatic brain injury results in reduced cerebral blood flow, axonal injury, gliosis, and increased T-tau and tau oligomers. J. Neuropathol. Exp. Neurol. 2016, 75, 636–655. [Google Scholar] [CrossRef]
- Wang, X.; Shi, Y.; Chen, Y.; Gao, Y.; Wang, T.; Li, Z.; Wang, Y. Blood-Brain Barrier Breakdown is a Sensitive Biomarker of Cognitive and Language Impairment in Patients with White Matter Hyperintensities. Neurol. Ther. 2023, 12, 1745–1758. [Google Scholar] [CrossRef]
- Xu, W.; Bai, Q.; Dong, Q.; Guo, M.; Cui, M. Blood-Brain Barrier Dysfunction and the Potential Mechanisms in Chronic Cerebral Hypoperfusion Induced Cognitive Impairment. Front. Cell Neurosci. 2022, 16, 870674. [Google Scholar] [CrossRef] [PubMed]
- Kerkhofs, D.; Wong, S.M.; Zhang, E.; Staals, J.; Jansen, J.F.A.; van Oostenbrugge, R.J.; Backes, W.H. Baseline Blood-Brain Barrier Leakage and Longitudinal Microstructural Tissue Damage in the Periphery of White Matter Hyperintensities. Neurology 2021, 96, e2192–e2200. [Google Scholar] [CrossRef]
- Su, R.; Jia, S.; Zhang, N.; Wang, Y.; Li, H.; Zhang, D.; Ma, H.; Su, Y. The effects of long-term high-altitude exposure on cognition: A meta-analysis. Neurosci. Biobehav. Rev. 2024, 161, 105682. [Google Scholar] [CrossRef]
- Johnstone, D.M.; Mitrofanis, J.; Stone, J. The brain’s weakness in the face of trauma: How head trauma causes the destruction of the brain. Front. Neurosci. 2023, 17, 1141568. [Google Scholar] [CrossRef] [PubMed]
Variable 1 | Aviators (n = 48) | Controls (n = 48) | p-Value * |
---|---|---|---|
Age, years | 39.0 ± 11.9 | 35.7 ± 6.3 | 0.074 |
Sex, n (%) male | 48 (100%) | 48 (100%) | – |
Mass, kg | 85.1 ± 9.1 | 83.8. ± 7.4 | 0.444 |
BMI, kg/m2 | 26.8 ± 2.9 | 25.4 ± 3.1 | 0.515 |
Total Flight Time, hours | 2638.6 ± 376.0 | – | – |
Annual Flight Time, hours | 106.7 ± 83.1 | – | – |
High Performance Flight, hours | 2088.2 ± 282.7 | – | – |
Concussion, n (%) | 3 (6.2) | 2 (4.2) | 0.416 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rhind, S.G.; Shiu, M.Y.; Vartanian, O.; Allen, S.; Palmer, M.; Ramirez, J.; Gao, F.; Scott, C.J.M.; Homes, M.F.; Gray, G.; et al. Neurological Biomarker Profiles in Royal Canadian Air Force (RCAF) Pilots and Aircrew. Brain Sci. 2024, 14, 1296. https://doi.org/10.3390/brainsci14121296
Rhind SG, Shiu MY, Vartanian O, Allen S, Palmer M, Ramirez J, Gao F, Scott CJM, Homes MF, Gray G, et al. Neurological Biomarker Profiles in Royal Canadian Air Force (RCAF) Pilots and Aircrew. Brain Sciences. 2024; 14(12):1296. https://doi.org/10.3390/brainsci14121296
Chicago/Turabian StyleRhind, Shawn G., Maria Y. Shiu, Oshin Vartanian, Shamus Allen, Miriam Palmer, Joel Ramirez, Fuqiang Gao, Christopher J. M. Scott, Meissa F. Homes, Gary Gray, and et al. 2024. "Neurological Biomarker Profiles in Royal Canadian Air Force (RCAF) Pilots and Aircrew" Brain Sciences 14, no. 12: 1296. https://doi.org/10.3390/brainsci14121296
APA StyleRhind, S. G., Shiu, M. Y., Vartanian, O., Allen, S., Palmer, M., Ramirez, J., Gao, F., Scott, C. J. M., Homes, M. F., Gray, G., Black, S. E., & Saary, J. (2024). Neurological Biomarker Profiles in Royal Canadian Air Force (RCAF) Pilots and Aircrew. Brain Sciences, 14(12), 1296. https://doi.org/10.3390/brainsci14121296