First Description of the Role of the Relationship Between Serum Amyloid P Components and Nuclear Factors/Pro-Cytokines During Critical Periods of Toxoplasmic Encephalitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animal Infection Model and Experimental Procedures
2.3. Necropsy and Rapid Determination of Tissue Cysts
2.4. Histopathological Examination
2.5. Immunoperoxidase Examination
2.6. Total RNA Extraction and cDNA Synthesis
2.7. Relative Quantification of Gene Expression
2.8. Statistical Analysis
3. Results
3.1. Histopathological Findings
3.2. Immunoperoxidase Findings
3.3. mRNA Gene Expression Findings
3.3.1. SAP mRNA Expression
3.3.2. NF-κB mRNA Expression
3.3.3. C3 mRNA Expression
3.3.4. IL-1β mRNA Expression
3.3.5. Casp 1 mRNA Expression
3.3.6. TNF-α mRNA Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Montoya, J.G.; Liesenfeld, O. Toxoplasmosis. Lancet 2004, 363, 1965–1976. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P.; Beattie, C.P. Toxoplasmosis of Animals and Man; CRC Press: Boca Raton, FL, USA, 1988; pp. 1–220. [Google Scholar]
- Radke, J.B.; Worth, D.; Hong, D.; Huang, S.; Sullivan, W.J., Jr.; Wilson, E.H.; White, M.W. Transcriptional repression by ApiAP2 factors is central to chronic toxoplasmosis. PLoS Pathog. 2018, 14, e1007035. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.P.; Radke, J.B.; White, M.W. Opposing Transcriptional Mechanisms Regulate Toxoplasma Development. mSphere 2017, 2, e00347-16. [Google Scholar] [CrossRef] [PubMed]
- David, C.N.; Frias, E.S.; Szu, J.I.; Vieira, P.A.; Hubbard, J.A.; Lovelace, J.; Michael, M.; Worth, D.; McGovern, K.E.; Ethell, I.M.; et al. GLT-1-Dependent Disruption of CNS Glutamate Homeostasis and Neuronal Function by the Protozoan Parasite Toxoplasma gondii. PLoS Pathog. 2016, 12, e1005643. [Google Scholar] [CrossRef]
- Graham, A.K.; Fong, C.; Naqvi, A.; Lu, J.Q. Toxoplasmosis of the central nervous system: Manifestations vary with immune responses. J. Neurol. Sci. 2021, 420, 117223. [Google Scholar] [CrossRef]
- Egorov, A.I.; Converse, R.R.; Griffin, S.M.; Styles, J.N.; Sams, E.; Hudgens, E.; Wade, T.J. Latent Toxoplasma gondii infections are associated with elevated biomarkers of inflammation and vascular injury. BMC Infect. Dis. 2021, 21, 188. [Google Scholar] [CrossRef]
- Dincel, G.C.; Alouffi, A.; Al Olayan, M.E.; Tellez-Isaias, G.; El-Ashram, S. Neuroimmunopathology in Toxoplasmic Encephalitis; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Lu, J.; Marjon, K.D.; Mold, C.; Du Clos, T.W.; Sun, P.D. Pentraxins and Fc receptors. Immunol. Rev. 2012, 250, 230–238. [Google Scholar] [CrossRef]
- Kalaria, R.N.; Galloway, P.G.; Perry, G. Widespread serum amyloid P immunoreactivity in cortical amyloid deposits and the neurofibrillary pathology of Alzheimer’s disease and other degenerative disorders. Neuropathol. Appl. Neurobiol. 1991, 17, 189–201. [Google Scholar] [CrossRef]
- Veerhuis, R.; Boshuizen, R.S.; Morbin, M.; Mazzoleni, G.; Hoozemans, J.J.; Langedijk, J.P.; Tagliavini, F.; Langeveld, J.P.; Eikelenboom, P. Activation of human microglia by fibrillar prion protein-related peptides is enhanced by amyloid-associated factors SAP and C1q. Neurobiol. Dis. 2005, 19, 273–282. [Google Scholar] [CrossRef]
- Karin, M.; Ben-Neriah, Y. Phosphorylation meets ubiquitination: The control of NF-[kappa]B activity. Annu. Rev. Immunol. 2000, 18, 621–663. [Google Scholar] [CrossRef]
