The Neurodevelopmental Dynamics of Multilingual Experience During Childhood: A Longitudinal Behavioral, Structural, and Functional MRI Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
- The table presents the group’s average number of hours spent using each language during the week and weekend for Daily Activities (minimum value = 0 h, maximum value = 20 h);
- The table includes the group average self-rated measures of language exposure and competence, which were collected as percentages and transposed to a 4-point Likert scale (above 90% = 4; 50–90% = 3; 10–50% = 2; below 10% = 1);
- The “Production” and “Comprehension” columns represent the participants’ self-rated proficiency levels for the different languages they speak, which are distinct from the general “Language Production” and “Language Comprehension” columns that focus on language exposure in different contexts;
- The languages spoken by the participants were classified from L1 to L4 based on the percentages of linguistic competence, exposure, and daily use in order to define the multilingual interactional context for each subject. L1 (German = 70%, Italian = 30%); L2 (German = 30%, Italian = 70%); L3 (English = 90%; Ladin = 10%); L4 = (Ladin = 90%; English = 10%).
2.2. Multilingual Competence and Attention Measures
2.3. MRI Data Acquisition
2.4. MRI Data Preprocessing
2.5. Effects of Global Multilingual Competence on Behavioral Conflict Effect Measures
2.6. Effects of Global Multilingual Competence on Brain Function
2.7. Effects of Global Multilingual Competence on Brain Function and Structure
- First, we assessed the relationship between dACC\preSMA and LC fCE estimates at T1, T2 and between T2 minus T1 fCE differential values by means of a Pearson Correlation analysis;
- Second, we built a multiple regression model in which the behavioral CE difference between T1 and T2 was the dependent variable while fCE differential values between T1 and T2 for dACC\preSMA, for LC and gMC differential values between T1 and T2 were independent variables to test if this model predicted RT differences between T1 and T2 for the behavioral CE to a statistically significant degree;
- Third, we employed a hierarchical multiple regression approach to assess the unique relationship between changes in global multilingual competence (gMC) and neural structural and functional “adaptation” in the dorsal anterior cingulate cortex/pre-supplementary motor area (dACC/preSMA) or left caudate between the two time points, T1 and T2. Specifically, we constructed two separate hierarchical regression models to investigate any specific effects of multilingual competence on the structural development of each region that were associated with the observed differences in BOLD signal functional conflict effect (fCE) estimates between T1 and T2. In each model, the fCE differential values between T1 and T2 served as the dependent variable. In the first step, we included the total gray matter increase between T1 and T2 as an independent variable. We then added the area-specific GM difference between T1 and T2 and the gMC differential values between T1 and T2 in the second step. Finally, we introduced the interaction term, calculated as the cross-product between the area-specific GM differences and gMC differences, in the third step. For each step of the regression, we assessed the significance of the changes in R-squared, and if a block produced a significant change, we examined the beta weights to determine the individual contributions of the variables.
2.8. Effects of Global Multilingual Competence on Brain Functional Connectivity
3. Results
3.1. Effects of Global Multilingual Competence on Behavioral Conflict Effect Measures
3.2. Effects of Global Multilingual Competence on Brain Function
3.3. Effects of Global Multilingual Competence on Brain Function and Structure
3.4. Effects of Global Multilingual Competence on Brain Functional Connectivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Demetriou, A.; Spanoudis, G.; Kazi, S.; Mouyi, A.; Žebec, M.S.; Kazali, E.; Golino, H.; Bakracevic, K.; Shayer, M. Developmental Differentiation and Binding of Mental Processes with g through the Life-Span. J. Intell. 2017, 5, 23. [Google Scholar] [CrossRef] [PubMed]
- Fiske, A.; Holmboe, K. Neural substrates of early executive function development [Review of Neural substrates of early executive function development]. Dev. Rev. 2019, 52, 42. [Google Scholar] [CrossRef]
- Engelhardt, L.E.; Harden, K.P.; Tucker-Drob, E.M.; Church, J.A. The neural architecture of executive functions is established by middle childhood. NeuroImage 2018, 185, 479. [Google Scholar] [CrossRef]
- Kropotov, J.D. Functional Neuromarkers for Psychiatry: Applications for Diagnosis and Treatment; Academic Press: Cambridge, MA, USA, 2016; pp. 171–205. [Google Scholar] [CrossRef]
- Bialystok, E. Bilingualism and the Development of Executive Function: The Role of Attention. Child Dev. Perspect. 2015, 9, 117–121. [Google Scholar] [CrossRef]
