The Role of Virtual Reality in Postural Rehabilitation for Patients with Parkinson’s Disease: A Scoping Review
Abstract
:1. Introduction
1.1. Parkinson’s Disease: Pathophysiology, Clinical Features, and Current Treatments
1.2. Virtual Reality: Types and Functionality
1.2.1. Multisensory Integration
1.2.2. Visual Information Processing
1.2.3. Cortical Activity Modulation
1.3. Virtual Reality and Neurorehabilitation
2. Materials and Methods
2.1. Search Strategy
2.2. Selection Criteria
2.3. Study Selection
2.4. Data Extraction
2.5. Study Quality Assessment
3. Results
Article | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | Total Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Feng et al. [31] | Yes | Yes | No | Yes | No | No | Yes | Yes | Yes | Yes | Yes | 8/10 |
Gulcan et al. [30] | Yes | Yes | No | Yes | No | No | Yes | Yes | Yes | Yes | Yes | 8/10 |
Gandolfi et al. [27] | Yes | Yes | No | Yes | No | No | Yes | Yes | Yes | Yes | Yes | 8/10 |
Goffredo et al. [32] | Yes | Yes | No | Yes | No | No | Yes | Yes | Yes | Yes | Yes | 8/10 |
Kashif et al. [29] | Yes | Yes | No | Yes | No | No | Yes | Yes | Yes | Yes | Yes | 8/10 |
Liao et al. [34] | Yes | Yes | No | Yes | No | No | Yes | Yes | Yes | Yes | Yes | 8/10 |
Maranesi et al. [28] | Yes | Yes | No | Yes | No | No | No | Yes | Yes | Yes | Yes | 7/10 |
Shih et al. [33] | Yes | Yes | No | Yes | Yes | No | No | Yes | Yes | Yes | Yes | 8/10 |
Yang et al. [26] | Yes | Yes | No | Yes | No | No | Yes | Yes | Yes | Yes | Yes | 8/10 |
Authors | Population | Inclusion Criteria | Exclusion Criteria | Outcome | Virtual Platform | Results | Follow-Up |
---|---|---|---|---|---|---|---|
Yang et al. [26] | 11 EG 12 CG | 55–85 years old MMSE > 24 HYS 2–3 | Untreated depression Visual or auditory deficits | BBS DGI | Micro-Star International Co. | EG = CG | 8 weeks |
Gandolfi et al. [27] | 38 EG 38 CG | 18+ years old HYS 2.5–3 | Visual or auditory deficits MMSE < 24 Depression | BBS ABC | Nintendo Wii | BBS: EG > CG ABC: EG = CG | 4 weeks |
Maranesi et al. [28] | 16 EG 16 CG | 65+ years old HYS 1–3 FAC ≥ 2 | MMSE < 24 Severe depression | Tinetti POMA FES-I | Tymo system | POMA: EG > CG FES-I: EG = CG | 5 weeks |
Kashif et al. [29] | 20 EG 20 CG1 20 CG2 | 50–80 years old HYS 1–3 Intact cognition | MMSE < 24 | BBS ABC | Nintendo Wii | BBS: EG > CG12 ABC: EG > CG12 | 16 weeks |
Gulcan et al. [30] | 15 EG 15 CG | 40+ years old HYS 1–3 | MMSE < 24 Visual or auditory deficits | BBS ABC | Nintendo Wii | BBS: EG = CG ABC: EG = CG | 6 weeks |
Feng et al. [31] | 14 EG 14 CG | 50–70 years old HYS 2.5–4 | Other causes of tremors Severe comorbidities Visual or auditory deficits | BBS FGA | Not specified | BBS: EG > CG FGA: EG > CG | 12 weeks |
Goffredo et al. [32] | 49 EG 48 CG | <80 years old MOCA > 17 | Psychiatric disorders Visual or auditory deficits | Mini-BES Test | Khymeia system | EG > CG | 10 weeks |
Shih et al. [33] | 11 EG 11 CG | HYS 1–3 Stable medication | MMSE < 24 Severe comorbidities | LOS OLS BBS TUG | Kinect | LOS: EG > CG OLS: EG > CG BBS: EG = CG TUG: EG = CG | 8 weeks |
Liao et al. [34] | 12 EG 12 CG1 12 CG2 | HYS 1–3 Stable medication Independent gait | MMSE < 24 Past seizure Pacemaker Vision deficits | OCP LOS | Nintendo Wii | OCP: EG > CG12 LOS: EG > CG12 | 4 weeks |
4. Discussion
- Strengths of VR-Based Interventions:
- o
- Efficacy: VR rehabilitation is a valid alternative to conventional physiotherapy
- o
- Enhanced Engagement and Motivation: VR’s interactive and immersive environments appear to foster higher patient engagement and adherence compared to conventional therapy, as evidenced by high compliance rates reported in several studies.
