Understanding the Emergence of Comorbidity between Problematic Online Gaming and Gambling: A Network Analysis Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Problematic Online Gaming
2.2.2. Problematic Online Gambling
2.3. Procedure
2.4. Statistical Analysis
3. Results
3.1. General Characteristics of the Sample
3.2. Partial Correlations Network
3.3. The Analysis of DAGs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pickard, H.; Ahmed, S.H.; Foddy, B. Alternative Models of Addiction. Front. Psychiatry 2015, 6, 20. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Koob, G. Brain Disease Model of Addiction: Why Is It so Controversial? Lancet Psychiatry 2015, 2, 677–679. [Google Scholar] [CrossRef] [PubMed]
- Fauth-Bühler, M.; Mann, K. Neurobiological Correlates of Internet Gaming Disorder: Similarities to Pathological Gambling. Addict. Behav. 2017, 64, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Billieux, J.; Schimmenti, A.; Khazaal, Y.; Maurage, P.; Heeren, A. Are We Overpathologizing Everyday Life? A Tenable Blueprint for Behavioral Addiction Research. J. Behav. Addict. 2015, 4, 119–123. [Google Scholar] [CrossRef]
- World Health Organization. Public Health Implications of Excessive Use of the Internet, Computers, Smartphones and Similar Electronic Devices: Meeting Report: Main Meeting Hall, Foundation for Promotion of Cancer Research, National Cancer Research Centre, Tokyo, Japan, 27–29 August 2014; World Health Organization: Geneva, Switzerland, 2015; ISBN 9789241509367. [Google Scholar]
- Hunt, C.J.; Blaszczynski, A. Gambling Disorder as a Clinical Phenomenon. In Gambling Disorder; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 15–27. ISBN 9783030030605. [Google Scholar]
- Abbott, M.; Romild, U.; Volberg, R. The Prevalence, Incidence, and Gender and Age-Specific Incidence of Problem Gambling: Results of the Swedish Longitudinal Gambling Study (Swelogs). Addiction 2018, 113, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Rojas, R.E.; Granero, R.; Mora-Maltas, B.; Rivas, S.; Fernández-Aranda, F.; Gómez-Peña, M.; Moragas, L.; Baenas, I.; Solé-Morata, N.; Menchón, J.M.; et al. Factors Related to the Dual Condition of Gambling and Gaming Disorders: A Path Analysis Model. J. Psychiatr. Res. 2022, 145, 148–158. [Google Scholar] [CrossRef]
- Richard, J.; Fletcher, E.; Boutin, S.; Derevensky, J.; Temcheff, C. Conduct Problems and Depressive Symptoms in Association with Problem Gambling and Gaming: A Systematic Review. J. Behav. Addict. 2020, 9, 497–533. [Google Scholar] [CrossRef]
- Erevik, E.K.; Landrø, H.; Mattson, Å.L.; Kristensen, J.H.; Kaur, P.; Pallesen, S. Problem Gaming and Suicidality: A Systematic Literature Review. Addict. Behav. Rep. 2022, 15, 100419. [Google Scholar] [CrossRef] [PubMed]
- Stevens, M.W.R.; Dorstyn, D.; Delfabbro, P.H.; King, D.L. Global Prevalence of Gaming Disorder: A Systematic Review and Meta-Analysis. Aust. N. Z. J. Psychiatry 2021, 55, 553–568. [Google Scholar] [CrossRef]
- Nordmyr, J.; Forsman, A.K.; Wahlbeck, K.; Björkqvist, K.; Österman, K. Associations between Problem Gambling, Socio-Demographics, Mental Health Factors and Gambling Type: Sex Differences among Finnish Gamblers. Int. Gambl. Stud. 2014, 14, 39–52. [Google Scholar] [CrossRef]
- Ghelfi, M.; Scattola, P.; Giudici, G.; Velasco, V. Online Gambling: A Systematic Review of Risk and Protective Factors in the Adult Population. J. Gambl. Stud. 2023, 40, 673–699. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Yang, B.; Wang, S.; Yao, Y.; Wu, C.; Li, M.; Dong, G.H. Adverse childhood experiences predict internet gaming disorder in university students: The mediating role of resilience. Curr. Opin. Psychiatry 2024, 37, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Zewude, G.T.; Bereded, D.G.; Abera, E.; Tegegne, G.; Goraw, S.; Segon, T. The Impact of Internet Addiction on Mental Health: Exploring the Mediating Effects of Positive Psychological Capital in University Students. Adolescents 2024, 4, 200–221. [Google Scholar] [CrossRef]
- Available online: https://icd.who.int/en (accessed on 15 July 2024).
