Imbalance and Falls in Patients with Parkinson’s Disease: Causes and Recent Developments in Training and Sensor-Based Assessment
Abstract
:1. Introduction
2. Causes for Imbalance and Falls in Parkinson’s Disease
2.1. Motor Symptoms Associated with PD and Falls
2.2. Non-Motor Symptoms Associated with PD and Falls
2.3. Factors Indirectly Associated with PD and Falls
3. Advanced Gait and Balance Training in Parkinson’s Disease
4. Wearable Devices for Gait and Balance Assessment in Parkinson’s Disease
5. Discussion
6. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Johnell, O.; Kanis, J.A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006, 17, 1726–1733. [Google Scholar] [CrossRef]
- Sylliaas, H.; Idland, G.; Sandvik, L.; Forsen, L.; Bergland, A. Does mortality of the aged increase with the number of falls? Results from a nine-year follow-up study. Eur. J. Epidemiol. 2009, 24, 351–355. [Google Scholar] [CrossRef]
- STEADI–Older Adult Fall Prevention; Centers for Disease Control and Prevention, Division of Unintentional Injury Prevention. Available online: https://www.cdc.gov/steadi/ (accessed on 10 April 2024).
- Ambrose, A.F.; Cruz, L.; Paul, G. Falls and Fractures: A systematic approach to screening and prevention. Maturitas 2015, 82, 85–93. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Cardiovascular Health Study Collaborative Research G. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
- Hoogendijk, E.O.; Afilalo, J.; Ensrud, K.E.; Kowal, P.; Onder, G.; Fried, L.P. Frailty: Implications for clinical practice and public health. Lancet 2019, 394, 1365–1375. [Google Scholar] [CrossRef]
- Camicioli, R.; Howieson, D.; Lehman, S.; Kaye, J. Talking while walking: The effect of a dual task in aging and Alzheimer’s disease. Neurology 1997, 48, 955–958. [Google Scholar] [CrossRef]
- Delbaere, K.; Kochan, N.A.; Close, J.C.; Menant, J.C.; Sturnieks, D.L.; Brodaty, H.; Sachdev, P.S.; Lord, S.R. Mild cognitive impairment as a predictor of falls in community-dwelling older people. Am. J. Geriatr. Psychiatry 2012, 20, 845–853. [Google Scholar] [CrossRef]
- Allan, L.M.; Ballard, C.G.; Rowan, E.N.; Kenny, R.A. Incidence and prediction of falls in dementia: A prospective study in older people. PLoS ONE 2009, 4, e5521. [Google Scholar] [CrossRef]
- Mirelman, A.; Bonato, P.; Camicioli, R.; Ellis, T.D.; Giladi, N.; Hamilton, J.L.; Hass, C.J.; Hausdorff, J.M.; Pelosin, E.; Almeida, Q.J. Gait impairments in Parkinson’s disease. Lancet Neurol. 2019, 18, 697–708. [Google Scholar] [CrossRef]
- Hiorth, Y.H.; Larsen, J.P.; Lode, K.; Pedersen, K.F. Natural history of falls in a population-based cohort of patients with Parkinson’s disease: An 8-year prospective study. Park. Relat. Disord. 2014, 20, 1059–1064. [Google Scholar] [CrossRef]
- Canning, C.G.; Allen, N.E.; Nackaerts, E.; Paul, S.S.; Nieuwboer, A.; Gilat, M. Virtual reality in research and rehabilitation of gait and balance in Parkinson disease. Nat. Rev. Neurol. 2020, 16, 409–425. [Google Scholar] [CrossRef]
- Morgan, C.; Rolinski, M.; McNaney, R.; Jones, B.; Rochester, L.; Maetzler, W.; Craddock, I.; Whone, A.L. Systematic Review Looking at the Use of Technology to Measure Free-Living Symptom and Activity Outcomes in Parkinson’s Disease in the Home or a Home-like Environment. J. Park. Dis. 2020, 10, 429–454. [Google Scholar] [CrossRef]
- Sica, M.; Tedesco, S.; Crowe, C.; Kenny, L.; Moore, K.; Timmons, S.; Barton, J.; O’Flynn, B.; Komaris, D.S. Continuous home monitoring of Parkinson’s disease using inertial sensors: A systematic review. PLoS ONE 2021, 16, e0246528. [Google Scholar] [CrossRef]
- Bloem, B.R.; Grimbergen, Y.A.; Cramer, M.; Willemsen, M.; Zwinderman, A.H. Prospective assessment of falls in Parkinson’s disease. J. Neurol. 2001, 248, 950–958. [Google Scholar] [CrossRef]
- Devices for Remote Monitoring of Parkinson’s Disease. Diagnostics Guidance [DG51] National Institute for Health and Care Excellence 2024. Available online: https://www.nice.org.uk/guidance/DG51 (accessed on 10 April 2024).