- o
- Customizability: VR allows for individualized rehabilitation, offering tailored exercises that adapt to the patient’s abilities and progression. This flexibility may contribute to more effective motor learning and better outcomes.
- o
- Accessibility: Home-based VR interventions reduce barriers to rehabilitation for patients in remote or underserved areas, offering comparable benefits to clinic-based therapies.
- Limitations of the Current Literature:
- o
- Small Sample Sizes: Most studies included small cohorts, limiting the generalizability of findings.
- o
- Variability in Protocols and Technologies: Differences in the type of VR systems (immersive vs. non-immersive), intervention protocols, and outcome measures make it challenging to draw definitive conclusions about best practices.
- o
- Short Intervention Durations: Many studies employed short rehabilitation periods, often less than 12 weeks, without long-term follow-up to assess the durability of improvements.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bertram, L.; Tanzi, R.E. The genetic epidemiology of neurodegenerative disease. J. Clin. Invest. 2005, 115, 1449–1457. [Google Scholar] [CrossRef]
- Pickrell, A.M.; Youle, R.J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 2015, 85, 257–273. [Google Scholar] [CrossRef]
- Bari, B.A.; Chokshi, V.; Schmidt, K. Locus coeruleus-norepinephrine: Basic functions and insights into Parkinson’s disease. Neural Regen. Res. 2020, 15, 1006–1013. [Google Scholar] [CrossRef]
- Lew, M. Overview of Parkinson’s disease. Pharmacotherapy 2007, 27, 155S–160S. [Google Scholar] [CrossRef]
- Barone, P.; Santangelo, G.; Amboni, M.; Pellecchia, M.T.; Vitale, C. Pisa syndrome in Parkinson’s disease and parkinsonism: Clinical features, pathophysiology, and treatment. Lancet Neurol. 2016, 15, 1063–1074. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Robak, L.A.; Yu, M.; Cykowski, M.; Shulman, J.M. Genetics and Pathogenesis of Parkinson’s Syndrome. Annu. Rev. Pathol. 2023, 18, 95–121. [Google Scholar] [CrossRef]
- Suttrup, I.; Warnecke, T. Dysphagia in Parkinson’s Disease. Dysphagia 2016, 31, 24–32. [Google Scholar] [CrossRef]
- Fasano, A.; Canning, C.G.; Hausdorff, J.M.; Lord, S.; Rochester, L. Falls in Parkinson’s disease: A complex and evolving picture. Mov. Disord. 2017, 32, 1524–1536. [Google Scholar] [CrossRef] [PubMed]
- Goetz, C.G.; Poewe, W.; Rascol, O.; Sampaio, C.; Stebbins, G.T.; Counsell, C.; Giladi, N.; Holloway, R.G.; Moore, C.G.; Wenning, G.K.; et al. Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease. Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: Status and recommendations. Mov. Disord. 2004, 19, 1020–1028. [Google Scholar] [CrossRef] [PubMed]
- Opara, J.; Małecki, A.; Małecka, E.; Socha, T. Motor assessment in Parkinson’s disease. Ann. Agric. Environ. Med. 2017, 24, 411–415. [Google Scholar] [CrossRef]
- Elsworth, J.D. Parkinson’s disease treatment: Past, present, and future. J. Neural Transm. 2020, 127, 785–791. [Google Scholar] [CrossRef]
- Tomlinson, C.L.; Patel, S.; Meek, C.; Herd, C.P.; Clarke, C.E.; Stowe, R.; Shah, L.; Sackley, C.M.; Deane, K.H.; Wheatley, K.; et al. Physiotherapy versus placebo or no intervention in Parkinson’s disease. Cochrane Database Syst. Rev. 2013, 2013, CD002817. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, C.L.; Patel, S.; Meek, C.; Herd, C.P.; Clarke, C.E.; Stowe, R.; Shah, L.; Sackley, C.; Deane, K.H.; Wheatley, K.; et al. Physiotherapy intervention in Parkinson’s disease: Systematic review and meta-analysis. BMJ 2012, 345, e5004. [Google Scholar] [CrossRef] [PubMed]