- Laflamme, N.; Lacroix, S.; Rivest, S. An essential role of interleukin-1beta in mediating NF-kappaB activity and COX-2 transcription in cells of the blood-brain barrier in response to a systemic and localized inflammation but not during endotoxemia. J. Neurosci. Off. J. Soc. Neurosci. 1999, 19, 10923–10930. [Google Scholar] [CrossRef] [PubMed]
- Tolosa, L.; Caraballo-Miralles, V.; Olmos, G.; Lladó, J. TNF-α potentiates glutamate-induced spinal cord motoneuron death via NF-κB. Mol. Cell. Neurosci. 2011, 46, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Liu, D.; Fu, T.; Jiang, W.; Qiu, M.; Xiao, X.; Xu, J.; Feng, Y.; Li, D.; Zeng, H. NF-κB mediates early blood-brain barrier disruption in a rat model of traumatic shock. J. Trauma Acute Care Surg. 2019, 86, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Breder, C.D.; Dinarello, C.A.; Saper, C.B. Interleukin-1 immunoreactive innervation of the human hypothalamus. Science 1988, 240, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Martinon, F.; Mayor, A.; Tschopp, J. The inflammasomes: Guardians of the body. Annu. Rev. Immunol. 2009, 27, 229–265. [Google Scholar] [CrossRef]
- Martinon, F.; Burns, K.; Tschopp, J. The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 2002, 10, 417–426. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Z.; Wei, X.; Han, H.; Meng, X.; Zhang, Y.; Shi, W.; Li, F.; Xin, T.; Pang, Q.; et al. NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2014, 34, 660–667. [Google Scholar] [CrossRef]
- Lai, A.Y.; Swayze, R.D.; El-Husseini, A.; Song, C. Interleukin-1 beta modulates AMPA receptor expression and phosphorylation in hippocampal neurons. J. Neuroimmunol. 2006, 175, 97–106. [Google Scholar] [CrossRef]
- Centonze, D.; Muzio, L.; Rossi, S.; Cavasinni, F.; De Chiara, V.; Bergami, A.; Musella, A.; D’Amelio, M.; Cavallucci, V.; Martorana, A.; et al. Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J. Neurosci. Off. J. Soc. Neurosci. 2009, 29, 3442–3452. [Google Scholar] [CrossRef]
- Lofrumento, D.D.; Saponaro, C.; Cianciulli, A.; De Nuccio, F.; Mitolo, V.; Nicolardi, G.; Panaro, M.A. MPTP-induced neuroinflammation increases the expression of pro-inflammatory cytokines and their receptors in mouse brain. Neuroimmunomodulation 2011, 18, 79–88. [Google Scholar] [CrossRef]
- Atmaca, H.T.; Kul, O.; Karakuş, E.; Terzi, O.S.; Canpolat, S.; Anteplioğlu, T. Astrocytes, microglia/macrophages, and neurons expressing Toll-like receptor 11 contribute to innate immunity against encephalitic Toxoplasma gondii infection. Neuroscience 2014, 269, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Dincel, G.C. First description of enhanced expression of glia maturation factor-beta in experimental toxoplasmic encephalitis. J. Int. Med. Res. 2017, 45, 1670–1679. [Google Scholar] [CrossRef] [PubMed]
- Dincel, G.C.; Atmaca, H.T. Nitric oxide production increases during Toxoplasma gondii encephalitis in mice. Exp. Parasitol. 2015, 156, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Wilcockson, D.C.; Campbell, S.J.; Anthony, D.C.; Perry, V.H. The systemic and local acute phase response following acute brain injury. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2002, 22, 318–326. [Google Scholar] [CrossRef]
- Spandidos, A.; Wang, X.; Wang, H.; Seed, B. PrimerBank: A resource of human and mouse PCR primer pairs for gene expression detection and quantification. Nucleic Acids Res. 2010, 38, D792–D799. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Halonen, S.K.; Weiss, L.M. Toxoplasmosis. Handb. Clin. Neurol. 2013, 114, 125–145. [Google Scholar] [CrossRef]