- Lindholm, B.; Hagell, P.; Hansson, O.; Nilsson, M.H. Prediction of falls and/or near falls in people with mild Parkinson’s disease. PLoS ONE 2015, 10, e0117018. [Google Scholar] [CrossRef]
- Almeida, L.R.S.; Valenca, G.T.; Negreiros, N.N.; Pinto, E.B.; Oliveira-Filho, J. Predictors of Recurrent Falls in People with Parkinson’s Disease and Proposal for a Predictive Tool. J. Park. Dis. 2017, 7, 313–324. [Google Scholar] [CrossRef]
- van der Marck, M.A.; Klok, M.P.; Okun, M.S.; Giladi, N.; Munneke, M.; Bloem, B.R.; Force, N.P.F.F.T. Consensus-based clinical practice recommendations for the examination and management of falls in patients with Parkinson’s disease. Park. Relat. Disord. 2014, 20, 360–369. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, L.L.; Zhou, Q. Effects of drug pharmacokinetic/pharmacodynamic properties, characteristics of medication use, and relevant pharmacological interventions on fall risk in elderly patients. Ther. Clin. Risk Manag. 2014, 10, 437–448. [Google Scholar]
- Rockwood, K.; Mitnitski, A. Frailty in relation to the accumulation of deficits. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 722–727. [Google Scholar] [CrossRef]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef]
- Stacy, M.A.; Murphy, J.M.; Greeley, D.R.; Stewart, R.M.; Murck, H.; Meng, X. The sensitivity and specificity of the 9-item Wearing-off Questionnaire. Park. Relat. Disord. 2008, 14, 205–212. [Google Scholar] [CrossRef]
- Giladi, N.; Shabtai, H.; Simon, E.S.; Biran, S.; Tal, J.; Korczyn, A.D. Construction of freezing of gait questionnaire for patients with Parkinsonism. Park. Relat. Disord. 2000, 6, 165–170. [Google Scholar] [CrossRef]
- Franchignoni, F.; Horak, F.; Godi, M.; Nardone, A.; Giordano, A. Using psychometric techniques to improve the Balance Evaluation Systems Test: The mini-BESTest. J. Rehabil. Med. 2010, 42, 323–331. [Google Scholar] [CrossRef]
- Chaudhuri, K.R.; Schrag, A.; Weintraub, D.; Rizos, A.; Rodriguez-Blazquez, C.; Mamikonyan, E.; Martinez-Martin, P. The movement disorder society nonmotor rating scale: Initial validation study. Mov. Disord. 2020, 35, 116–133. [Google Scholar] [CrossRef]
- Thijs, R.D.; Brignole, M.; Falup-Pecurariu, C.; Fanciulli, A.; Freeman, R.; Guaraldi, P.; Jordan, J.; Habek, M.; Hilz, M.; Traon, A.P.; et al. Recommendations for tilt table testing and other provocative cardiovascular autonomic tests in conditions that may cause transient loss of consciousness: Consensus statement of the European Federation of Autonomic Societies (EFAS) endorsed by the American Autonomic Society (AAS) and the European Academy of Neurology (EAN). Clin. Auton Res. 2021, 31, 369–384. [Google Scholar]
- Nasreddine, Z.S.; Phillips, N.A.; Bedirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Hinz, A.; Brahler, E. Normative values for the hospital anxiety and depression scale (HADS) in the general German population. J. Psychosom. Res. 2011, 71, 74–78. [Google Scholar] [CrossRef]
- Yardley, L.; Beyer, N.; Hauer, K.; Kempen, G.; Piot-Ziegler, C.; Todd, C. Development and initial validation of the Falls Efficacy Scale-International (FES-I). Age Ageing 2005, 34, 614–619. [Google Scholar] [CrossRef]