- Truijen, S.; Abdullahi, A.; Bijsterbosch, D.; van Zoest, E.; Conijn, M.; Wang, Y.; Struyf, N.; Saeys, W. Effect of home-based virtual reality training and telerehabilitation on balance in individuals with Parkinson disease, multiple sclerosis, and stroke: A systematic review and meta-analysis. Neurol. Sci. 2022, 43, 2995–3006. [Google Scholar] [CrossRef] [PubMed]
- Mangone, M.; Agostini, F.; de Sire, A.; Cacchio, A.; Chiaramonte, A.; Butterini, G.; Martano, A.; Paoloni, M.; Bernetti, A.; Paolucci, T. Effect of virtual reality rehabilitation on functional outcomes for return-to-work patients with Parkinson’s disease: An umbrella review of systematic reviews. NeuroRehabilitation 2022, 51, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Laver, K.E.; Lange, B.; George, S.; Deutsch, J.E.; Saposnik, G.; Crotty, M. Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. 2017, 11, CD008349. [Google Scholar] [CrossRef]
- Kim, J.W.; Kim, J.H.; Lee, B.H. Effects of virtual reality-based core stabilization exercise on upper extremity function, postural control, and depression in persons with stroke. Phys. Ther. Rehabil. Sci. 2020, 9, 131–139. [Google Scholar] [CrossRef]
- Hodgson, D.D.; King, J.A.; Darici, O.; Dalton, B.H.; Cleworth, T.W.; Cluff, T.; Peters, R.M. Visual feedback-dependent modulation of arousal, postural control, and muscle stretch reflexes assessed in real and virtual environments. Front. Hum. Neurosci. 2023, 17, 1128548. [Google Scholar] [CrossRef]
- Brock, K.; Vine, S.J.; Ross, J.M. Movement kinematic and postural control differences when performing a visuomotor skill in real and virtual environments. Exp. Brain Res. 2023, 241, 1797–1810. [Google Scholar] [CrossRef] [PubMed]
- De Rooij, I.J.; Van de Port, I.G.; Meijer, J.G. Effect of Virtual Reality Training on Balance and Gait Ability in Patients With Stroke: Systematic Review and Meta-Analysis. Phys. Ther. 2016, 96, 1905–1918. [Google Scholar] [CrossRef]
- Basalic, E.B.; Roman, N.; Tuchel, V.I.; Miclăuș, R.S. Virtual Reality Applications for Balance Rehabilitation and Efficacy in Addressing Other Symptoms in Multiple Sclerosis—A Review. Appl. Sci. 2024, 14, 4244. [Google Scholar] [CrossRef]
- Liu, W.; Hu, Y.; Li, J.; Chang, J. Effect of Virtual Reality on Balance Function in Children With Cerebral Palsy: A Systematic Review and Meta-analysis. Front. Public Health 2022, 10, 865474. [Google Scholar] [CrossRef]
- Rutledge, T.; Velez, D.; Depp, C.; McQuaid, J.R.; Wong, G.; Jones, R.C.W.; Atkinson, J.H.; Giap, B.; Quan, A.; Giap, H. A Virtual Reality Intervention for the Treatment of Phantom Limb Pain: Development and Feasibility Results. Pain Med. 2019, 20, 2051–2059. [Google Scholar] [CrossRef]
- Eriksen, M.B.; Frandsen, T.F. The impact of patient, intervention, comparison, outcome (PICO) as a search strategy tool on literature search quality: A systematic review. J. Med. Libr. Assoc. 2018, 106, 420–431. [Google Scholar] [CrossRef] [PubMed]
