Do Individual Differences in Perception Affect Awareness of Climate Change?
Abstract
:1. Introduction
2. Perception of Climate Change in Non-Human Animals
3. Sensory Perception of Climate Change in Humans
4. Thermoception
5. Hygroreception
6. Interoception
7. Psychophysiological Individual Differences and Climate Change Perception
8. Conclusions and Further Research
Author Contributions
Funding
Conflicts of Interest
References
- United Nations Framework Convention on Climate Change. Available online: https://unfccc.int/resource/ccsites/zimbab/conven/text/art01.htm (accessed on 4 March 2024).
- Luo, Y.; Zhao, J. Attentional and Perceptual Biases of Climate Change. Curr. Opin. Behav. Sci. 2021, 42, 22–26. [Google Scholar] [CrossRef]
- Spence, A.; Poortinga, W.; Pidgeon, N. The Psychological Distance of Climate Change. Risk Anal. 2012, 32, 957–972. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, S. The Neurobiology of Climate Change. Sci. Nat. 2018, 105, 11. [Google Scholar] [CrossRef] [PubMed]
- Sisodiya, S.M. Hot Brain: Practical Climate Change Advice for Neurologists. Pract. Neurol. 2023, 24, 28–36. [Google Scholar] [CrossRef]
- Clayton, S. Climate Anxiety: Psychological Responses to Climate Change. J. Anxiety Disord. 2020, 74, 102263. [Google Scholar] [CrossRef] [PubMed]
- Hornsey, M.J.; Harris, E.A.; Bain, P.G.; Fielding, K.S. Meta-Analyses of the Determinants and Outcomes of Belief in Climate Change. Nat. Clim. Chang. 2016, 6, 622–626. [Google Scholar] [CrossRef]
- Weber, E.U. What Shapes Perceptions of Climate Change? WIREs Clim. Change 2010, 1, 332–342. [Google Scholar] [CrossRef]
- Weber, E.U. What Shapes Perceptions of Climate Change? New Research since 2010. WIREs Clim. Chang. 2016, 7, 125–134. [Google Scholar] [CrossRef]
- Stevens, M. Sensory Ecology, Behaviour, and Evolution; OUP Oxford: Oxford, UK, 2013; ISBN 978-0-19-960178-3. [Google Scholar]
- Beever, E.A.; Hall, L.E.; Varner, J.; Loosen, A.E.; Dunham, J.B.; Gahl, M.K.; Smith, F.A.; Lawler, J.J. Behavioral Flexibility as a Mechanism for Coping with Climate Change. Front. Ecol. Environ. 2017, 15, 299–308. [Google Scholar] [CrossRef]
- Intergovernmental Panel On Climate Change (IPCC). Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023; ISBN 978-1-00-932584-4.