- Atroszko, P.A.; Atroszko, B.; Charzyńska, E. Subpopulations of Addictive Behaviors in Different Sample Types and Their Relationships with Gender, Personality, and Well-Being: Latent Profile vs. Latent Class Analysis. Int. J. Environ. Res. Public Health 2021, 18, 8590. [Google Scholar] [CrossRef]
- Zarate, D.; Ball, M.; Montag, C.; Prokofieva, M.; Stavropoulos, V. Unravelling the Web of Addictions: A Network Analysis Approach. Addict. Behav. Rep. 2022, 15, 100406. [Google Scholar] [CrossRef] [PubMed]
- Kristiansen, S.; Severin, M.C. Loot Box Engagement and Problem Gambling among Adolescent Gamers: Findings from a National Survey. Addict. Behav. 2020, 103, 106254. [Google Scholar] [CrossRef]
- McBride, J.; Derevensky, J. Gambling and Video Game Playing among Youth. J. Gambl. Issues 2016, 34, 156–178. [Google Scholar] [CrossRef]
- Sanders, J.; Williams, R. The Relationship Between Video Gaming, Gambling, and Problematic Levels of Video Gaming and Gambling. J. Gambl. Stud. 2019, 35, 559–569. [Google Scholar] [CrossRef]
- Brown, T.; Stavropoulos, V.; Christidi, S.; Papastefanou, Y.; Matsa, K. Problematic Internet Use: The Effect of Comorbid Psychopathology on Treatment Outcomes. Psychiatry Res. 2021, 298, 113789. [Google Scholar] [CrossRef] [PubMed]
- Haylett, S.A.; Stephenson, G.M.; Lefever, R.M.H. Covariation in Addictive Behaviours: A Study of Addictive Orientations Using the Shorter PROMIS Questionnaire. Addict. Behav. 2004, 29, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Mihara, S.; Higuchi, S. Cross-Sectional and Longitudinal Epidemiological Studies of Internet Gaming Disorder: A Systematic Review of the Literature. Psychiatry Clin. Neurosci. 2017, 71, 425–444. [Google Scholar] [CrossRef] [PubMed]
- Müller, K.W.; Dreier, M.; Beutel, M.E.; Wölfling, K. Is Sensation Seeking a Correlate of Excessive Behaviors and Behavioral Addictions? A Detailed Examination of Patients with Gambling Disorder and Internet Addiction. Psychiatry Res. 2016, 242, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Rho, M.J.; Lee, H.; Lee, T.H.; Cho, H.; Jung, D.J.; Kim, D.J.; Choi, I.Y. Risk Factors for Internet Gaming Disorder: Psychological Factors and Internet Gaming Characteristics. Int. J. Environ. Res. Public Health 2018, 15, 40. [Google Scholar] [CrossRef] [PubMed]
- Yen, J.Y.; Liu, T.L.; Wang, P.W.; Chen, C.S.; Yen, C.F.; Ko, C.H. Association between Internet Gaming Disorder and Adult Attention Deficit and Hyperactivity Disorder and Their Correlates: Impulsivity and Hostility. Addict. Behav. 2017, 64, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Delfabbro, P.; King, D.L. Gaming-Gambling Convergence: Evaluating Evidence for the ‘Gateway’ Hypothesis. Int. Gambl. Stud. 2020, 20, 380–392. [Google Scholar] [CrossRef]
- King, D.L.; Delfabbro, P.H. Predatory Monetization Schemes in Video Games (e.g. ‘Loot Boxes’) and Internet Gaming Disorder. Addiction 2018, 113, 1967–1969. [Google Scholar] [CrossRef]
- Macey, J.; Hamari, J. Investigating Relationships between Video Gaming, Spectating Esports, and Gambling. Comput. Hum. Behav. 2018, 80, 344–353. [Google Scholar] [CrossRef]
