In Search for a Pathogenesis of Major Depression and Suicide—A Joint Investigation of Dopamine and Fiber Tract Anatomy Focusing on the Human Ventral Mesencephalic Tegmentum: Description of a Workflow
Abstract
:1. Introduction
2. Material and Methods
2.1. Ethics
2.2. Workflow
2.2.1. Midbrain Samples
2.2.2. MRI-Measurement, Transfer into a Common Space, and Tractographic Analysis
2.2.3. Preparation
2.2.4. TH Staining
2.2.5. Luxol Fast Blue Staining
2.2.6. Hematoxylin and Eosin (HE) Staining
2.2.7. Semi-Quantitative Analysis of DA Cells in VTA Subregions
2.2.8. Statistical Analysis
3. Results
3.1. Autopsy Cases
3.2. Histological Tissue Analysis
3.3. Hybrid Evaluation Including MRI
4. Discussion
4.1. Dopamine in the VTA as a Biomarker for MDD and Its Potential Link to the Risk of Suicide
4.2. Choice of Midbrain Specimens
4.3. Postmortem Interval
4.4. Differential DA Cell Changes in Subnuclei of the VTA
4.5. Seasonal Photo-Period and DA Cells
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
5-HT | Serotonine |
DA | Dopamine |
DBS | Deep Brain Stimulation |
dlPFC | dorsolateral prefrontal cortex |
dmPFC | dorsomedial prefrontal cortex |
dRN | dorsal raphe nucleus; |
imMFB | inferomedial branch of the medial forebrain bundle (primate); |
MDD | major depressive disorder |
mfb | medial forebrain bundle (rodent) |
NAC | nucleus accumbens septi |
VTA (A10) | ventral tegmental area (of Tsai): |
RLi | rostral linear nucleus; |
CLi | caudal linear nucleus; |
PN | paranigral nucleus; |
PBP | parabrachial pigmented nucleus; |
VTAnc | ventral tegmental area proper nucleus; |
rrf | retro-rubral field (A8); |
SCG | subgenual cingulate gyrus (cg25) |
slMFB | superolateral branch of the medial forebrain bundle (primate); |
SNr | substantia nigra pars reticulata; |
SNc (A9) | substantia nigra pars compacta; |
SSRI | selective serotonin reuptake inhibitors |
STN | subthalamic nucleus; |
TH | tyrosine hydroxylase |
TRD | treatment-resistant depression |
vmPFC | ventromedial prefrontal cortex |
References
- Cuijpers, P.; Dekker, J.; Hollon, S.D.; Andersson, G. Adding Psychotherapy to Pharmacotherapy in the Treatment of Depressive Disorders in Adults: A Meta-Analysis. J. Clin. Psychiatry 2009, 70, 1219–1229. [Google Scholar] [CrossRef] [PubMed]
- Li, B.J.; Friston, K.; Mody, M.; Neuroscience, H.W.C. A Brain Network Model for Depression: From Symptom Understanding to Disease Intervention. Wiley Online Libr. 2018, 24, 1004–1019. [Google Scholar] [CrossRef] [PubMed]
- Hirschfeld, R.M.A. History and Evolution of the Monoamine Hypothesis of Depression. J. Clin. Psychiatry 2000, 61, 4–6. [Google Scholar] [PubMed]
- Filatova, E.V.; Shadrina, M.I.; Slominsky, P.A. Major Depression: One Brain, One Disease, One Set of Intertwined Processes. Cells 2021, 10, 1283. [Google Scholar] [CrossRef] [PubMed]
- Azizi, S.A. Monoamines: Dopamine, Norepinephrine, and Serotonin, Beyond Modulation, “Switches” That Alter the State of Target Networks. Neuroscientist 2022, 28, 121–143. [Google Scholar] [CrossRef] [PubMed]
- Warden, D.; Rush, A.J.; Trivedi, M.H.; Fava, M.; Wisniewski, S.R. The STAR*D Project Results: A Comprehensive Review of Findings. Curr. Psychiat. Rep. 2007, 9, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Lisanby, S.H. Electroconvulsive Therapy for Depression. New Engl. J. Med. 2007, 357, 1939–1945. [Google Scholar] [CrossRef] [PubMed]