- Lennox, R.J.; Chapman, J.M.; Souliere, C.M.; Tudorache, C.; Wikelski, M.; Metcalfe, J.D.; Cooke, S.J. Conservation Physiology of Animal Migration. Conserv. Physiol. 2016, 4, cov072. [Google Scholar] [CrossRef]
- Bradshaw, W.E.; Holzapfel, C.M. Light, Time, and the Physiology of Biotic Response to Rapid Climate Change in Animals. Annu. Rev. Physiol. 2010, 72, 147–166. [Google Scholar] [CrossRef]
- Gwinner, E. Bird Migration: Physiology and Ecophysiology; Springer Science & Business Media: Berlin, Germany, 2012; ISBN 978-3-642-74542-3. [Google Scholar]
- Ramenofsky, M. Reconsidering the Role of Photoperiod in Relation to Effects of Precipitation and Food Availability on Spring Departure of a Migratory Bird. Proc. R. Soc. B 2012, 279, 15–16. [Google Scholar] [CrossRef]
- Boone, R.B.; Thirgood, S.J.; Hopcraft, J.G.C. Serengeti Wildebeest Migratory Patterns Modeled from Rainfall and New Vegetation Growth. Ecology 2006, 87, 1987–1994. [Google Scholar] [CrossRef] [PubMed]
- Chapman, J.W.; Reynolds, D.R.; Wilson, K. Long-Range Seasonal Migration in Insects: Mechanisms, Evolutionary Drivers and Ecological Consequences. Ecol. Lett. 2015, 18, 287–302. [Google Scholar] [CrossRef]
- Shaw, A.K. Drivers of Animal Migration and Implications in Changing Environments. Evol. Ecol. 2016, 30, 991–1007. [Google Scholar] [CrossRef]
- Seebacher, F.; Post, E. Climate Change Impacts on Animal Migration. Clim. Chang. Responses 2015, 2, 5. [Google Scholar] [CrossRef]
- Marra, P.P.; Francis, C.M.; Mulvihill, R.S.; Moore, F.R. The Influence of Climate on the Timing and Rate of Spring Bird Migration. Oecologia 2005, 142, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Halfwerk, W.; Slabbekoorn, H. Pollution Going Multimodal: The Complex Impact of the Human-Altered Sensory Environment on Animal Perception and Performance. Biol. Lett. 2015, 11, 20141051. [Google Scholar] [CrossRef]
- Dominoni, D.M.; Halfwerk, W.; Baird, E.; Buxton, R.T.; Fernández-Juricic, E.; Fristrup, K.M.; McKenna, M.F.; Mennitt, D.J.; Perkin, E.K.; Seymoure, B.M.; et al. Why Conservation Biology Can Benefit from Sensory Ecology. Nat. Ecol. Evol. 2020, 4, 502–511. [Google Scholar] [CrossRef]
- Martín, J.; López, P. Effects of Global Warming on Sensory Ecology of Rock Lizards: Increased Temperatures Alter the Efficacy of Sexual Chemical Signals. Funct. Ecol. 2013, 27, 1332–1340. [Google Scholar] [CrossRef]
- Merrick, C.; Filingeri, D. The Evolution of Wetness Perception: A Comparison of Arachnid, Insect and Human Models. J. Therm. Biol. 2019, 85, 102412. [Google Scholar] [CrossRef]
- Gracheva, E.O.; Ingolia, N.T.; Kelly, Y.M.; Cordero-Morales, J.F.; Hollopeter, G.; Chesler, A.T.; Sánchez, E.E.; Perez, J.C.; Weissman, J.S.; Julius, D. Molecular Basis of Infrared Detection by Snakes. Nature 2010, 464, 1006–1011. [Google Scholar] [CrossRef]
- Peier, A.M.; Moqrich, A.; Hergarden, A.C.; Reeve, A.J.; Andersson, D.A.; Story, G.M.; Earley, T.J.; Dragoni, I.; McIntyre, P.; Bevan, S.; et al. A TRP Channel That Senses Cold Stimuli and Menthol. Cell 2002, 108, 705–715. [Google Scholar] [CrossRef]
- Michaiel, A.M.; Bernard, A. Neurobiology and Changing Ecosystems: Toward Understanding the Impact of Anthropogenic Influences on Neurons and Circuits. Front. Neural Circuits 2022, 16, 995354. [Google Scholar] [CrossRef] [PubMed]
- Eliason, E.J.; Clark, T.D.; Hague, M.J.; Hanson, L.M.; Gallagher, Z.S.; Jeffries, K.M.; Gale, M.K.; Patterson, D.A.; Hinch, S.G.; Farrell, A.P. Differences in Thermal Tolerance among Sockeye Salmon Populations. Science 2011, 332, 109–112. [Google Scholar] [CrossRef]