- Pereira-Chioccola, V.L.; Vidal, J.E.; Su, C. Toxoplasma gondii infection and cerebral toxoplasmosis in HIV-infected patients. Future Microbiol. 2009, 4, 1363–1379. [Google Scholar] [CrossRef]
- Elsheikha, H.M. Congenital toxoplasmosis: Priorities for further health promotion action. Public Health 2008, 122, 335–353. [Google Scholar] [CrossRef]
- Dincel, G.C.; Atmaca, H.T. Role of oxidative stress in the pathophysiology of Toxoplasma gondii infection. Int. J. Immunopathol. Pharmacol. 2016, 29, 226–240. [Google Scholar] [CrossRef]
- Dincel, G.C.; Atmaca, H.T. Increased expressions of ADAMTS-13 and apoptosis contribute to neuropathology during Toxoplasma gondii encephalitis in mice. Neuropathol. Off. J. Jpn. Soc. Neuropathol. 2016, 36, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Urbányi, Z.; Lakics, V.; Erdö, S.L. Serum amyloid P component-induced cell death in primary cultures of rat cerebral cortex. Eur. J. Pharmacol. 1994, 270, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Urbányi, Z.; László, L.; Tomasi, T.B.; Tóth, E.; Mekes, E.; Sass, M.; Pázmány, T. Serum amyloid P component induces neuronal apoptosis and beta-amyloid immunoreactivity. Brain Res. 2003, 988, 69–77. [Google Scholar] [CrossRef]
- Urbányi, Z.; Sass, M.; Laszy, J.; Takács, V.; Gyertyán, I.; Pázmány, T. Serum amyloid P component induces TUNEL-positive nuclei in rat brain after intrahippocampal administration. Brain Res. 2007, 1145, 221–226. [Google Scholar] [CrossRef]
- Inforzato, A.; Doni, A.; Barajon, I.; Leone, R.; Garlanda, C.; Bottazzi, B.; Mantovani, A. PTX3 as a paradigm for the interaction of pentraxins with the complement system. Semin. Immunol. 2013, 25, 79–85. [Google Scholar] [CrossRef]
- Morris, K.R.; Lutz, R.D.; Choi, H.S.; Kamitani, T.; Chmura, K.; Chan, E.D. Role of the NF-kappaB signaling pathway and kappaB cis-regulatory elements on the IRF-1 and iNOS promoter regions in mycobacterial lipoarabinomannan induction of nitric oxide. Infect. Immun. 2003, 71, 1442–1452. [Google Scholar] [CrossRef]
- Guo, Z.; Shao, L.; Du, Q.; Park, K.S.; Geller, D.A. Identification of a classic cytokine-induced enhancer upstream in the human iNOS promoter. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2007, 21, 535–542. [Google Scholar] [CrossRef]
- Nakata, S.; Tsutsui, M.; Shimokawa, H.; Yamashita, T.; Tanimoto, A.; Tasaki, H.; Ozumi, K.; Sabanai, K.; Morishita, T.; Suda, O.; et al. Statin treatment upregulates vascular neuronal nitric oxide synthase through Akt/NF-kappaB pathway. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 92–98. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Y.; Li, G.; Wang, J.; Li, T.; Li, W.; Lu, J. Regulation of neuronal nitric oxide synthase exon 1f gene expression by nuclear factor-kappaB acetylation in human neuroblastoma cells. J. Neurochem. 2007, 101, 1194–1204. [Google Scholar] [CrossRef]
- Morgan, M.J.; Liu, Z.G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011, 21, 103–115. [Google Scholar] [CrossRef]
- Ahmad, R.; Rasheed, Z.; Ahsan, H. Biochemical and cellular toxicology of peroxynitrite: Implications in cell death and autoimmune phenomenon. Immunopharmacol. Immunotoxicol. 2009, 31, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Dostert, C.; Guarda, G.; Romero, J.F.; Menu, P.; Gross, O.; Tardivel, A.; Suva, M.L.; Stehle, J.C.; Kopf, M.; Stamenkovic, I.; et al. Malarial hemozoin is a Nalp3 inflammasome activating danger signal. PLoS ONE 2009, 4, e6510. [Google Scholar] [CrossRef] [PubMed]