- Kisely, S.; Li, A.; Warren, N.; Siskind, D. A Systematic Review and Meta-Analysis of Deep Brain Stimulation for Depression. Depress. Anxiety 2018, 35, 468–480. [Google Scholar] [CrossRef]
- Remore, L.G.; Tolossa, M.; Wei, W.; Karnib, M.; Tsolaki, E.; Rifi, Z.; Bari, A.A. Deep Brain Stimulation of the Medial Forebrain Bundle for Treatment-Resistant Depression: A Systematic Review Focused on the Long-Term Antidepressive Effect. Neuromodulation Technol. Neural Interface 2023, 27, 690–700. [Google Scholar] [CrossRef]
- Bewernick, B.H.; Kayser, S.; Gippert, S.M.; Switala, C.; Coenen, V.A.; Schlaepfer, T.E. Deep Brain Stimulation to the Medial Forebrain Bundle for Depression-Long-Term Outcomes and a Novel Data Analysis Strategy. Brain Stimul. 2017, 10, 664–671. [Google Scholar] [CrossRef]
- Coenen, V.A.; Bewernick, B.H.; Kayser, S.; Kilian, H.; Boström, J.; Greschus, S.; Hurlemann, R.; Klein, M.E.; Spanier, S.; Sajonz, B.; et al. Superolateral Medial Forebrain Bundle Deep Brain Stimulation in Major Depression: A Gateway Trial. Neuropsychopharmacology 2019, 26, 587. [Google Scholar] [CrossRef] [PubMed]
- Fenoy, A.J.; Schulz, P.E.; Sanches, M.; Selvaraj, S.; Burrows, C.L.; Asir, B.; Conner, C.R.; Quevedo, J.; Soares, J.C. Deep Brain Stimulation of the “Medial Forebrain Bundle”: Sustained Efficacy of Antidepressant Effect over Years. Mol. Psychiatr. 2022, 27, 2546–2553. [Google Scholar] [CrossRef] [PubMed]
- Coenen, V.A.; Döbrössy, M.D.; Teo, S.J.; Wessolleck, J.; Sajonz, B.E.A.; Reinacher, P.C.; Thierauf-Emberger, A.; Spittau, B.; Leupold, J.; von Elverfeldt, D.; et al. Diverging Prefrontal Cortex Fiber Connection Routes to the Subthalamic Nucleus and the Mesencephalic Ventral Tegmentum Investigated with Long Range (Normative) and Short Range (Ex-Vivo High Resolution) 7T DTI. Brain Struct. Funct. 2022, 227, 23–47. [Google Scholar] [CrossRef] [PubMed]
- Schlaepfer, T.E.; Bewernick, B.H.; Kayser, S.; Mädler, B.; Coenen, V.A. Rapid Effects of Deep Brain Stimulation for Treatment-Resistant Major Depression. Biol. Psychiatry 2013, 73, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
- Coenen, V.A.; Schlaepfer, T.E.; Maedler, B.; Panksepp, J. Cross-Species Affective Functions of the Medial Forebrain Bundle-Implications for the Treatment of Affective Pain and Depression in Humans. Neurosci. Biobehav. Rev. 2011, 35, 1971–1981. [Google Scholar] [CrossRef] [PubMed]
- Alcaro, A.; Panksepp, J. The SEEKING Mind: Primal Neuro-Affective Substrates for Appetitive Incentive States and Their Pathological Dynamics in Addictions and Depression. Neurosci. Biobehav. Rev. 2011, 35, 1805–1820. [Google Scholar] [CrossRef]
- Wise, R.A.; McDevitt, R.A. Drive and Reinforcement Circuitry in the Brain: Origins, Neurotransmitters, and Projection Fields. Neuropsychopharmacology 2017, 43, 680–689. [Google Scholar] [CrossRef] [PubMed]
- Heshmati, M.; Russo, S.J. Anhedonia and the Brain Reward Circuitry in Depression. Curr. Behav. Neurosci. Rep. 2015, 2, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Dobrossy, M.D.; Ramanathan, C.; Vajari, D.A.A.; Tong, Y.; Schlaepfer, T.; Coenen, V.A. Neuromodulation in Psychiatric Disorders: Experimental and Clinical Evidence for Reward and Motivation Network Deep Brain Stimulation—Focus on the Medial Forebrain Bundle. Eur. J. Neurosci. 2020, 53, 89–113. [Google Scholar] [CrossRef]