- Martin, B.T.; Nisbet, R.M.; Pike, A.; Michel, C.J.; Danner, E.M. Sport Science for Salmon and Other Species: Ecological Consequences of Metabolic Power Constraints. Ecol. Lett. 2015, 18, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhao, J. Motivated Attention in Climate Change Perception and Action. Front. Psychol. 2019, 10, 1541. [Google Scholar] [CrossRef] [PubMed]
- Wirz-Justice, A.; Skene, D.J.; Münch, M. The Relevance of Daylight for Humans. Biochem. Pharmacol. 2021, 191, 114304. [Google Scholar] [CrossRef] [PubMed]
- Frumento, S.; Menicucci, D.; Hitchcott, P.K.; Zaccaro, A.; Gemignani, A. Systematic Review of Studies on Subliminal Exposure to Phobic Stimuli: Integrating Therapeutic Models for Specific Phobias. Front. Neurosci. 2021, 15, 654170. [Google Scholar] [CrossRef]
- Frumento, S.; Gemignani, A.; Menicucci, D. Perceptually Visible but Emotionally Subliminal Stimuli to Improve Exposure Therapies. Brain Sci. 2022, 12, 867. [Google Scholar] [CrossRef]
- Grassini, S.; Railo, H.; Valli, K.; Revonsuo, A.; Koivisto, M. Visual Features and Perceptual Context Modulate Attention towards Evolutionarily Relevant Threatening Stimuli: Electrophysiological Evidence. Emotion 2019, 19, 348–364. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Sowndhararajan, K.; Kim, T.; Kim, J.E.; Yang, J.E.; Kim, S. Gender Differences in Electroencephalographic Activity in Response to the Earthy Odorants Geosmin and 2-Methylisoborneol. Appl. Sci. 2017, 7, 876. [Google Scholar] [CrossRef]
- Michels, N.; Boudrez, S.; Lamprea Pineda, P.A.; Walgraeve, C. Nature-Related Odors Influence Stress and Eating Behavior: A Laboratory Experiment With Pine and Grass Volatiles. Environ. Behav. 2023, 55, 433–467. [Google Scholar] [CrossRef]
- Stobbe, E.; Sundermann, J.; Ascone, L.; Kühn, S. Birdsongs Alleviate Anxiety and Paranoia in Healthy Participants. Sci. Rep. 2022, 12, 16414. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Xu, X.Z.S. Temperature Sensation: From Molecular Thermosensors to Neural Circuits and Coding Principles. Annu. Rev. Physiol. 2021, 83, 205–230. [Google Scholar] [CrossRef]
- Voets, T.; Droogmans, G.; Wissenbach, U.; Janssens, A.; Flockerzi, V.; Nilius, B. The Principle of Temperature-Dependent Gating in Cold- and Heat-Sensitive TRP Channels. Nature 2004, 430, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Vellei, M.; de Dear, R.; Inard, C.; Jay, O. Dynamic Thermal Perception: A Review and Agenda for Future Experimental Research. Build. Environ. 2021, 205, 108269. [Google Scholar] [CrossRef]
- Moore, F.C.; Obradovich, N.; Lehner, F.; Baylis, P. Rapidly Declining Remarkability of Temperature Anomalies May Obscure Public Perception of Climate Change. Proc. Natl. Acad. Sci. USA 2019, 116, 4905–4910. [Google Scholar] [CrossRef]
- Zaval, L.; Keenan, E.A.; Johnson, E.J.; Weber, E.U. How Warm Days Increase Belief in Global Warming. Nat. Clim. Chang. 2014, 4, 143–147. [Google Scholar] [CrossRef]
- Li, Y.; Johnson, E.J.; Zaval, L. Local Warming: Daily Temperature Change Influences Belief in Global Warming. Psychol. Sci. 2011, 22, 454–459. [Google Scholar] [CrossRef]
- Lewandowski, G.W.; Ciarocco, N.J.; Gately, E.L. The Effect of Embodied Temperature on Perceptions of Global Warming. Curr. Psychol. 2012, 31, 318–324. [Google Scholar] [CrossRef]
- Frumento, S.; Gemignani, A.; Menicucci, D. Psychological Mechanisms for Gaining Awareness of (and React-Ing to) Climate Change Challenges: Emotional Levers for Cognitive Remodeling. 2020. Available online: https://hdl.handle.net/11568/1034423 (accessed on 4 March 2024).