- de Morton, N.A. The PEDro scale is a valid measure of the methodological quality of clinical trials: A demographic study. Aust. J. Physiother. 2009, 55, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.C.; Wang, H.K.; Wu, R.M.; Lo, C.S.; Lin, K.H. Home-based virtual reality balance training and conventional balance training in Parkinson’s disease: A randomized controlled trial. J. Formos. Med. Assoc. 2016, 115, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Gandolfi, M.; Geroin, C.; Dimitrova, E.; Boldrini, P.; Waldner, A.; Bonadiman, S.; Picelli, A.; Regazzo, S.; Stirbu, E.; Primon, D.; et al. Virtual Reality Telerehabilitation for Postural Instability in Parkinson’s Disease: A Multicenter, Single-Blind, Randomized, Controlled Trial. Biomed. Res. Int. 2017, 2017, 7962826. [Google Scholar] [CrossRef]
- Maranesi, E.; Casoni, E.; Baldoni, R.; Barboni, I.; Rinaldi, N.; Tramontana, B.; Amabili, G.; Benadduci, M.; Barbarossa, F.; Luzi, R.; et al. The Effect of Non-Immersive Virtual Reality Exergames versus Traditional Physiotherapy in Parkinson’s Disease Older Patients: Preliminary Results from a Randomized-Controlled Trial. Int. J. Environ. Res. Public Health 2022, 19, 14818. [Google Scholar] [CrossRef]
- Kashif, M.; Albalwi, A.A.; Zulfiqar, A.; Bashir, K.; Alharbi, A.A.; Zaidi, S. Effects of virtual reality versus motor imagery versus routine physical therapy in patients with parkinson’s disease: A randomized controlled trial. BMC Geriatr. 2024, 24, 229. [Google Scholar] [CrossRef]
- Gulcan, K.; Guclu-Gunduz, A.; Yasar, E.; Ar, U.; Sucullu Karadag, Y.; Saygili, F. The effects of augmented and virtual reality gait training on balance and gait in patients with Parkinson’s disease. Acta Neurol. Belg. 2023, 123, 1917–1925. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Li, C.; Liu, J.; Wang, L.; Ma, J.; Li, G.; Gan, L.; Shang, X.; Wu, Z. Virtual Reality Rehabilitation Versus Conventional Physical Therapy for Improving Balance and Gait in Parkinson’s Disease Patients: A Randomized Controlled Trial. Med. Sci. Monit. 2019, 25, 4186–4192. [Google Scholar] [CrossRef]
- Goffredo, M.; Baglio, F.; DEIcco, R.; Proietti, S.; Maggioni, G.; Turolla, A.; Pournajaf, S.; Jonsdottir, J.; Zeni, F.; Federico, S.; et al. Efficacy of non-immersive virtual reality-based telerehabilitation on postural stability in Parkinson’s disease: A multicenter randomized controlled trial. Eur. J. Phys. Rehabil. Med. 2023, 59, 689–696. [Google Scholar] [CrossRef]
- Shih, M.C.; Wang, R.Y.; Cheng, S.J.; Yang, Y.R. Effects of a balance-based exergaming intervention using the Kinect sensor on posture stability in individuals with Parkinson’s disease: A single-blinded randomized controlled trial. J. Neuroeng. Rehabil. 2016, 13, 78. [Google Scholar] [CrossRef]
- Liao, Y.Y.; Yang, Y.R.; Cheng, S.J.; Wu, Y.R.; Fuh, J.L.; Wang, R.Y. Virtual Reality-Based Training to Improve Obstacle-Crossing Performance and Dynamic Balance in Patients with Parkinson’s Disease. Neurorehabil. Neural Repair 2015, 29, 658–667. [Google Scholar] [CrossRef] [PubMed]
- Kashif, M.; Ahmad, A.; Bandpei, M.A.M.; Farooq, M.; Iram, H.; e Fatima, R. Systematic review of the application of virtual reality to improve balance, gait and motor function in patients with Parkinson’s disease. Medicine 2022, 101, e29212. [Google Scholar] [CrossRef] [PubMed]
- Hussain, F.; Farooqui, S.; Khan, A.A.; Khan, M.U.; Khan, M.A.; Hasan, A. Effects of nonimmersive virtual reality using Wii-Fit exercises on balance and cognition in Parkinson disease: A meta-analysis. Medicine 2024, 103, e38940. [Google Scholar] [CrossRef] [PubMed]