- Chaudhuri, K.R.; Rizos, A.; Trenkwalder, C.; Rascol, O.; Pal, S.; Martino, D.; Carroll, C.; Paviour, D.; Falup-Pecurariu, C.; Kessel, B.; et al. Europar, the INMPDSG. King’s Parkinson’s disease pain scale, the first scale for pain in PD: An international validation. Mov. Disord. 2015, 30, 1623–1631. [Google Scholar] [CrossRef]
- Mylius, V.; Perez Lloret, S.; Cury, R.G.; Teixeira, M.J.; Barbosa, V.R.; Barbosa, E.R.; Moreira, L.I.; Listik, C.; Fernandes, A.M.; de Lacerda Veiga, D.; et al. The Parkinson disease pain classification system: Results from an international mechanism-based classification approach. Pain 2021, 162, 1201–1210. [Google Scholar] [CrossRef]
- Mylius, V.; Teepker, M.; Zouari, H.G.; Beer, S.; Schepelmann, K.; Moller, J.C. Clinical correlates of sural neurography impairment within normal limits in patients with Parkinsons disease. Neurophysiol. Clin. 2017, 47, 83–84. [Google Scholar] [CrossRef]
- Toth, C.; Breithaupt, K.; Ge, S.; Duan, Y.; Terris, J.M.; Thiessen, A.; Wiebe, S.; Zochodne, D.W.; Suchowersky, O. Levodopa, methylmalonic acid, and neuropathy in idiopathic Parkinson disease. Ann. Neurol. 2010, 68, 28–36. [Google Scholar] [CrossRef]
- Watanabe, K.; Hirano, T.; Katsumi, K.; Ohashi, M.; Shoji, H.; Hasegawa, K.; Yamazaki, A.; Ishikawa, A.; Koike, R.; Endo, N.; et al. Characteristics of spinopelvic alignment in Parkinson’s disease: Comparison with adult spinal deformity. J. Orthop. Sci. 2017, 22, 16–21. [Google Scholar] [CrossRef]
- Armstrong, M.J.; Okun, M.S. Diagnosis and Treatment of Parkinson Disease: A Review. JAMA 2020, 323, 548–560. [Google Scholar] [CrossRef]
- Custodio, N.; Lira, D.; Herrera-Perez, E.; Montesinos, R.; Castro-Suarez, S.; Cuenca-Alfaro, J.; Cortijo, P. Predictive model for falling in Parkinson disease patients. Eneurologicalsci 2016, 5, 20–24. [Google Scholar] [CrossRef]
- Workman, C.D.; Thrasher, T.A. The influence of dopaminergic medication on gait automaticity in Parkinson’s disease. J. Clin. Neurosci. 2019, 65, 71–76. [Google Scholar] [CrossRef]
- Chaudhuri, K.R.; Prieto-Jurcynska, C.; Naidu, Y.; Mitra, T.; Frades-Payo, B.; Tluk, S.; Ruessmann, A.; Odin, P.; Macphee, G.; Stocchi, F.; et al. The nondeclaration of nonmotor symptoms of Parkinson’s disease to health care professionals: An international study using the nonmotor symptoms questionnaire. Mov. Disord. 2010, 25, 704–709. [Google Scholar] [CrossRef]
- Chaudhuri, K.R.; Schapira, A.H. Non-motor symptoms of Parkinson’s disease: Dopaminergic pathophysiology and treatment. Lancet Neurol. 2009, 8, 464–474. [Google Scholar] [CrossRef]
- Seppi, K.; Ray Chaudhuri, K.; Coelho, M.; Fox, S.H.; Katzenschlager, R.; Perez Lloret, S.; Weintraub, D.; Sampaio, C. The collaborators of the Parkinson’s Disease Update on Non-Motor Symptoms Study Group on behalf of the Movement Disorders Society Evidence-Based Medicine Committee. Update on treatments for nonmotor symptoms of Parkinson’s disease-an evidence-based medicine review. Mov. Disord. 2019, 34, 180–198. [Google Scholar]
- Fanciulli, A.; Leys, F.; Falup-Pecurariu, C.; Thijs, R.; Wenning, G.K. Management of Orthostatic Hypotension in Parkinson’s Disease. J. Park. Dis. 2020, 10, S57–S64. [Google Scholar] [CrossRef]
- Paschen, S.; Hansen, C.; Welzel, J.; Albrecht, J.; Atrsaei, A.; Aminian, K.; Zeuner, K.E.; Romijnders, R.; Warmerdam, E.; Urban, P.P.; et al. Effect of Lower Limb vs. Abdominal Compression on Mobility in Orthostatic Hypotension: A Single-Blinded, Randomized, Controlled, Cross-Over Pilot Study in Parkinson’s Disease. J. Park. Dis. 2022, 12, 2531–2541. [Google Scholar] [CrossRef]