- Brown, C.A.; Campbell, M.C.; Karimi, M.; Tabbal, S.D.; Loftin, S.K.; Tian, L.L.; Moerlein, S.M.; Perlmutter, J.S. Dopamine Pathway Loss in Nucleus Accumbens and Ventral Tegmental Area Predicts Apathetic Behavior in MPTP-Lesioned Monkeys. Exp. Neurol. 2012, 236, 190–197. [Google Scholar] [CrossRef]
- Winter, C.; von Rumohr, A.; Mundt, A.; Petrus, D.; Klein, J.; Lee, T.; Morgenstern, R.; Kupsch, A.; Juckel, G. Lesions of Dopaminergic Neurons in the Substantia Nigra Pars Compacta and in the Ventral Tegmental Area Enhance Depressive-like Behavior in Rats. Behav. Brain Res. 2007, 184, 133–141. [Google Scholar] [CrossRef]
- Furlanetti, L.L.; Coenen, V.A.; Dobrossy, M.D. Ventral Tegmental Area Dopaminergic Lesion-Induced Depressive Phenotype in the Rat Is Reversed by Deep Brain Stimulation of the Medial Forebrain Bundle. Behav. Brain Res. 2016, 299, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Pfeiffer, L.; Serchov, T.; Coenen, V.A.; Döbrössy, M.D. Optogenetic Stimulation of Ventral Tegmental Area Dopaminergic Neurons in a Female Rodent Model of Depression: The Effect of Different Stimulation Patterns. J. Neurosci. Res. 2022, 100, 897–911. [Google Scholar] [CrossRef]
- Miguel Telega, L.; Ashouri Vajari, D.; Stieglitz, T.; Coenen, V.A.; Döbrössy, M.D. New Insights into In Vivo Dopamine Physiology and Neurostimulation: A Fiber Photometry Study Highlighting the Impact of Medial Forebrain Bundle Deep Brain Stimulation on the Nucleus Accumbens. Brain Sci. 2022, 12, 1105. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-Q.; Wang, Z.-Z.; Chen, N.-H. The Receptor Hypothesis and the Pathogenesis of Depression: Genetic Bases and Biological Correlates. Pharmacol. Res. 2021, 167, 105542. [Google Scholar] [CrossRef]
- Ebert, D.; Loew, T.; Feistel, H.; Pirner, A. Dopamine and Depression—Striatal Dopamine D2 Receptor SPECT before and after Antidepressant Therapy. Psychopharmacology 1996, 126, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Rijlaarsdam, J.; van der Voort, A.; Ji, L.; Zhang, W.; Bakermans-Kranenburg, M.J. Associations Between Dopamine D2 Receptor (DRD2) Gene, Maternal Positive Parenting and Trajectories of Depressive Symptoms from Early to Mid-Adolescence. J. Abnorm. Child Psychol. 2018, 46, 365–379. [Google Scholar] [CrossRef]
- Suda, A.; Kawanishi, C.; Kishida, I.; Sato, R.; Yamada, T.; Nakagawa, M.; Hasegawa, H.; Kato, D.; Furuno, T.; Hirayasu, Y. Dopamine D2 Receptor Gene Polymorphisms Are Associated with Suicide Attempt in the Japanese Population. Neuropsychobiology 2009, 59, 130–134. [Google Scholar] [CrossRef]
- Traffanstedt, M.K.; Mehta, S.; LoBello, S.G. Major Depression with Seasonal Variation. Clin. Psychol. Sci. 2015, 4, 825–834. [Google Scholar] [CrossRef]
- Veleva, B.I.; van Bezooijen, R.L.; Chel, V.G.M.; Numans, M.E.; Caljouw, M.A.A. Effect of Ultraviolet Light on Mood, Depressive Disorders and Well-being. Photodermatol. Photoimmunol. Photomed. 2018, 34, 288–297. [Google Scholar] [CrossRef]
- Son, J.; Shin, J. Bimodal Effects of Sunlight on Major Depressive Disorder. Compr. Psychiatry 2021, 108, 152232. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Gong, Q.; Huang, C.; Guo, F.; Li, W.; Wang, Y.; Cheng, X. The Relationship between Sunlight Exposure Duration and Depressive Symptoms: A Cross-Sectional Study on Elderly Chinese Women. PLoS ONE 2021, 16, e0254856. [Google Scholar] [CrossRef] [PubMed]