- Raymond, C.; Matthews, T.; Horton, R.M. The Emergence of Heat and Humidity Too Severe for Human Tolerance. Sci. Adv. 2020, 6, eaaw1838. [Google Scholar] [CrossRef]
- Filingeri, D.; Fournet, D.; Hodder, S.; Havenith, G. Why Wet Feels Wet? A Neurophysiological Model of Human Cutaneous Wetness Sensitivity. J. Neurophysiol. 2014, 112, 1457–1469. [Google Scholar] [CrossRef]
- Buoite Stella, A.; Filingeri, D.; Garascia, G.; D’Acunto, L.; Furlanis, G.; Granato, A.; Manganotti, P. Skin Wetness Sensitivity across Body Sites Commonly Affected by Pain in People with Migraine. Headache J. Head Face Pain 2022, 62, 737–747. [Google Scholar] [CrossRef]
- Jousmäki, V.; Hari, R. Parchment-Skin Illusion: Sound-Biased Touch. Curr. Biol. 1998, 8, R190–R191. [Google Scholar] [CrossRef]
- Sawayama, M.; Adelson, E.H.; Nishida, S. Visual Wetness Perception Based on Image Color Statistics. J. Vis. 2017, 17, 7. [Google Scholar] [CrossRef] [PubMed]
- Risso, G.; Preatoni, G.; Valle, G.; Marazzi, M.; Bracher, N.M.; Raspopovic, S. Multisensory Stimulation Decreases Phantom Limb Distortions and Is Optimally Integrated. iScience 2022, 25, 104129. [Google Scholar] [CrossRef] [PubMed]
- Bear, I.J.; Thomas, R.G. Nature of Argillaceous Odour. Nature 1964, 201, 993–995. [Google Scholar] [CrossRef]
- Robinson, P. Petrichor. Aust. New Zealand J. Public Health 2017, 41, 327–328. [Google Scholar] [CrossRef] [PubMed]
- Liato, V.; Aïder, M. Geosmin as a Source of the Earthy-Musty Smell in Fruits, Vegetables and Water: Origins, Impact on Foods and Water, and Review of the Removing Techniques. Chemosphere 2017, 181, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Polak, E.H.; Provasi, J. Odor Sensitivity to Geosmin Enantiomers. Chem. Senses 1992, 17, 23–26. [Google Scholar] [CrossRef]
- Craig, A.D. How Do You Feel? Interoception: The Sense of the Physiological Condition of the Body. Nat. Rev. Neurosci. 2002, 3, 655–666. [Google Scholar] [CrossRef]
- Chen, W.G.; Schloesser, D.; Arensdorf, A.M.; Simmons, J.M.; Cui, C.; Valentino, R.; Gnadt, J.W.; Nielsen, L.; Hillaire-Clarke, C.S.; Spruance, V.; et al. The Emerging Science of Interoception: Sensing, Integrating, Interpreting, and Regulating Signals within the Self. Trends Neurosci. 2021, 44, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Risen, J.L.; Critcher, C.R. Visceral Fit: While in a Visceral State, Associated States of the World Seem More Likely. J. Pers. Soc. Psychol. 2011, 100, 777–793. [Google Scholar] [CrossRef]
- Zadra, J.R.; Clore, G.L. Emotion and Perception: The Role of Affective Information. WIREs Cogn. Sci. 2011, 2, 676–685. [Google Scholar] [CrossRef] [PubMed]
- Brosch, T. Affect and Emotions as Drivers of Climate Change Perception and Action: A Review. Curr. Opin. Behav. Sci. 2021, 42, 15–21. [Google Scholar] [CrossRef]
- Kuhtz-Buschbeck, J.P.; Andresen, W.; Göbel, S.; Gilster, R.; Stick, C. Thermoreception and Nociception of the Skin: A Classic Paper of Bessou and Perl and Analyses of Thermal Sensitivity during a Student Laboratory Exercise. Adv. Physiol. Educ. 2010, 34, 25–34. [Google Scholar] [CrossRef]