- Wieling, W.; Kaufmann, H.; Claydon, V.E.; van Wijnen, V.K.; Harms, M.P.M.; Juraschek, S.P.; Thijs, R.D. Diagnosis and treatment of orthostatic hypotension. Lancet Neurol. 2022, 21, 735–746. [Google Scholar] [CrossRef]
- Heinzel, S.; Maechtel, M.; Hasmann, S.E.; Hobert, M.A.; Heger, T.; Berg, D.; Maetzler, W. Motor dual-tasking deficits predict falls in Parkinson’s disease: A prospective study. Park. Relat. Disord. 2016, 26, 73–77. [Google Scholar] [CrossRef]
- Johansson, H.; Ekman, U.; Rennie, L.; Peterson, D.S.; Leavy, B.; Franzen, E. Dual-Task Effects During a Motor-Cognitive Task in Parkinson’s Disease: Patterns of Prioritization and the Influence of Cognitive Status. Neurorehabil. Neural. Repair. 2021, 35, 356–366. [Google Scholar] [CrossRef]
- Mylius, V.; Moller, J.C.; Bohlhalter, S.; Ciampi de Andrade, D.; Perez Lloret, S. Diagnosis and Management of Pain in Parkinson’s Disease: A New Approach. Drugs Aging 2021, 38, 559–577. [Google Scholar] [CrossRef]
- Dale, M.L. Orthopedic Care of Patients with Parkinson Disease. Clin. Geriatr. Med. 2020, 36, 131–139. [Google Scholar] [CrossRef]
- Schenkman, M.; Moore, C.G.; Kohrt, W.M.; Hall, D.A.; Delitto, A.; Comella, C.L.; Josbeno, D.A.; Christiansen, C.L.; Berman, B.D.; Kluger, B.M.; et al. Effect of High-Intensity Treadmill Exercise on Motor Symptoms in Patients with De Novo Parkinson Disease: A Phase 2 Randomized Clinical Trial. JAMA Neurol. 2018, 75, 219–226. [Google Scholar] [CrossRef]
- van der Kolk, N.M.; de Vries, N.M.; Kessels, R.P.C.; Joosten, H.; Zwinderman, A.H.; Post, B.; Bloem, B.R. Effectiveness of home-based and remotely supervised aerobic exercise in Parkinson’s disease: A double-blind, randomised controlled trial. Lancet Neurol. 2019, 18, 998–1008. [Google Scholar] [CrossRef]
- Strouwen, C.; Molenaar, E.; Munks, L.; Keus, S.H.J.; Zijlmans, J.C.M.; Vandenberghe, W.; Bloem, B.R.; Nieuwboer, A. Training dual tasks together or apart in Parkinson’s disease: Results from the DUALITY trial. Mov. Disord. 2017, 32, 1201–1210. [Google Scholar] [CrossRef]
- Walton, C.C.; Mowszowski, L.; Gilat, M.; Hall, J.M.; O’Callaghan, C.; Muller, A.J.; Georgiades, M.; Szeto, J.Y.Y.; Ehgoetz Martens, K.A.; Shine, J.M.; et al. Cognitive training for freezing of gait in Parkinson’s disease: A randomized controlled trial. NPJ Park. Dis. 2018, 4, 15. [Google Scholar] [CrossRef]
- Mirelman, A.; Rochester, L.; Maidan, I.; Del Din, S.; Alcock, L.; Nieuwhof, F.; Rikkert, M.O.; Bloem, B.R.; Pelosin, E.; Avanzino, L.; et al. Addition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-TIME): A randomised controlled trial. Lancet 2016, 388, 1170–1182. [Google Scholar] [CrossRef]
- Kwok, J.Y.Y.; Kwan, J.C.Y.; Auyeung, M.; Mok, V.C.T.; Lau, C.K.Y.; Choi, K.C.; Chan, H.Y.L. Effects of Mindfulness Yoga vs Stretching and Resistance Training Exercises on Anxiety and Depression for People with Parkinson Disease: A Randomized Clinical Trial. JAMA Neurol. 2019, 76, 755–763. [Google Scholar] [CrossRef]
- Li, G.; Huang, P.; Cui, S.; He, Y.; Tan, Y.; Chen, S. Effect of long-term Tai Chi training on Parkinson’s disease: A 3.5-year follow-up cohort study. J. Neurol. Neurosurg. Psychiatry 2024, 95, 222–228. [Google Scholar] [CrossRef]