- Aumann, T.D.; Raabus, M.; Tomas, D.; Prijanto, A.; Churilov, L.; Spitzer, N.C.; Horne, M.K. Differences in Number of Midbrain Dopamine Neurons Associated with Summer and Winter Photoperiods in Humans. PLoS ONE 2016, 11, e0158847. [Google Scholar] [CrossRef] [PubMed]
- Aumann, T.D. Environment- and Activity-Dependent Dopamine Neurotransmitter Plasticity in the Adult Substantia Nigra. J. Chem. Neuroanat. 2016, 73, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Bundesärztekammer, Z.E. bei der Die (Weiter-)Verwendung von Menschlichen Körpermaterialien von Verstorbenen Für Zwecke Medizinischer Forschung. Dtsch. Arztebl. 2003, 34–35, A2251. [Google Scholar]
- Bundesärztekammer, Z.E. bei der Die (Weiter-)Verwendung von Menschlichen Körpermaterialien Für Zwecke Medizinischer Forschung. Dtsch. Arztebl. 2003, 23, A1632. [Google Scholar]
- Amunts, K.; Lepage, C.; Borgeat, L.; Mohlberg, H.; Dickscheid, T.; Rousseau, M.-É.; Bludau, S.; Bazin, P.-L.; Lewis, L.B.; Oros-Peusquens, A.-M.; et al. BigBrain: An Ultrahigh-Resolution 3D Human Brain Model. Science 2013, 340, 1472–1475. [Google Scholar] [CrossRef] [PubMed]
- Reisert, M.; Mader, I.; Anastasopoulos, C.; Weigel, M.; Schnell, S.; Kiselev, V. Global Fiber Reconstruction Becomes Practical. NeuroImage 2011, 54, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Veraart, J.; Novikov, D.S.; Christiaens, D.; Ades-aron, B.; Sijbers, J.; Fieremans, E. Denoising of Diffusion MRI Using Random Matrix Theory. NeuroImage 2016, 142, 394–406. [Google Scholar] [CrossRef]
- Reisert, M.; Kellner, E.; Dhital, B.; Hennig, J.; Kiselev, V.G. Disentangling Micro from Mesostructure by Diffusion MRI_ A Bayesian Approach. NeuroImage 2017, 147, 964–975. [Google Scholar] [CrossRef]
- Reisert, M.; Kellner, E. Edge Preserving Upsampling of Image Resolution in MRI. Proc. ISMRM Hawaii 2017. [Google Scholar]
- Büttner-Ennever, J.A.; Horn, A.K.E. (Eds.) Olszewski and Baxter’s Cytoarchitecture of the Human Brainstem, 3rd ed.; Karger: Basel, Switzerland; Freiburg, Germany; Paris, France, 2014; ISBN 978-3-318-02367-1. [Google Scholar]
- Meyerholz, D.K.; Beck, A.P. Fundamental Concepts for Semiquantitative Tissue Scoring in Translational Research. ILAR J. 2019, 59, 13–17. [Google Scholar] [CrossRef]
- Root, D.H.; Wang, H.-L.; Liu, B.; Barker, D.J.; Mód, L.; Szocsics, P.; Silva, A.C.; Maglóczky, Z.; Morales, M. Glutamate Neurons Are Intermixed with Midbrain Dopamine Neurons in Nonhuman Primates and Humans. Nat. Publ. Group 2016, 6, 30615. [Google Scholar] [CrossRef]
- Trutti, A.C.; Mulder, M.J.; Hommel, B.; Forstmann, B.U. Functional Neuroanatomical Review of the Ventral Tegmental Area. Neuroimage 2019, 191, 258–268. [Google Scholar] [CrossRef]
- Trutti, A.C.; Fontanesi, L.; Mulder, M.J.; Bazin, P.-L.; Hommel, B.; Forstmann, B.U. A Probabilistic Atlas of the Human Ventral Tegmental Area (VTA) Based on 7 Tesla MRI Data. Brain Struct. Funct. 2021, 226, 1155–1167. [Google Scholar] [CrossRef]
- Arango, V.; Underwood, M.D.; Mann, J.J. Biologic alterations in the brainstem of suicides. Psychiatr. Clin. N. Am. 1997, 20, 581–593. [Google Scholar] [CrossRef]