- Velasco, M.; Gómez, J.; Blanco, M.; Rodriguez, I. The Cold Pressor test: Pharmacological and Therapeutic Aspects. Am. J. Ther. 1997, 4, 34. [Google Scholar] [CrossRef]
- Cortright, D.N.; Krause, J.E.; Broom, D.C. TRP Channels and Pain. Biochim. Et Biophys. Acta (BBA)—Mol. Basis Dis. 2007, 1772, 978–988. [Google Scholar] [CrossRef]
- Jamison, R.N.; Anderson, K.O.; Slater, M.A. Weather Changes and Pain: Perceived Influence of Local Climate on Pain Complaint in Chronic Pain Patients. Pain 1995, 61, 309–315. [Google Scholar] [CrossRef]
- Horvath, G.; Nagy, K.; Tuboly, G.; Nagy, E. Pain and Weather Associations—Action Mechanisms; Personalized Profiling. Brain Res. Bull. 2023, 200, 110696. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.D.; Darcy, C.; DeGrasse, A.G.; Jordan, R.; Boscia, C.S. Crosstalk of Pain and Thirst Perception: A Brief Review. Chem. Percept. 2021, 14, 75–78. [Google Scholar] [CrossRef]
- Farrell, M.J.; Egan, G.F.; Zamarripa, F.; Shade, R.; Blair-West, J.; Fox, P.; Denton, D.A. Unique, Common, and Interacting Cortical Correlates of Thirst and Pain. Proc. Natl. Acad. Sci. USA 2006, 103, 2416–2421. [Google Scholar] [CrossRef] [PubMed]
- Green, B.G.; Akirav, C. Individual Differences in Temperature Perception: Evidence of Common Processing of Sensation Intensity of Warmth and Cold. Somatosens. Mot. Res. 2007, 24, 71–84. [Google Scholar] [CrossRef]
- Nielsen, C.S.; Staud, R.; Price, D.D. Individual Differences in Pain Sensitivity: Measurement, Causation, and Consequences. J. Pain 2009, 10, 231–237. [Google Scholar] [CrossRef]
- Kim, H.; Mittal, D.P.; Iadarola, M.J.; Dionne, R.A. Genetic Predictors for Acute Experimental Cold and Heat Pain Sensitivity in Humans. J. Med. Genet. 2006, 43, e40. [Google Scholar] [CrossRef]
- Binder, A.; May, D.; Baron, R.; Maier, C.; Tölle, T.R.; Treede, R.-D.; Berthele, A.; Faltraco, F.; Flor, H.; Gierthmühlen, J.; et al. Transient Receptor Potential Channel Polymorphisms Are Associated with the Somatosensory Function in Neuropathic Pain Patients. PLoS ONE 2011, 6, e17387. [Google Scholar] [CrossRef]
- Forstenpointner, J.; Förster, M.; May, D.; Hofschulte, F.; Cascorbi, I.; Wasner, G.; Gierthmühlen, J.; Baron, R. Short Report: TRPV1-Polymorphism 1911 A>G Alters Capsaicin-Induced Sensory Changes in Healthy Subjects. PLoS ONE 2017, 12, e0183322. [Google Scholar] [CrossRef]
- Okamoto, N.; Okumura, M.; Tadokoro, O.; Sogawa, N.; Tomida, M.; Kondo, E. Effect of Single-Nucleotide Polymorphisms in TRPV1 on Burning Pain and Capsaicin Sensitivity in Japanese Adults. Mol. Pain 2018, 14, 1744806918804439. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Neubert, J.K.; San Miguel, A.; Xu, K.; Krishnaraju, R.K.; Iadarola, M.J.; Goldman, D.; Dionne, R.A. Genetic Influence on Variability in Human Acute Experimental Pain Sensitivity Associated with Gender, Ethnicity and Psychological Temperament. Pain 2004, 109, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Gavva, N.R.; Sandrock, R.; Arnold, G.E.; Davis, M.; Lamas, E.; Lindvay, C.; Li, C.-M.; Smith, B.; Backonja, M.; Gabriel, K.; et al. Reduced TRPM8 Expression Underpins Reduced Migraine Risk and Attenuated Cold Pain Sensation in Humans. Sci. Rep. 2019, 9, 19655. [Google Scholar] [CrossRef]