- Dostert, C.; Pétrilli, V.; Van Bruggen, R.; Steele, C.; Mossman, B.T.; Tschopp, J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 2008, 320, 674–677. [Google Scholar] [CrossRef]
- Thurman, J.M.; Holers, V.M. The central role of the alternative complement pathway in human disease. J. Immunol. 2006, 176, 1305–1310. [Google Scholar] [CrossRef]
- Müller-Eberhard, H.J.; Schreiber, R.D. Molecular biology and chemistry of the alternative pathway of complement. Adv. Immunol. 1980, 29, 1–53. [Google Scholar] [CrossRef]
- Sikorski, P.M.; Commodaro, A.G.; Grigg, M.E. Toxoplasma gondii Recruits Factor H and C4b-Binding Protein to Mediate Resistance to Serum Killing and Promote Parasite Persistence in vivo. Front. Immunol. 2020, 10, 3105. [Google Scholar] [CrossRef]
- Lee, S.C.; Liu, W.; Dickson, D.W.; Brosnan, C.F.; Berman, J.W. Cytokine production by human fetal microglia and astrocytes. Differential induction by lipopolysaccharide and IL-1 beta. J. Immunol. 1993, 150, 2659–2667. [Google Scholar] [CrossRef]
- Lee, S.C.; Dickson, D.W.; Liu, W.; Brosnan, C.F. Induction of nitric oxide synthase activity in human astrocytes by interleukin-1 beta and interferon-gamma. J. Neuroimmunol. 1993, 46, 19–24. [Google Scholar] [CrossRef]
- Atmaca, H.T. Expression of serotonin 2A, 2C, 6 and 7 receptor and IL-6 mRNA in experimental toxoplasmic encephalitis in mice. Heliyon 2019, 5, e02890. [Google Scholar] [CrossRef]
- Flegr, J. Schizophrenia and Toxoplasma gondii: An undervalued association? Expert Rev. Anti-Infect. Ther. 2015, 13, 817–820. [Google Scholar] [CrossRef]
- Ademe, M.; Kebede, T.; Teferra, S.; Alemayehu, M.; Girma, F.; Abebe, T. Is latent Toxoplasma gondii infection associated with the occurrence of schizophrenia? A case-control study. PLoS ONE 2022, 17, e0270377. [Google Scholar] [CrossRef] [PubMed]
- Volk, D.W.; Moroco, A.E.; Roman, K.M.; Edelson, J.R.; Lewis, D.A. The Role of the Nuclear Factor-κB Transcriptional Complex in Cortical Immune Activation in Schizophrenia. Biol. Psychiatry 2019, 85, 25–34. [Google Scholar] [CrossRef]
- Song, X.Q.; Lv, L.X.; Li, W.Q.; Hao, Y.H.; Zhao, J.P. The interaction of nuclear factor-kappa B and cytokines is associated with schizophrenia. Biol. Psychiatry 2009, 65, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Sasayama, D.; Hori, H.; Teraishi, T.; Hattori, K.; Ota, M.; Iijima, Y.; Tatsumi, M.; Higuchi, T.; Amano, N.; Kunugi, H. Possible association between interleukin-1β gene and schizophrenia in a Japanese population. Behav. Brain Funct. BBF 2011, 7, 35. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Zhao, L.; Fan, Y.; Lv, Q.; Wu, K.; Lang, X.; Li, Z.; Yi, Z.; Geng, D. Interaction between TNF-α and oxidative stress status in first-episode drug-naïve schizophrenia. Psychoneuroendocrinology 2020, 114, 104595. [Google Scholar] [CrossRef] [PubMed]
- Abbott, N.J.; Patabendige, A.A.; Dolman, D.E.; Yusof, S.R.; Begley, D.J. Structure and function of the blood-brain barrier. Neurobiol. Dis. 2010, 37, 13–25. [Google Scholar] [CrossRef]
- Daneman, R.; Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol. 2015, 7, a020412. [Google Scholar] [CrossRef]
- Argaw, A.T.; Zhang, Y.; Snyder, B.J.; Zhao, M.L.; Kopp, N.; Lee, S.C.; Raine, C.S.; Brosnan, C.F.; John, G.R. IL-1beta regulates blood-brain barrier permeability via reactivation of the hypoxia-angiogenesis program. J. Immunol. 2006, 177, 5574–5584. [Google Scholar] [CrossRef]