- Merkouris, S.S.; Thomas, A.C.; Shandley, K.A.; Rodda, S.N.; Oldenhof, E.; Dowling, N.A. An Update on Gender Differences in the Characteristics Associated with Problem Gambling: A Systematic Review. Curr. Addict. Rep. 2016, 3, 254–267. [Google Scholar] [CrossRef]
- Holdsworth, L.; Hing, N.; Breen, H. Exploring Women’s Problem Gambling: A Review of the Literature. Int. Gambl. Stud. 2012, 12, 199–213. [Google Scholar] [CrossRef]
- Fox, H.C.; Sinha, R. Sex Differences in Drug-Related Stress-System Changes: Implications for Treatment in Substance-Abusing Women. Harv. Rev. Psychiatry 2009, 17, 103–119. [Google Scholar] [CrossRef]
- Becker, J.B.; Perry, A.N.; Westenbroek, C. Sex Differences in the Neural Mechanisms Mediating Addiction: A New Synthesis and Hypothesis. Biol. Sex Differ. 2012, 3, 14. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.B.; McClellan, M.L.; Reed, B.G. Sex Differences, Gender and Addiction. J. Neurosci. Res. 2017, 95, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Dowling, N.; Oldenhof, E. Gender Differences in Risk and Protective Factors for Problem Gambling. In Problem Gambling in Women: An International Female Perspective on Treatment and Research; Routledge: London, UK; Taylor & Francis Group: Abingdon, UK, 2017; pp. 247–267. [Google Scholar] [CrossRef]
- Harris, C.R.; Jenkins, M. Gender Differences in Risk Assessment: Why Do Women Take Fewer Risks than Men? Judgm. Decis. Mak. 2006, 1, 48–63. [Google Scholar] [CrossRef]
- McCormack, A.; Shorter, G.W.; Griffiths, M.D. An Empirical Study of Gender Differences in Online Gambling. J. Gambl. Stud. 2014, 30, 71–88. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Han, X.; Yu, H.; Wu, Y.; Potenza, M.N. Do Men Become Addicted to Internet Gaming and Women to Social Media? A Meta-Analysis Examining Gender-Related Differences in Specific Internet Addiction. Comput. Hum. Behav. 2020, 113, 106480. [Google Scholar] [CrossRef]
- Thege, B.K.; Hodgins, D.C.; Wild, T.C. Co-Occurring Substance-Related and Behavioral Addiction Problems: A Person-Centered, Lay Epidemiology Approach. J. Behav. Addict. 2016, 5, 614–622. [Google Scholar] [CrossRef]
- Fattore, L.; Melis, M.; Fadda, P.; Fratta, W. Sex Differences in Addictive Disorders. Front. Neuroendocrinol. 2014, 35, 272–284. [Google Scholar] [CrossRef]
- Fattore, L.; Melis, M. Editorial: Exploring Gender and Sex Differences in Behavioral Dyscontrol: From Drug Addiction to Impulse Control Disorders. Front. Psychiatry 2016, 7, 19. [Google Scholar] [CrossRef] [PubMed]
- Delfabbro, P. Gender Differences in Australian Gambling: A Critical Summary of Sociological and Psychological Research. Aust. J. Soc. Issues 2000, 35, 145–158. [Google Scholar] [CrossRef]
- Toneatto, T.; Wang, J. Community Treatment for Problem Gambling: Sex Differences in Outcome and Process. Community Ment. Health J. 2009, 45, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Starcevic, V.; Eslick, G.D.; Viswasam, K.; Billieux, J.; Gainsbury, S.M.; King, D.L.; Berle, D. Problematic Online Behaviors and Psychopathology in Australia. Psychiatry Res. 2023, 327, 115405. [Google Scholar] [CrossRef] [PubMed]