- Mayberg, H.S.; Liotti, M.; Brannan, S.K.; McGinnis, S.; Mahurin, R.K.; Jerabek, P.A.; Silva, J.A.; Tekell, J.L.; Martin, C.C.; Lancaster, J.L.; et al. Reciprocal Limbic-Cortical Function and Negative Mood: Converging PET Findings in Depression and Normal Sadness. Am. J. Psychiatry 1999, 156, 675–682. [Google Scholar] [CrossRef]
- Belujon, P.; Grace, A.A. Dopamine System Dysregulation in Major Depressive Disorders. Int. J. Neuropsychopharmacol. 2017, 20, 1036–1046. [Google Scholar] [CrossRef]
- Nieuwenhuys, R.; Geeraedts, L.M.G.; Veening, J.G. The medial forebrain bundle of the rat. I. General introduction. J. Comp. Neurol. 1982, 206, 49–81. [Google Scholar] [CrossRef]
- Veening, J.G.; Swanson, L.W.; Cowan, W.M.; Nieuwenhuys, R.; Geeraedts, L.M.G. The medial forebrain bundle of the rat. II. An autoradiographic study of the topography of the major descending and ascending components. J. Comp. Neurol. 1982, 206, 82–108. [Google Scholar] [CrossRef]
- Coenen, V.A.; Watakabe, A.; Skibbe, H.; Yamamori, T.; Döbrössy, M.D.; Sajonz, B.E.A.; Reinacher, P.C.; Reisert, M. Tomographic Tract Tracing and Data Driven Approaches to Unravel Complex 3D Fiber Anatomy of DBS Relevant Prefrontal Projections to the Diencephalic-Mesencephalic Junction in the Marmoset. Brain Stimul. 2023, 16, 670–681. [Google Scholar] [CrossRef]
- Berti, R.; Telega, L.M.; Steinacker, N.; Domogalla, L.C.; Omrane, M.A.; Blazhenets, G.; Frings, L.; Brumberg, J.; Coenen, V.A.; Meyer, P.T.; et al. Pharmacokinetic Analysis of Striatal D2R Availability with F-18-DMFP PET in a Rodent Model of Depression. Nukl.-Nucl. 2023, 62, 104–105. [Google Scholar] [CrossRef]
- Tong, Y.; Cho, S.; Coenen, V.A.; Döbrössy, M.D. Input-Output Relation of Midbrain Connectomics in a Rodent Model of Depression. J. Affect. Disord. 2024, 345, 443–454. [Google Scholar] [CrossRef]
- Vajari, D.A.; Ramanathan, C.; Tong, Y.; Stieglitz, T.; Coenen, V.A.; Döbrössy, M.D. Medial Forebrain Bundle DBS Differentially Modulates Dopamine Release in the Nucleus Accumbens in a Rodent Model of Depression. Exp. Neurol. 2020, 327, 113224. [Google Scholar] [CrossRef]
- Edemann-Callesen, H.; Voget, M.; Empl, L.; Vogel, M.; Wieske, F.; Rummel, J.; Heinz, A.; Mathe, A.A.; Hadar, R.; Winter, C. Medial Forebrain Bundle Deep Brain Stimulation Has Symptom-Specific Anti-Depressant Effects in Rats and as Opposed to Ventromedial Prefrontal Cortex Stimulation Interacts With the Reward System. Brain Stimulation 2015, 8, 714–723. [Google Scholar] [CrossRef]
- Conway, C.R.; Chibnall, J.T.; Gebara, M.A.; Price, J.L.; Snyder, A.Z.; Mintun, M.A.; Craig, A.D.; Cornell, M.E.; Perantie, D.C.; Giuffra, L.A.; et al. Association of Cerebral Metabolic Activity Changes with Vagus Nerve Stimulation Antidepressant Response in Treatment-Resistant Depression. Brain Stimul. 2013, 6, 788–797. [Google Scholar] [CrossRef]
- Siddiqi, S.H.; Kletenik, I.; Anderson, M.C.; Cavallari, M.; Chitnis, T.; Glanz, B.I.; Khalil, S.; Palotai, M.; Bakshi, R.; Guttmann, C.R.G.; et al. Lesion Network Localization of Depression in Multiple Sclerosis. Nat. Ment. Heal. 2023, 1, 36–44. [Google Scholar] [CrossRef]
- Ohmori, T.; Arora, R.C.; Meltzer, H.Y. Serotonergic Measures in Suicide Brain: The Concentration of 5-HIAA, HVA, and Tryptophan in Frontal Cortex of Suicide Victims. Biol. Psychiatry 1992, 32, 57–71. [Google Scholar] [CrossRef]
- Owens, M.J. Selectivity of Antidepressants: From the Monoamine Hypothesis of Depression to the SSRI Revolution and Beyond. J. Clin. Psychiatry 2004, 65 (Suppl. S4), 5–10. [Google Scholar]