- Kozyreva, T.V.; Tkachenko, E.Y.; Potapova, T.A.; Romashchenko, A.G.; Voevoda, M.I. Single-Nucleotide Polymorphism Rs11562975 of the Thermosensitive Ion Channel TRPM8 Gene and Human Sensitivity to Cold and Menthol. Hum. Physiol. 2011, 37, 188–192. [Google Scholar] [CrossRef]
- Key, F.M.; Abdul-Aziz, M.A.; Mundry, R.; Peter, B.M.; Sekar, A.; D’Amato, M.; Dennis, M.Y.; Schmidt, J.M.; Andrés, A.M. Human Local Adaptation of the TRPM8 Cold Receptor along a Latitudinal Cline. PLoS Genet. 2018, 14, e1007298. [Google Scholar] [CrossRef]
- Soeda, M.; Ohka, S.; Nishizawa, D.; Hasegawa, J.; Nakayama, K.; Ebata, Y.; Ichinohe, T.; Fukuda, K.; Ikeda, K. Cold Pain Sensitivity Is Associated with Single-Nucleotide Polymorphisms of PAR2/F2RL1 and TRPM8. Mol. Pain 2021, 17, 17448069211002009. [Google Scholar] [CrossRef] [PubMed]
- Igoshin, A.V.; Gunbin, K.V.; Yudin, N.S.; Voevoda, M.I. Searching for Signatures of Cold Climate Adaptation in TRPM8 Gene in Populations of East Asian Ancestry. Front. Genet. 2019, 10, 759. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.T.; Loomis, A.K.; Butcher, L.M.; Gao, F.; Zhang, B.; Hyde, C.L.; Sun, J.; Wu, H.; Ward, K.; Harris, J.; et al. Differential Methylation of the TRPA1 Promoter in Pain Sensitivity. Nat. Commun. 2014, 5, 2978. [Google Scholar] [CrossRef] [PubMed]
- Murray, K.O.; Clanton, T.L.; Horowitz, M. Epigenetic Responses to Heat: From Adaptation to Maladaptation. Exp. Physiol. 2022, 107, 1144–1158. [Google Scholar] [CrossRef] [PubMed]
- Lima-Araujo, G.L.d.; Júnior, G.M.d.S.; Mendes, T.; Demarzo, M.; Farb, N.; Araujo, D.B.d.; Sousa, M.B.C.d. The Impact of a Brief Mindfulness Training on Interoception: A Randomized Controlled Trial. PLoS ONE 2022, 17, e0273864. [Google Scholar] [CrossRef] [PubMed]
- Panno, A.; Giacomantonio, M.; Carrus, G.; Maricchiolo, F.; Pirchio, S.; Mannetti, L. Mindfulness, Pro-Environmental Behavior, and Belief in Climate Change: The Mediating Role of Social Dominance. Environ. Behav. 2018, 50, 864–888. [Google Scholar] [CrossRef]
- Sharp, P.B.; Sutton, B.P.; Paul, E.J.; Sherepa, N.; Hillman, C.H.; Cohen, N.J.; Kramer, A.F.; Prakash, R.S.; Heller, W.; Telzer, E.H.; et al. Mindfulness Training Induces Structural Connectome Changes in Insula Networks. Sci. Rep. 2018, 8, 7929. [Google Scholar] [CrossRef]
- Sacchi, S.; Riva, P.; Aceto, A. Myopic about Climate Change: Cognitive Style, Psychological Distance, and Environmentalism. J. Exp. Soc. Psychol. 2016, 65, 68–73. [Google Scholar] [CrossRef]
- Johnston, P.R.; Alain, C.; McIntosh, A.R. Individual Differences in Multisensory Processing Are Related to Broad Differences in the Balance of Local versus Distributed Information. J. Cogn. Neurosci. 2022, 34, 846–863. [Google Scholar] [CrossRef] [PubMed]