- Capato, T.T.C.; Nonnekes, J.; de Vries, N.M.; IntHout, J.; Barbosa, E.R.; Bloem, B.R. Effects of multimodal balance training supported by rhythmical auditory stimuli in people with advanced stages of Parkinson’s disease: A pilot randomized clinical trial. J. Neurol. Sci. 2020, 418, 117086. [Google Scholar] [CrossRef]
- Bekkers, E.M.J.; Mirelman, A.; Alcock, L.; Rochester, L.; Nieuwhof, F.; Bloem, B.R.; Pelosin, E.; Avanzino, L.; Cereatti, A.; Della Croce, U.; et al. Do Patients With Parkinson’s Disease with Freezing of Gait Respond Differently Than Those without to Treadmill Training Augmented by Virtual Reality? Neurorehabil. Neural. Repair. 2020, 34, 440–449. [Google Scholar] [CrossRef]
- Maidan, I.; Rosenberg-Katz, K.; Jacob, Y.; Giladi, N.; Hausdorff, J.M.; Mirelman, A. Disparate effects of training on brain activation in Parkinson disease. Neurology 2017, 89, 1804–1810. [Google Scholar] [CrossRef]
- Nieuwhof, F.; Bloem, B.R.; Reelick, M.F.; Aarts, E.; Maidan, I.; Mirelman, A.; Hausdorff, J.M.; Toni, I.; Helmich, R.C. Impaired dual tasking in Parkinson’s disease is associated with reduced focusing of cortico-striatal activity. Brain 2017, 140, 1384–1398. [Google Scholar] [CrossRef]
- Lombardi, G.; Baccini, M.; Gualerzi, A.; Pancani, S.; Campagnini, S.; Doronzio, S.; Longo, D.; Maselli, A.; Cherubini, G.; Piazzini, M.; et al. Comparing the effects of augmented virtual reality treadmill training versus conventional treadmill training in patients with stage II-III Parkinson’s disease: The VIRTREAD-PD randomized controlled trial protocol. Front. Neurol. 2024, 15, 1338609. [Google Scholar] [CrossRef]
- Mylius, V.; Maes, L.; Negele, K.; Schmid, C.; Sylvester, R.; Brook, C.S.; Brugger, F.; Perez-Lloret, S.; Bansi, J.; Aminian, K.; et al. Dual-Task Treadmill Training for the Prevention of Falls in Parkinson’s Disease: Rationale and Study Design. Front. Rehabil. Sci. 2021, 2, 774658. [Google Scholar] [CrossRef]
- Giannouli, E.; Bock, O.; Mellone, S.; Zijlstra, W. Mobility in Old Age: Capacity Is Not Performance. Biomed Res. Int. 2016, 2016, 3261567. [Google Scholar] [CrossRef]
- Rispens, S.M.; van Schooten, K.S.; Pijnappels, M.; Daffertshofer, A.; Beek, P.J.; van Dieen, J.H. Identification of fall risk predictors in daily life measurements: Gait characteristics’ reliability and association with self-reported fall history. Neurorehabil. Neural. Repair. 2015, 29, 54–61. [Google Scholar] [CrossRef]
- van Uem, J.M.T.; Cerff, B.; Kampmeyer, M.; Prinzen, J.; Zuidema, M.; Hobert, M.A.; Graber, S.; Berg, D.; Maetzler, W.; Liepelt-Scarfone, I. The association between objectively measured physical activity, depression, cognition, and health-related quality of life in Parkinson’s disease. Park. Relat. Disord. 2018, 48, 74–81. [Google Scholar] [CrossRef]
- Maetzler, W.; Rochester, L.; Bhidayasiri, R.; Espay, A.J.; Sanchez-Ferro, A.; van Uem, J.M.T. Modernizing Daily Function Assessment in Parkinson’s Disease Using Capacity, Perception, and Performance Measures. Mov. Disord. 2021, 36, 76–82. [Google Scholar] [CrossRef]
- Mikolaizak, A.S.; Taraldsen, K.; Boulton, E.; Gordt, K.; Maier, A.B.; Mellone, S.; Hawley-Hague, H.; Aminian, K.; Chiari, L.; Paraschiv-Ionescu, A.; et al. Impact of adherence to a lifestyle-integrated programme on physical function and behavioural complexity in young older adults at risk of functional decline: A multicentre RCT secondary analysis. BMJ Open 2022, 12, e054229. [Google Scholar] [CrossRef]