- Ross, M.W.; Månsson, S.A.; Daneback, K. Prevalence, Severity, and Correlates of Problematic Sexual Internet Use in Swedish Men and Women. Arch. Sex. Behav. 2012, 41, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Mora-Salgueiro, J.; García-Estela, A.; Hogg, B.; Angarita-Osorio, N.; Amann, B.L.; Carlbring, P.; Jiménez-Murcia, S.; Pérez-Sola, V.; Colom, F. The Prevalence and Clinical and Sociodemographic Factors of Problem Online Gambling: A Systematic Review. J. Gambl. Stud. 2021, 37, 899–926. [Google Scholar] [CrossRef] [PubMed]
- Dowling, N.A.; Cowlishaw, S.; Jackson, A.C.; Merkouris, S.S.; Francis, K.L.; Christensen, D.R. Prevalence of Psychiatric Co-Morbidity in Treatment-Seeking Problem Gamblers: A Systematic Review and Meta-Analysis. Aust. N. Z. J. Psychiatry 2015, 49, 519–539. [Google Scholar] [CrossRef] [PubMed]
- Borsboom, D.; Cramer, A.O.J. Network Analysis: An Integrative Approach to the Structure of Psychopathology. Annu. Rev. Clin. Psychol. 2013, 9, 91–121. [Google Scholar] [CrossRef] [PubMed]
- Epskamp, S.; Borsboom, D.; Fried, E.I. Estimating Psychological Networks and Their Accuracy: A Tutorial Paper. Behav. Res. Methods 2018, 50, 195–212. [Google Scholar] [CrossRef]
- Fried, E.I.; van Borkulo, C.D.; Cramer, A.O.J.; Boschloo, L.; Schoevers, R.A.; Borsboom, D. Mental Disorders as Networks of Problems: A Review of Recent Insights. Soc. Psychiatry Psychiatr. Epidemiol. 2017, 52, 1–10. [Google Scholar] [CrossRef]
- Hevey, D. Network Analysis: A Brief Overview and Tutorial. Health Psychol. Behav. Med. 2018, 6, 301–328. [Google Scholar] [CrossRef]
- Baggio, S.; Gainsbury, S.M.; Starcevic, V.; Richard, J.B.; Beck, F.; Billieux, J. Gender Differences in Gambling Preferences and Problem Gambling: A Network-Level Analysis. Int. Gambl. Stud. 2018, 18, 512–525. [Google Scholar] [CrossRef]
- Lucas, I.; Mora-Maltas, B.; Granero, R.; Demetrovics, Z.; Ciudad-Fernández, V.; Nigro, G.; Cosenza, M.; Rosinska, M.; Tapia-Martínez, J.; Fernández-Aranda, F.; et al. Network Analysis of DSM-5 Criteria for Gambling Disorder: Considering Sex Differences in a Large Clinical Sample. Eur. Psychiatry 2024, 67, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Hunt, B.; Zarate, D.; Gill, P.; Stavropoulos, V. Mapping the Links between Sexual Addiction and Gambling Disorder: A Bayesian Network Approach. Psychiatry Res. 2023, 327, 115366. [Google Scholar] [CrossRef] [PubMed]
- Schivinski, B.; Brzozowska-Woś, M.; Buchanan, E.M.; Griffiths, M.D.; Pontes, H.M. Psychometric Assessment of the Internet Gaming Disorder Diagnostic Criteria: An Item Response Theory Study. Addict. Behav. Rep. 2018, 8, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Cheng, L.; Hu, M.; Liu, Q.; Tong, J.; Hao, W.; Luo, T.; Liao, Y. Clarification of the Cut-off Score for Nine-Item Internet Gaming Disorder Scale–Short Form (IGDS9-SF) in a Chinese Context. Front. Psychiatry 2020, 11, 470. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, Ł.; Biechowska, D.; Dąbrowska, K.; Sierosławski, J. Psychometric Properties of the Polish Version of Two Screening Tests for Gambling Disorders: The Problem Gambling Severity Index and Lie/Bet Questionnaire. Psychiatry Psychol. Law 2021, 28, 585–598. [Google Scholar] [CrossRef]