- Chen, A.Q.; Fang, Z.; Chen, X.L.; Yang, S.; Zhou, Y.F.; Mao, L.; Xia, Y.P.; Jin, H.J.; Li, Y.N.; You, M.F.; et al. Microglia-derived TNF-α mediates endothelial necroptosis aggravating blood brain-barrier disruption after ischemic stroke. Cell Death Dis. 2019, 10, 487. [Google Scholar] [CrossRef]
- Veszelka, S.; Laszy, J.; Pázmány, T.; Németh, L.; Obál, I.; Fábián, L.; Szabó, G.; Abrahám, C.S.; Deli, M.A.; Urbányi, Z. Efflux transport of serum amyloid P component at the blood-brain barrier. Eur. J. Microbiol. Immunol. 2013, 3, 281–289. [Google Scholar] [CrossRef]
Gene | Primer Sequence (5′–3′) |
---|---|
SAP | Forward: GTCTTCACCAGCCTTCTTTCAGA Reverse: TCAGATTCTCTGGGGAACACAA |
NFKB | Forward: CTATGATAGCAAAGCCCCGAATG Reverse: TCCTCCCCTCCCGTCACA |
IL-1β | Forward: CAACCAACAAGTGATATTCTCCAT Reverse: GGGTGTGCCGTCTTTCATTA |
CASP1 | Forward: GCTGAGGTTGACATCACAGGCA Reverse: TGCTGTCAGAGGTCTTGTGCTC |
TNF-α | Forward: AGCCAGGAGGGAGAACAGA Reverse: CAGTGAGTGAAAGGGACAGAAC |
C3 | Forward: CCATGTATTCCATCATTACTCCCA A Reverse: CGTGGGCCTCCAGTCAGA |
β-actin | Forward: TCCTTCCTCTGATTAGCTGTCCTAA Reverse: TCCACATAATTTCCACCAACAAGT |
Animals | n | SAP | Between-Component Variance SAP | NF-κB | Between-Component Variance NF-κB | C3 | Between-Component Variance C3 | |||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |||||
Healthy control animals | 6 | 8.062 | 0.863 | 14.146 | 0.642 | 10.954 | 0.859 | |||
10th day after infection with T. gondii | 6 | 114.037 | 2.616 | 33.713 | 1.085 | 13.019 | 2.24 | |||
2808.202 | 240.614 | 84.033 | ||||||||
20th day after infection with T. gondii | 6 | 7.765 | 0.754 | 51.602 | 1.321 | 25.982 | 0.774 | |||
30th day after infection with T. gondii | 6 | 8.31 | 1.066 | 38.375 | 1.088 | 29.317 | 1.009 |
Animals | n | IL-1β | Between-Component Variance IL-1β | Casp1 | Between-Component Variance Casp1 | TNF-α | Between-Component Variance TNF-α | |||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |||||
Healthy control animals | 6 | 3.949 | 0.932 | 12.204 | 0.6 | 4.204 | 0.669 | |||
10th day after infection with T. gondii | 6 | 4.278 | 0.884 | 36.06 | 0.704 | 21.972 | 1.399 | |||
626.159 | 217.289 | 563.168 | ||||||||
20th day after infection with T. gondii | 6 | 55.352 | 2.447 | 44.596 | 1.897 | 53.189 | 1.113 | |||
30th day after infection with T. gondii | 6 | 34.32 | 0.975 | 43.844 | 1.528 | 51.262 | 3.304 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dincel, G.C.; Atmaca, H.T.; El-Ashram, S. First Description of the Role of the Relationship Between Serum Amyloid P Components and Nuclear Factors/Pro-Cytokines During Critical Periods of Toxoplasmic Encephalitis. Brain Sci. 2024, 14, 1298. https://doi.org/10.3390/brainsci14121298
Dincel GC, Atmaca HT, El-Ashram S. First Description of the Role of the Relationship Between Serum Amyloid P Components and Nuclear Factors/Pro-Cytokines During Critical Periods of Toxoplasmic Encephalitis. Brain Sciences. 2024; 14(12):1298. https://doi.org/10.3390/brainsci14121298
Chicago/Turabian StyleDincel, Gungor Cagdas, Hasan Tarik Atmaca, and Saeed El-Ashram. 2024. "First Description of the Role of the Relationship Between Serum Amyloid P Components and Nuclear Factors/Pro-Cytokines During Critical Periods of Toxoplasmic Encephalitis" Brain Sciences 14, no. 12: 1298. https://doi.org/10.3390/brainsci14121298
APA StyleDincel, G. C., Atmaca, H. T., & El-Ashram, S. (2024). First Description of the Role of the Relationship Between Serum Amyloid P Components and Nuclear Factors/Pro-Cytokines During Critical Periods of Toxoplasmic Encephalitis. Brain Sciences, 14(12), 1298. https://doi.org/10.3390/brainsci14121298