- Kirk, C.; Kuderle, A.; Mico-Amigo, M.E.; Bonci, T.; Paraschiv-Ionescu, A.; Ullrich, M.; Soltani, A.; Gazit, E.; Salis, F.; Alcock, L.; et al. Mobilise-D insights to estimate real-world walking speed in multiple conditions with a wearable device. Sci. Rep. 2024, 14, 1754. [Google Scholar] [CrossRef]
- Mazza, C.; Alcock, L.; Aminian, K.; Becker, C.; Bertuletti, S.; Bonci, T.; Brown, P.; Brozgol, M.; Buckley, E.; Carsin, A.E.; et al. Technical validation of real-world monitoring of gait: A multicentric observational study. BMJ Open 2021, 11, e050785. [Google Scholar] [CrossRef]
- Mico-Amigo, M.E.; Bonci, T.; Paraschiv-Ionescu, A.; Ullrich, M.; Kirk, C.; Soltani, A.; Kuderle, A.; Gazit, E.; Salis, F.; Alcock, L.; et al. Assessing real-world gait with digital technology? Validation, insights and recommendations from the Mobilise-D consortium. J. Neuroeng. Rehabil. 2023, 20, 78. [Google Scholar] [CrossRef]
- Del Din, S.; Godfrey, A.; Galna, B.; Lord, S.; Rochester, L. Free-living gait characteristics in ageing and Parkinson’s disease: Impact of environment and ambulatory bout length. J. Neuroeng. Rehabil. 2016, 13, 46. [Google Scholar] [CrossRef]
- Del Din, S.; Galna, B.; Godfrey, A.; Bekkers, E.M.J.; Pelosin, E.; Nieuwhof, F.; Mirelman, A.; Hausdorff, J.M.; Rochester, L. Analysis of Free-Living Gait in Older Adults With and Without Parkinson’s Disease and With and Without a History of Falls: Identifying Generic and Disease-Specific Characteristics. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 500–506. [Google Scholar] [CrossRef]
- Shah, V.V.; McNames, J.; Mancini, M.; Carlson-Kuhta, P.; Spain, R.I.; Nutt, J.G.; El-Gohary, M.; Curtze, C.; Horak, F.B. Quantity and quality of gait and turning in people with multiple sclerosis, Parkinson’s disease and matched controls during daily living. J. Neurol. 2020, 267, 1188–1196. [Google Scholar] [CrossRef]
- Beck, Y.; Herman, T.; Brozgol, M.; Giladi, N.; Mirelman, A.; Hausdorff, J.M. SPARC: A new approach to quantifying gait smoothness in patients with Parkinson’s disease. J. Neuroeng. Rehabil. 2018, 15, 49. [Google Scholar] [CrossRef]
- Morris, R.; Hickey, A.; Del Din, S.; Godfrey, A.; Lord, S.; Rochester, L. A model of free-living gait: A factor analysis in Parkinson’s disease. Gait Posture 2017, 52, 68–71. [Google Scholar] [CrossRef]
- Paraschiv-Ionescu, A.; Bula, C.J.; Major, K.; Lenoble-Hoskovec, C.; Krief, H.; El-Moufawad, C.; Aminian, K. Concern about Falling and Complexity of Free-Living Physical Activity Patterns in Well-Functioning Older Adults. Gerontology 2018, 64, 603–611. [Google Scholar] [CrossRef]
- Paraschiv-Ionescu, A.; Perruchoud, C.; Buchser, E.; Aminian, K. Barcoding human physical activity to assess chronic pain conditions. PLoS ONE 2012, 7, e32239. [Google Scholar] [CrossRef]
- Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s disease. Lancet 2021, 397, 2284–2303. [Google Scholar] [CrossRef]
- Domingos, J.; Keus, S.H.J.; Dean, J.; de Vries, N.M.; Ferreira, J.J.; Bloem, B.R. The European Physiotherapy Guideline for Parkinson’s Disease: Implications for Neurologists. J. Park. Dis. 2018, 8, 499–502. [Google Scholar]