- Ungerstedt, U. Stereotaxic Mapping of the Monoamine Pathways in the Rat Brain*. Acta Physiol. Scand. 1971, 82, 1–48. [Google Scholar] [CrossRef] [PubMed]
- Cowen, P.J.; Browning, M. What Has Serotonin to Do with Depression? World Psychiatry 2015, 14, 158–160. [Google Scholar] [CrossRef]
- Figee, M.; Riva-Posse, P.; Choi, K.S.; Bederson, L.; Mayberg, H.S.; Kopell, B.H. Deep Brain Stimulation for Depression. Neurotherapeutics 2022, 19, 1229–1245. [Google Scholar] [CrossRef]
- Riva-Posse, P.; Choi, K.S.; Holtzheimer, P.E.; Crowell, A.L.; Garlow, S.J.; Rajendra, J.K.; McIntyre, C.C.; Gross, R.E.; Mayberg, H.S. A Connectomic Approach for Subcallosal Cingulate Deep Brain Stimulation Surgery: Prospective Targeting in Treatment-Resistant Depression. Mol. Psychiatry 2017, 62, 10. [Google Scholar] [CrossRef]
- Coenen, V.A.; Schlaepfer, T.E.; Bewernick, B.; Kilian, H.; Kaller, C.P.; Urbach, H.; Li, M.; Reisert, M. Frontal White Matter Architecture Predicts Efficacy of Deep Brain Stimulation in Major Depression. Transl. Psychiatry 2019, 9, 197. [Google Scholar] [CrossRef]
- Fox, M.D.; Buckner, R.L.; White, M.P.; Greicius, M.D.; Pascual-Leone, A. Efficacy of Transcranial Magnetic Stimulation Targets for Depression Is Related to Intrinsic Functional Connectivity with the Subgenual Cingulate. Biol. Psychiat 2012, 72, 595–603. [Google Scholar] [CrossRef]
- Weigand, A.; Horn, A.; Caballero, R.; Cooke, D.; Stern, A.P.; Taylor, S.F.; Press, D.; Pascual-Leone, A.; Fox, M.D. Prospective Validation That Subgenual Connectivity Predicts Antidepressant Efficacy of Transcranial Magnetic Stimulation Sites. Biol. Psychiat 2018, 84, 28–37. [Google Scholar] [CrossRef]
- Bronisch, T. The Relationship between Suicidality and Depression. Arch. Suicide Res. 1996, 2, 235–254. [Google Scholar] [CrossRef]
- Bowden, C.; Cheetham, S.C.; Lowther, S.; Katona, C.L.E.; Crompton, M.R.; Horton, R.W. Reduced Dopamine Turnover in the Basal Ganglia of Depressed Suicides. Brain Res. 1997, 769, 135–140. [Google Scholar] [CrossRef]
- Bowden, C.; Theodorou, A.E.; Cheetham, S.C.; Lowther, S.; Katona, C.L.E.; Crompton, M.R.; Horton, R.W. Dopamine D1 and D2 Receptor Binding Sites in Brain Samples from Depressed Suicides and Controls. Brain Res. 1997, 752, 227–233. [Google Scholar] [CrossRef]
- Fitzgerald, M.L.; Kassir, S.A.; Underwood, M.D.; Bakalian, M.J.; Mann, J.J.; Arango, V. Dysregulation of Striatal Dopamine Receptor Binding in Suicide. Neuropsychopharmacology 2017, 42, 974–982. [Google Scholar] [CrossRef] [PubMed]
- Pitchot, W.; Hansenne, M.; Ansseau, M. Role of Dopamine in Non-Depressed Patients with a History of Suicide Attempts. Eur. Psychiatry 2001, 16, 424–427. [Google Scholar] [CrossRef]
- Hynd, M.R.; Lewohl, J.M.; Scott, H.L.; Dodd, P.R. Biochemical and Molecular Studies Using Human Autopsy Brain Tissue. J. Neurochem. 2003, 85, 543–562. [Google Scholar] [CrossRef] [PubMed]
- Gilmore, J.H.; Lawler, C.P.; Eaton, A.M.; Mailman, R.B. Postmortem Stability of Dopamine D1 Receptor MRNA and D1 Receptors. Mol. Brain Res. 1993, 18, 290–296. [Google Scholar] [CrossRef]
- Yang, H.; de Jong, J.W.; Tak, Y.; Peck, J.; Bateup, H.S.; Lammel, S. Nucleus Accumbens Subnuclei Regulate Motivated Behavior via Direct Inhibition and Disinhibition of VTA Dopamine Subpopulations. Neuron 2018, 97, 434–449.e4. [Google Scholar] [CrossRef] [PubMed]