- Stern, M.K.; Johnson, J.H. Just Noticeable Difference. In The Corsini Encyclopedia of Psychology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; pp. 1–2. ISBN 978-0-470-47921-6. [Google Scholar]
- Inouye, D.W. Climate Change and Phenology. WIREs Clim. Chang. 2022, 13, e764. [Google Scholar] [CrossRef]
Type | SNP Code | Findings | Ref. |
---|---|---|---|
TRPM8 | rs10166942 | Correlated with geographical latitude. | [78] |
TRPM8 | rs10166942[C] | More prevalent in hotter climates. Decreases TRP8 expression. Reduced sensitivity to cold. | [76] |
TRPM8 | rs10166942[T] | More prevalent in colder climates. | [76] |
TRPM8 | rs11562975 | Heterozygous individuals show an increased sensitivity to cold. | [77] |
TRPM8 | rs12992084 | Association with cold pain sensitivity. | [79] |
TRPM8 | rs17862920 | Allelic correlation with average winter temperatures. | [80] |
TRPM8 | rs7577262 | Allelic correlation with average winter temperatures. | [80] |
TRPV1 | rs57716901 | Associated with burning pain sensitivity | [74] |
TRPV1 | rs61387317 | Associated with burning pain sensitivity | [74] |
TRPV1 | rs8065080 | Cold hypoalgesia. Less heat hyperalgesia. Less pinprick hyperalgesia. Mechanical hypoesthesia. | [72] |
TRPV1 | rs8065080 | After capsaicin application: Less warm-detection in heterozygotes/WT. Gain in heat-pain sensitivity in heterozygotes/WT. | [73] |
N. | Research Question |
---|---|
#1 | Do populations carrying TRP gene variants experience climate change differently? |
#2 | Are there evolutionarily determined climate change sensory cues in humans? |
#3 | What is the degree and speed of climate change that is necessary to happen so that humans can become aware of it? |
#4 | Can individual differences in perceptual awareness of climate change be measured? |
#5 | How does interoception affect climate perception? |
#6 | How are the objective sensory data and subjective perceptions related to climate change represented in the brain? |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cipriani, E.; Frumento, S.; Grassini, S.; Gemignani, A.; Menicucci, D. Do Individual Differences in Perception Affect Awareness of Climate Change? Brain Sci. 2024, 14, 266. https://doi.org/10.3390/brainsci14030266
Cipriani E, Frumento S, Grassini S, Gemignani A, Menicucci D. Do Individual Differences in Perception Affect Awareness of Climate Change? Brain Sciences. 2024; 14(3):266. https://doi.org/10.3390/brainsci14030266
Chicago/Turabian StyleCipriani, Enrico, Sergio Frumento, Simone Grassini, Angelo Gemignani, and Danilo Menicucci. 2024. "Do Individual Differences in Perception Affect Awareness of Climate Change?" Brain Sciences 14, no. 3: 266. https://doi.org/10.3390/brainsci14030266
APA StyleCipriani, E., Frumento, S., Grassini, S., Gemignani, A., & Menicucci, D. (2024). Do Individual Differences in Perception Affect Awareness of Climate Change? Brain Sciences, 14(3), 266. https://doi.org/10.3390/brainsci14030266