- Petzinger, G.M.; Fisher, B.E.; McEwen, S.; Beeler, J.A.; Walsh, J.P.; Jakowec, M.W. Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease. Lancet Neurol. 2013, 12, 716–726. [Google Scholar] [CrossRef]
- Zimmermann, R.; Gschwandtner, U.; Benz, N.; Hatz, F.; Schindler, C.; Taub, E.; Fuhr, P. Cognitive training in Parkinson disease: Cognition-specific vs nonspecific computer training. Neurology 2014, 82, 1219–1226. [Google Scholar] [CrossRef]
- Wu, J.; Kuruvithadam, K.; Schaer, A.; Stoneham, R.; Chatzipirpiridis, G.; Easthope, C.A.; Barry, G.; Martin, J.; Pane, S.; Nelson, B.J.; et al. An Intelligent In-Shoe System for Gait Monitoring and Analysis with Optimized Sampling and Real-Time Visualization Capabilities. Sensors 2021, 21, 2869. [Google Scholar] [CrossRef]
Symptom | Assessments (Selection) | References | |
---|---|---|---|
Aging related | CDC approach | [3,4] | |
Polypharmacy | [20] | ||
Osteoporosis | |||
Vision | |||
Mental health | |||
Gait | |||
Frailty | Weakness | frailty phenotype | [5] |
Low physical activity | |||
Low gait speed | |||
Unintended weight loss | |||
Self-reported exhaustion | |||
Morbidity | frailty index | [21] | |
Motor symptoms | Bradykinesia | MDS-UPDRS III | [22] |
Motor fluctuations | MDS-UPDRS IV | [22] | |
movement diary | |||
WOQ-9 | [23] | ||
Freezing of gait | FoG questionnaire | [24] | |
Postural instability | Hoehn and Yahr stage | [22] | |
Posture | |||
Gait and balance | Mini-BESTest | [25] | |
Non-motor symptoms | Non-motor fluctuations | MDS-NMSS | [26] |
Orthostatic hypotension | tilt table testing | [27] | |
Cognitive deterioration | MoCA | [28] | |
Depression | HADS | [29] | |
Anxiety | HADS | [29] | |
Fear of falling | Falls Efficacy Scale-International (FES-I) | [30] | |
Chronic pain | PD-PCS, KPPS | [31,32] | |
Indirectly PD-related factors | Polyneuropathy | neurography | [33] |
cobolamin testing | [34] | ||
Osteoarthrosis | radiography | ||
Lumbar column degeneration | radiography, MRI | [11,35] |
References/Participants | Intervention | Control Group | Design | Primary Outcome Secondary Outcomes | Results |
---|---|---|---|---|---|
Schenkman M et al. [49] N1 = 43 N2 = 45 N3 = 40 Hoehn and Yahr stage ≤ 2 (within 5 years of diagnosis) | high-intensity TT or moderate-intensity TT four times/week for 6 months 80 or 60% of the maximal heart rate | wait list | single-blind RCT | UPDRS III V02max | significant difference at 6 months between high intensity change 0.3 and wait list change 3.2 but not compared to moderate intensity change 2.0 V02max improved in high intensity group compared to usual care |
van der Kolk NM et al. [50] N1 = 65 N2 = 65 Hoehn and Yahr stage ≤ 2 | at-home home-trainer aerobic exercise at 50–70% of heart rate reserve 3 times 30–45 min a week for 6 months (with exergaming experience, motivational app, and remote supervision) | at-home stretching (active control group, motivational app, and remote supervision) | single-blind RCT | MDS-UPDRS III | Med off score group difference 3.5 after 6 months |
Strouwen C et al. [51] N1 = 56 N2 = 65 Hoehn and Yahr stage 2–3 | physiotherapeutic controlled gait training together or apart from cognitive tasks for 6 weeks | control period without training (after 6 weeks before starting) | single-blind RCT | dual-task gait velocity 12-week follow-up | dual-task gait velocity improvement in both groups compared to the control period after intervention and at the 12-week follow-up |