- Coenen, V.A.; Schlaepfer, T.E.; Meyer, D.; Kilian, H.; Spanier, S.; Sajonz, B.E.A.; Reinacher, P.C.; Reisert, M. Resolving Dyskinesias at Sustained Anti-OCD Efficacy by Steering of DBS Away from the Anteromedial STN to the Mesencephalic Ventral Tegmentum—Case Report. Acta Neurochir. 2022, 164, 2303–2307. [Google Scholar] [CrossRef] [PubMed]
- Meyer, D.M.; Spanier, S.; Kilian, H.M.; Reisert, M.; Urbach, H.; Sajonz, B.E.A.; Reinacher, P.C.; Normann, C.; Domschke, K.; Coenen, V.A.; et al. Efficacy of Superolateral Medial Forebrain Bundle Deep Brain Stimulation in Obsessive-Compulsive Disorder. Brain Stimul. 2022, 15, 582–585. [Google Scholar] [CrossRef]
- Neudorfer, C.; Germann, J.; Elias, G.J.; Gramer, R.; Boutet, A.; Lozano, A.M. A High-Resolution in Vivo Magnetic Resonance Imaging Atlas of the Human Hypothalamic Region. Sci. Data 2020, 7, 305. [Google Scholar] [CrossRef]
- Furczyk, K.; Schutová, B.; Michel, T.M.; Thome, J.; Büttner, A. The Neurobiology of Suicide—A Review of Post-Mortem Studies. J. Mol. Psychiatry 2013, 1, 2. [Google Scholar] [CrossRef]
- Gould, T.D.; Georgiou, P.; Brenner, L.A.; Brundin, L.; Can, A.; Courtet, P.; Donaldson, Z.R.; Dwivedi, Y.; Guillaume, S.; Gottesman, I.I.; et al. Animal Models to Improve Our Understanding and Treatment of Suicidal Behavior. Transl. Psychiatry 2017, 7, e1092. [Google Scholar] [CrossRef]
- Dayan, P.; Niv, Y. Reinforcement Learning: The Good, The Bad and The Ugly. Curr. Opin. Neurobiol. 2008, 18, 185–196. [Google Scholar] [CrossRef]
- Coenen, V.A.; Schlaepfer, T.E.; Sajonz, B.E.A.; Reinacher, P.C.; Döbrössy, M.D.; Reisert, M. “The Heart Asks Pleasure First”—Conceptualizing Psychiatric Diseases as MAINTENANCE Network Dysfunctions through Insights from SlMFB DBS in Depression and Obsessive–Compulsive Disorder. Brain Sci. 2022, 12, 438. [Google Scholar] [CrossRef] [PubMed]
- Sesack, S.R.; Carr, D.B. Selective Prefrontal Cortex Inputs to Dopamine Cells: Implications for Schizophrenia. Physiol. Behav. 2002, 77, 513–517. [Google Scholar] [CrossRef]
- Mann, J. The Neurobiology of Suicide. Nat. Med. 1998, 4, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Weihe, E.; Depboylu, C.; Schütz, B.; Schäfer, M.K.-H.; Eiden, L.E. Three Types of Tyrosine Hydroxylase-Positive CNS Neurons Distinguished by Dopa Decarboxylase and VMAT2 Co-Expression. Cell Mol. Neurobiol. 2006, 26, 657–676. [Google Scholar] [CrossRef] [PubMed]
- Mejias-Aponte, C.A.; Drouin, C.; Aston-Jones, G. Adrenergic and Noradrenergic Innervation of the Midbrain Ventral Tegmental Area and Retrorubral Field: Prominent Inputs from Medullary Homeostatic Centers. J. Neurosci. 2009, 29, 3613–3626. [Google Scholar] [CrossRef] [PubMed]
- Dahlstroem, A.; Fuxe, K. Evidence for the existence of monoamine neurons in the central nervous system. II. experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta Physiol. Scand. 1965, 247, 1–36. [Google Scholar]
- Valenti, O.; Grace, A.A. Antipsychotic Drug-Induced Increases in Ventral Tegmental Area Dopamine Neuron Population Activity via Activation of the Nucleus Accumbens–Ventral Pallidum Pathway. Int. J. Neuropsychopharmacol. 2010, 13, 845–860. [Google Scholar] [CrossRef]