- Marotta, N.; Calafiore, D.; Curci, C.; Lippi, L.; Ammendolia, V.; Ferraro, F.; Invernizzi, M.; de Sire, A. Integrating virtual reality and exergaming in cognitive rehabilitation of patients with Parkinson disease: A systematic review of randomized controlled trials. Eur. J. Phys. Rehabil. Med. 2022, 58, 818–826. [Google Scholar] [CrossRef] [PubMed]
- García-López, H.; Obrero-Gaitán, E.; Castro-Sánchez, A.M.; Lara-Palomo, I.C.; Nieto-Escamez, F.A.; Cortés-Pérez, I. Non-Immersive Virtual Reality to Improve Balance and Reduce Risk of Falls in People Diagnosed with Parkinson’s Disease: A Systematic Review. Brain Sci. 2021, 11, 1435. [Google Scholar] [CrossRef]
- Kwon, S.H.; Park, J.K.; Koh, Y.H. A systematic review and meta-analysis on the effect of virtual reality-based rehabilitation for people with Parkinson’s disease. J. Neuroeng. Rehabil. 2023, 20, 94. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Mansilla, J.; Bedmar-Vargas, C.; Garrido-Ardila, E.M.; Torres-Piles, S.T.; González-Sánchez, B.; Rodríguez-Domínguez, M.T.; Ramírez-Durán, M.V.; Jiménez-Palomares, M. Effects of Virtual Reality in the Rehabilitation of Parkinson’s Disease: A Systematic Review. J. Clin. Med. 2023, 12, 4896. [Google Scholar] [CrossRef]
- Dockx, K.; Bekkers, E.M.; Van den Bergh, V.; Ginis, P.; Rochester, L.; Hausdorff, J.M.; Mirelman, A.; Nieuwboer, A. Virtual reality for rehabilitation in Parkinson’s disease. Cochrane Database Syst. Rev. 2016, 12, CD010760. [Google Scholar] [CrossRef]
Criterion | Details |
---|---|
Population (P) | Patients diagnosed with Parkinson’s disease (PD). |
Intervention (I) | Rehabilitation involving virtual reality (VR), regardless of protocol or VR type. |
Comparison (C) | Conventional rehabilitation methods or no intervention. |
Outcome (O) | Balance, postural control. |
Study design (S) | Randomized controlled trials (RCTs) published in English with full text available. |
Inclusion criteria | Studies providing evidence of VR interventions in postural rehabilitation for PD patients. |
Exclusion criteria | Studies without rehabilitative interventions, studies not providing evidence-based support, full text unavailable, PEDro score < 6. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agostini, F.; Conti, M.; Morone, G.; Iudicelli, G.; Fisicaro, A.; Savina, A.; Mangone, M.; Paoloni, M. The Role of Virtual Reality in Postural Rehabilitation for Patients with Parkinson’s Disease: A Scoping Review. Brain Sci. 2025, 15, 23. https://doi.org/10.3390/brainsci15010023
Agostini F, Conti M, Morone G, Iudicelli G, Fisicaro A, Savina A, Mangone M, Paoloni M. The Role of Virtual Reality in Postural Rehabilitation for Patients with Parkinson’s Disease: A Scoping Review. Brain Sciences. 2025; 15(1):23. https://doi.org/10.3390/brainsci15010023
Chicago/Turabian StyleAgostini, Francesco, Marco Conti, Giovanni Morone, Giovanni Iudicelli, Andrea Fisicaro, Alessio Savina, Massimiliano Mangone, and Marco Paoloni. 2025. "The Role of Virtual Reality in Postural Rehabilitation for Patients with Parkinson’s Disease: A Scoping Review" Brain Sciences 15, no. 1: 23. https://doi.org/10.3390/brainsci15010023
APA StyleAgostini, F., Conti, M., Morone, G., Iudicelli, G., Fisicaro, A., Savina, A., Mangone, M., & Paoloni, M. (2025). The Role of Virtual Reality in Postural Rehabilitation for Patients with Parkinson’s Disease: A Scoping Review. Brain Sciences, 15(1), 23. https://doi.org/10.3390/brainsci15010023