Walton CC et al. [52] N1 = 20 N2 = 18 PD patients with FoG | cognitive training (CT) twice a week for 7 weeks | active control group | double-blind RCT | FoG during TUG end of study (Med on and Med off condition) | percentage of FoG during TUG improved for CT at Med on improved processing speed improved daytime sleepiness |
Mirelman A et al. [53] Elderly with falls N1 = 146 N2 = 136 Subgroup of PD patients: N1 = 66 N2 = 64 Hoehn and Yahr stage ≥ 3 ? | VR-TT 45 min three times/week for 6 weeks | TT alone | single-blind RCT | falls 6 months before and after intervention Cognition Gait Mobility Quality of life | all participants: significant reduction in the VR-TT group 11.92 vs. 6.0; not significant reduction in the TT group 10.71 vs. 8.27 PD patients: significant reduction in the VR-TT group 18.26 vs. 8.06; not significant reduction in the TT group 19.23 vs. 16.48 improvements in both groups improvements in both groups with more stable responses in the VR-TT after 6 months |
Kwok JYY et al. [54] N1 = 71 N2 = 67 Hoehn and Yahr stage 2–3 | Mindfulness Yoga 90 min group for 8 weeks | stretching and resistant training exercise 60 min group | single-blind RCT | HADS 8 weeks (T1) 12 weeks (T2) MDS-UPDRS III TUG HRQOL | significant time x group interaction anxiety: T1= −1.79 T2 = −2.05 depression: T1 = −2.75 T2 = −2.75 T1 = −5.19 T2 = −4.71 ns T1 = −7.7 T2 = −7.99 |
Li G et al. [55] N1 = 143 N2 = 187 Hoehn and Yahr stage ≤ 2.5 | Thai Chi 60 min twice/week for 4.3 years | control group without any intervention | unblinded | UPDRS 4.3 years UPDRS III LEDD | between group differences −2 −2 −233 mg |
Capato TTC et al. [56] N1 = 17 N2 = 18 Hoehn and Yahr stage 4 | multimodal balance training and rhythmic auditory stimuli (RAS) twice/week for 5 weeks | multimodal balance training | single-blind RCT | Mini-BESTest 1 month 6 months | improvement in both groups after training and 1 month after training improvement after 6 months in the RAS group only |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mylius, V.; Zenev, E.; Brook, C.S.; Brugger, F.; Maetzler, W.; Gonzenbach, R.; Paraschiv-Ionescu, A. Imbalance and Falls in Patients with Parkinson’s Disease: Causes and Recent Developments in Training and Sensor-Based Assessment. Brain Sci. 2024, 14, 625. https://doi.org/10.3390/brainsci14070625
Mylius V, Zenev E, Brook CS, Brugger F, Maetzler W, Gonzenbach R, Paraschiv-Ionescu A. Imbalance and Falls in Patients with Parkinson’s Disease: Causes and Recent Developments in Training and Sensor-Based Assessment. Brain Sciences. 2024; 14(7):625. https://doi.org/10.3390/brainsci14070625
Chicago/Turabian StyleMylius, Veit, Elisabeth Zenev, Caroline S. Brook, Florian Brugger, Walter Maetzler, Roman Gonzenbach, and Anisoara Paraschiv-Ionescu. 2024. "Imbalance and Falls in Patients with Parkinson’s Disease: Causes and Recent Developments in Training and Sensor-Based Assessment" Brain Sciences 14, no. 7: 625. https://doi.org/10.3390/brainsci14070625
APA StyleMylius, V., Zenev, E., Brook, C. S., Brugger, F., Maetzler, W., Gonzenbach, R., & Paraschiv-Ionescu, A. (2024). Imbalance and Falls in Patients with Parkinson’s Disease: Causes and Recent Developments in Training and Sensor-Based Assessment. Brain Sciences, 14(7), 625. https://doi.org/10.3390/brainsci14070625