- Ferris, J.; Wynne, H.; Ladouceur, R.; Stinchfield, R.; Turner, N. The Canadian Problem Gambling Index: Final Report; Canadian Centre on Substance Abuse: Ottawa, ON, Canada, 2001. [Google Scholar]
- Robinaugh, D.J.; Millner, A.J.; McNally, R.J. Identifying Highly Influential Nodes in the Complicated Grief Network. J. Abnorm. Psychol. 2016, 125, 747–757. [Google Scholar] [CrossRef]
- Jones, P.; Ma, R.; McNally, R. Bridge Centrality: A Network Approach to Understanding Comorbidity. Multivar. Behav. Res. 2019, 56, 353–367. [Google Scholar] [CrossRef]
- Epskamp, S.; Cramer, A.; Waldorp, L.; Schmittmann, V.; Borsboom, D. Qgraph: Network Visualizations of Relationships in Psychometric Data. J. Stat. Softw. 2012, 48, 1–18. [Google Scholar] [CrossRef]
- Haslbeck, J.; Waldorp, L. Mgm: Estimating Time-Varying Mixed Graphical Models in High-Dimensional Data. J. Stat. Softw. 2020, 93, 1–46. [Google Scholar] [CrossRef]
- van Borkulo, C.D.; van Bork, R.; Boschloo, L.; Kossakowski, J.J.; Tio, P.; Schoevers, R.A.; Borsboom, D.; Waldorp, L.J. Comparing Network Structures on Three Aspects: A Permutation Test. Psychol. Methods 2023, 28, 1273–1285. [Google Scholar] [CrossRef]
- Briganti, G.; Scutari, M.; Mcnally, R.J. A Tutorial on Bayesian Networks for Psychopathology Researchers. Psychol. Methods 2023, 28, 947–961. [Google Scholar] [CrossRef]
- Scutari, M. Learning Bayesian Networks with the Bnlearn R Package. J. Stat. Softw. 2010, 35, 1–22. [Google Scholar] [CrossRef]
- Fernandes, R. bnviewer: Interactive Visualization of Bayesian Networks. R Package Version 0.1, 4. 2019. Available online: https://scholar.google.com/scholar?q=Fernandes%2C%20R.%20(2019).%20bnviewer%3A%20interactive%20Visualization%20of%20Bayesian%20Networks.%20R%20package%20version%200.1.%204 (accessed on 15 July 2024).
- Burleigh, T.L.; Griffiths, M.D.; Sumich, A.; Stavropoulos, V.; Kuss, D.J. A Systematic Review of the Co-Occurrence of Gaming Disorder and Other Potentially Addictive Behaviors. Curr. Addict. Rep. 2019, 6, 383–401. [Google Scholar] [CrossRef]
- Demetrovics, Z.; van den Brink, W.; Paksi, B.; Horváth, Z.; Maraz, A. Relating Compulsivity and Impulsivity With Severity of Behavioral Addictions: A Dynamic Interpretation of Large-Scale Cross-Sectional Findings. Front. Psychiatry 2022, 13, 831992. [Google Scholar] [CrossRef]
- Griffiths, M. A “components” Model of Addiction within a Biopsychosocial Framework. J. Subst. Use 2005, 10, 191–197. [Google Scholar] [CrossRef]
- Baggio, S.; Starcevic, V.; Billieux, J.; King, D.L.; Gainsbury, S.M.; Eslick, G.D.; Berle, D. Testing the Spectrum Hypothesis of Problematic Online Behaviors: A Network Analysis Approach. Addict. Behav. 2022, 135, 107451. [Google Scholar] [CrossRef] [PubMed]
- Savolainen, I.; Vuorinen, I.; Sirola, A.; Oksanen, A. Gambling and Gaming during COVID-19: The Role of Mental Health and Social Motives in Gambling and Gaming Problems. Compr. Psychiatry 2022, 117, 152331. [Google Scholar] [CrossRef] [PubMed]