No. | Age [Years] | Gender | PMI [Hours] | Month of Death | Hours of Monthly Sunlight * | Cause of Death | Suicide ? | MD ? | Medical History and Autopsy Findings | Workup |
---|---|---|---|---|---|---|---|---|---|---|
S1 | 82 | f | 120 | June | 240 | hemorrhagic shock after aortic rupture | no | no | aortic valve replacement, hypertrophic heart disease, myocardial fibrosis | fixation, histological workup, and staining |
S2 | 67 | m | 55 | July | 260 | self-inflicted stab and cutting injuries | yes | yes | untreated depression | fixation, histological workup, and staining |
S3 | 55 | m | 60 | Sept. | 190 | CO-intoxication (inhalation) | supposable | no | massive hypertrophic heart disease, coronary heart disease, kidney cysts, cerebellar subarachnoid cyst | fixation, MRI, full histological workup |
S4 | 62 | m | 96 | Oct. | 190 | drug intoxication | yes | unknown | hypertrophic heart disease, pulmonary emphysema, renal cyst right, prostate hypertrophy | fixation, MRI, full histological workup |
S5 | 36 | m | 120 | Oct. | 190 | mixed intoxication (alcohol, Pregabalin, Promethazine) | supposable | no | abuse of alcohol, medication, and drugs; steatosis hepatis | fixation, MRI, full histological workup |
S6 | 58 | f | 96 | Sept. | 190 | cardiac arrest (arrhythmogenic) | unclear | unknown | suicide attempt 11 days before death; hypertrophic heart disease, myocardial fibrosis, pulmonary emphysema, steatosis hepatis | - |
S7 | 48 | f | 60 | Sept. | 190 | CO-intoxication | supposable | no | mitral valve regurgitation, uterine myomas | fixation, MRI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zielinski, J.M.; Reisert, M.; Sajonz, B.E.A.; Teo, S.J.; Thierauf-Emberger, A.; Wessolleck, J.; Frosch, M.; Spittau, B.; Leupold, J.; Döbrössy, M.D.; et al. In Search for a Pathogenesis of Major Depression and Suicide—A Joint Investigation of Dopamine and Fiber Tract Anatomy Focusing on the Human Ventral Mesencephalic Tegmentum: Description of a Workflow. Brain Sci. 2024, 14, 723. https://doi.org/10.3390/brainsci14070723
Zielinski JM, Reisert M, Sajonz BEA, Teo SJ, Thierauf-Emberger A, Wessolleck J, Frosch M, Spittau B, Leupold J, Döbrössy MD, et al. In Search for a Pathogenesis of Major Depression and Suicide—A Joint Investigation of Dopamine and Fiber Tract Anatomy Focusing on the Human Ventral Mesencephalic Tegmentum: Description of a Workflow. Brain Sciences. 2024; 14(7):723. https://doi.org/10.3390/brainsci14070723
Chicago/Turabian StyleZielinski, Jana M., Marco Reisert, Bastian E. A. Sajonz, Shi Jia Teo, Annette Thierauf-Emberger, Johanna Wessolleck, Maximilian Frosch, Björn Spittau, Jochen Leupold, Máté D. Döbrössy, and et al. 2024. "In Search for a Pathogenesis of Major Depression and Suicide—A Joint Investigation of Dopamine and Fiber Tract Anatomy Focusing on the Human Ventral Mesencephalic Tegmentum: Description of a Workflow" Brain Sciences 14, no. 7: 723. https://doi.org/10.3390/brainsci14070723
APA StyleZielinski, J. M., Reisert, M., Sajonz, B. E. A., Teo, S. J., Thierauf-Emberger, A., Wessolleck, J., Frosch, M., Spittau, B., Leupold, J., Döbrössy, M. D., & Coenen, V. A. (2024). In Search for a Pathogenesis of Major Depression and Suicide—A Joint Investigation of Dopamine and Fiber Tract Anatomy Focusing on the Human Ventral Mesencephalic Tegmentum: Description of a Workflow. Brain Sciences, 14(7), 723. https://doi.org/10.3390/brainsci14070723