- King, D.L.; Delfabbro, P.H. The Convergence of Gambling and Monetised Gaming Activities. Curr. Opin. Behav. Sci. 2020, 31, 32–36. [Google Scholar] [CrossRef]
- Sussman, S.; Lisha, N.; Griffiths, M. Prevalence of the Addictions: A Problem of the Majority or the Minority? Eval. Health Prof. 2010, 34, 3–56. [Google Scholar] [CrossRef] [PubMed]
- Andreassen, C.S.; Griffiths, M.D.; Gjertsen, S.R.; Krossbakken, E.; Kvam, S.; Pallesen, S. The Relationships between Behavioral Addictions and the Five-Factor Model of Personality. J. Behav. Addict. 2013, 2, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Charzyńska, E.; Sussman, S.; Atroszko, P.A. Profiles of Potential Behavioral Addictions’ Severity and Their Associations with Gender, Personality, and Well-Being: A Person-Centered Approach. Addict. Behav. 2021, 119, 106941. [Google Scholar] [CrossRef] [PubMed]
- Hing, N.; Russell, A.; Tolchard, B.; Nower, L. Risk Factors for Gambling Problems: An Analysis by Gender. J. Gambl. Stud. 2016, 32, 511–534. [Google Scholar] [CrossRef]
- Svensson, J.; Romild, U.; Nordenmark, M.; Månsdotter, A. Gendered Gambling Domains and Changes in Sweden. Int. Gambl. Stud. 2011, 11, 193–211. [Google Scholar] [CrossRef]
- Delfabbro, P.; King, D. Gambling in Australia: Experiences, Problems, Research and Policy. Addiction 2012, 107, 1556–1561. [Google Scholar] [CrossRef]
- Tavares, H.; Martins, S.S.; Lobo, D.S.S.; Silveira, C.M.; Gentil, V.; Hodgins, D.C. Factors at Play in Faster Progression for Female Pathological Gamblers: An Exploratory Analysis. J. Clin. Psychiatry 2003, 64, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Syvertsen, A.; Leino, T.; Pallesen, S.; Smith, O.R.F.; Mentzoni, R.A.; Erevik, E.K. Telescoping and Gender Differences in High-Risk Gambling: Loss Limit Behavior in a Population of Electronic Gaming Machine Players. Psychol. Addict. Behav. 2023, 37, 499–508. [Google Scholar] [CrossRef]
- Kessler, R.C.; Hwang, I.; Labrie, R.; Petukhova, M.; Sampson, N.A.; Winters, K.C.; Shaffer, H.J. DSM-IV Pathological Gambling in the National Comorbidity Survey Replication. Psychol. Med. 2008, 38, 1351–1360. [Google Scholar] [CrossRef]
- Available online: Https://worldpopulationreview.com/ (accessed on 15 July 2024).
- Lopez-Fernandez, O.; Romo, L.; Kern, L.; Rousseau, A.; Lelonek-Kuleta, B.; Chwaszcz, J.; Männikkö, N.; Rumpf, H.J.; Bischof, A.; Király, O.; et al. Problematic Internet Use among Adults: A Cross-Cultural Study in 15 Countries. J. Clin. Med. 2023, 12, 1027. [Google Scholar] [CrossRef]
- Calado, F.; Vernon, M.; Nuyens, F.; Alexandre, J.; Griffiths, M.D. How Does Religiosity Influence Gambling? A Cross-Cultural Study Between Portuguese and English Youth. J. Gambl. Stud. 2023, 40, 1005–1019. [Google Scholar] [CrossRef]
Mean ± SD or n (%) | |
---|---|
Age, Years | 29.5 ± 6.3 |
Gender | |
Men | 701 (48.6) |
Women | 740 (51.4) |
Education | |
Primary | 91 (6.3) |
Vocational | 109 (7.6) |
Secondary | 617 (42.8) |
Higher | 624 (43.3) |
Employment | |
Unemployed | 168 (11.7) |
Part-time work | 193 (13.4) |
Full-time work | 763 (52.9) |
Student | 312 (21.6) |
Other | 5 (0.3) |
Place of residence | |
Rural | 523 (36.3) |
Urban (up to 50,000 inhabitants) | 331 (23.0) |
Urban (50,000–150,000 inhabitants) | 161 (11.2) |
Urban (150,000–500,000 inhabitants) | 178 (12.4) |
Urban (>500,000 inhabitants) | 248 (17.2) |
Income | |
<750 USD | 331 (23.0) |
750–1250 USD | 565 (39.2) |
1250–1750 USD | 211 (14.6) |
1750–2500 USD | 69 (4.8) |
>2500 USD | 33 (2.3) |
Declined to answer | 232 (16.1) |
Marital status | |
Married | 475 (33.0) |
Informal relationship | 349 (24.2) |
Single | 275 (41.1) |
Divorced | 25 (1.7) |
IGDS9-SF, score | 16.5 ± 6.4 |
IGDS9-SF, positive screening | 30 (2.1) |
PGSI, score | 5.5 ± 5.4 |
PGSI, positive screening | 86 (6.0) |
Gender | Edge | r |
---|---|---|
Men | GBL4–GBL8 | 0.38 |
GBL6–GBL8 | 0.32 | |
GBL1–GBL2 | 0.31 | |
GBL1–GBL3 | 0.31 | |
GBL2–GBL5 | 0.30 | |
GAM7–GAM9 | 0.29 | |
GAM2–GAM3 | 0.28 | |
GBL8–GBL9 | 0.26 | |
GAM1–GAM8 | 0.26 | |
GAM1–GAM3 | 0.23 | |
Women | GBL1–GBL2 | 0.58 |
GBL5–GBL6 | 0.40 | |
GBL7–GBL9 | 0.37 | |
GBL6–GBL8 | 0.28 | |
GAM7–GAM9 | 0.27 | |
GBL7–GBL8 | 0.26 | |
GBL1–GBL3 | 0.26 | |
GAM2–GAM3 | 0.25 | |
GAM3–GAM8 | 0.22 | |
GBL6–GBL7 | 0.20 |
Similarity between Men and Women | Effect | Strength | |
---|---|---|---|
Males | Females | ||
Similar in men and women | GAM1 → GAM3 | 0.90 | 0.97 |
GAM2 → GAM3 | 0.91 | 0.75 | |
GBL1 → GBL2 | 0.86 | 0.89 | |
GBL1 → GBL3 | 0.99 | 0.96 | |
GAM3 → GAM1 | 0.90 | 0.97 | |
GAM3 → GAM2 | 0.91 | 0.75 | |
GBL2 → GBL1 | 0.86 | 0.89 | |
GBL3 → GBL1 | 0.99 | 0.96 | |
Identified only in men | GAM2 → GAM4 | 0.70 | – |
GAM4 → GAM6 | 0.72 | – | |
GAM5 → GAM6 | 0.89 | – | |
GAM7 → GAM9 | 0.90 | – | |
GBL2 → GBL5 | 0.66 | – | |
GBL2 → GBL6 | 0.57 | – | |
GBL6 → GBL8 | 0.51 | – | |
GBL4 → GBL8 | 0.62 | – | |
GBL3 → GBL9 | 0.57 | – | |
GAM4 → GAM2 | 0.70 | – | |
GAM6 → GAM4 | 0.72 | – | |
GAM6 → GAM5 | 0.89 | – | |
GAM9 → GAM7 | 0.90 | – | |
GBL5 → GBL2 | 0.66 | – | |
GBL6 → GBL2 | 0.57 | – | |
GBL8 → GBL6 | 0.51 | – | |
GBL8 → GBL4 | 0.62 | – | |
GBL9 → GBL3 | 0.57 | – | |
Identified only in women | GAM2 → GAM7 | – | 0.73 |
GAM3 → GAM4 | – | 0.68 | |
GAM3 → GAM8 | – | 0.74 | |
GBL7 → GBL9 | – | 0.74 | |
GAM7 → GAM2 | – | 0.73 | |
GAM4 → GAM3 | – | 0.68 | |
GAM8 → GAM3 | – | 0.74 | |
GBL9 → GBL7 | – | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Błoch, M.; Misiak, B. Understanding the Emergence of Comorbidity between Problematic Online Gaming and Gambling: A Network Analysis Approach. Brain Sci. 2024, 14, 929. https://doi.org/10.3390/brainsci14090929
Błoch M, Misiak B. Understanding the Emergence of Comorbidity between Problematic Online Gaming and Gambling: A Network Analysis Approach. Brain Sciences. 2024; 14(9):929. https://doi.org/10.3390/brainsci14090929
Chicago/Turabian StyleBłoch, Marta, and Błażej Misiak. 2024. "Understanding the Emergence of Comorbidity between Problematic Online Gaming and Gambling: A Network Analysis Approach" Brain Sciences 14, no. 9: 929. https://doi.org/10.3390/brainsci14090929
APA StyleBłoch, M., & Misiak, B. (2024). Understanding the Emergence of Comorbidity between Problematic Online Gaming and Gambling: A Network Analysis Approach. Brain Sciences, 14(9), 929. https://doi.org/10.3390/brainsci14090929