- Morasch, K.C.; Raj, V.; Bell, M.A. The Development of Cognitive Control from Infancy Through Childhood; Oxford University Press: Oxford, UK, 2013. [Google Scholar] [CrossRef]
- Best, J.R.; Miller, P.H. A Developmental Perspective on Executive Function [Review of A Developmental Perspective on Executive Function]. Child Dev. 2010, 81, 1641. [Google Scholar] [CrossRef] [PubMed]
- Juric, L.C.; Richard’s, M.M.; Introzzi, I.; Andrés, M.L.; Urquijo, S. Development Patterns of Executive Functions in Children. Span. J. Psychol. 2013, 16, E41. [Google Scholar] [CrossRef] [PubMed]
- Messer, D.J.; Moran, A.; Henry, L.A. Executive Functioning in Children. In The Encyclopedia of Child and Adolescent Development; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 1–12. [Google Scholar]
- Barac, R.; Bialystok, E.; Castro, D.C.; Sánchez, M. The cognitive development of young dual language learners: A critical review [Review of the cognitive development of young dual language learners: A critical review]. Early Child. Res. Q. 2014, 29, 699. [Google Scholar] [CrossRef]
- Bialystok, E.; Barac, R.; Blaye, A.; Poulin-Dubois, D. Word Mapping and Executive Functioning in Young Monolingual and Bilingual Children. J. Cogn. Dev. 2010, 11, 485. [Google Scholar] [CrossRef] [PubMed]
- Sandgren, O.; Holmström, K. Executive functions in mono- and bilingual children with language impairment–issues for speech-language pathology. Front. Psychol. 2015, 6, 1074. [Google Scholar] [CrossRef]
- Pliatsikas, C.; Meteyard, L.; Veríssimo, J.; DeLuca, V.; Shattuck, K.; Ullman, M.T. The Effect of Bilingualism on Brain Development from Early Childhood to Young Adulthood. Brain Struct. Funct. 2020, 225, 2131–2152. [Google Scholar] [CrossRef] [PubMed]
- Abutalebi, J.; Green, D.W. Neuroimaging of language control in bilinguals: Neural adaptation and reserve. Biling. Lang. Cogn. 2016, 19, 689. [Google Scholar] [CrossRef]
- Thieba, C.; Long, X.; Dewey, D.; Lebel, C. Young children in different linguistic environments: A multimodal neuroimaging study of the inferior frontal gyrus. Brain Cogn. 2019, 134, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Carter, C.S.; Botvinick, M.; Cohen, J.D. The Contribution of the Anterior Cingulate Cortex to Executive Processes in Cognition [Review of The Contribution of the Anterior Cingulate Cortex to Executive Processes in Cognition]. Rev. Neurosci. 1999, 10, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Mamiya, P.C.; Richards, T.L.; Corrigan, N.M.; Kuhl, P.K. Strength of Ventral Tegmental Area Connections with Left Caudate Nucleus Is Related to Conflict Monitoring. Front. Psychol. 2020, 10, 2869. [Google Scholar] [CrossRef] [PubMed]
- Videsott, G.; Rosa, P.A.D.; Wiater, W.; Franceschini, R.; Abutalebi, J. How Does Linguistic Competence Enhance Cognitive Functions in Children? A Study in Multilingual Children with Different Linguistic Competences. Biling. Lang. Cogn. 2012, 15, 884–895. [Google Scholar] [CrossRef]
- Della Rosa, P.A.; Videsott, G.; Borsa, V.M.; Canini, M.; Weekes, B.S.; Franceschini, R.; Abutalebi, J. A Neural Interactive Location for Multilingual Talent. Cortex 2013, 49, 605–608. [Google Scholar] [CrossRef] [PubMed]
- Pliatsikas, C. Understanding structural plasticity in the bilingual brain: The Dynamic Restructuring Model. Biling. Lang. Cogn. 2019, 23, 459. [Google Scholar] [CrossRef]
- Kwon, Y.H.; Yoo, K.; Nguyen, H.; Jeong, Y.; Chun, M.M. Predicting multilingual effects on executive function and individual connectomes in children. Proc. Natl. Acad. Sci. USA 2021, 118, e2110811118. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, S.; Marian, V. Consequences of multilingualism for neural architecture [Review of Consequences of multilingualism for neural architecture]. Behav. Brain Funct. 2019, 15, 6. [Google Scholar] [CrossRef]
- DeLuca, V.; Rothman, J.; Bialystok, E.; Pliatsikas, C. Redefining bilingualism as a spectrum of experiences that differentially affects brain structure and function. Proc. Natl. Acad. Sci. USA 2019, 116, 7565. [Google Scholar] [CrossRef]
- Arredondo, M.M.; Hu, X.; Seifert, E.; Satterfield, T.; Kovelman, I. Bilingual exposure enhances left IFG specialization for language in children. Biling. Lang. Cogn. 2018, 22, 783. [Google Scholar] [CrossRef] [PubMed]
- Bialystok, E. The bilingual adaptation: How minds accommodate experience. [Review of the bilingual adaptation: How minds accommodate experience]. Psychol. Bull. 2017, 143, 233. [Google Scholar] [CrossRef] [PubMed]
- Franceschini, R. Multilingualism and Multicompetence: A Conceptual View. Mod. Lang. J. 2011, 95, 344–355. [Google Scholar] [CrossRef]
- Fan, J.; McCandliss, B.D.; Sommer, T.; Raz, A.; Posner, M.I. Testing the Efficiency and Independence of Attentional Networks. J. Cogn. Neurosci. 2002, 14, 340–347. [Google Scholar] [CrossRef]
- Mazaika, P.; Whitfield-Gabrieli, S.; Reiss, A.; Glover, G. Artifact Repair for fMRI Data from High Motion Clinical Subjects. Hum. Brain Mapp. 2007, 47, 70238-1. [Google Scholar]
- Mazaika, P.K.; Hoeft, F.; Glover, G.H.; Reiss, A.L. Methods and Software for fMRI Analysis of Clinical Subjects. NeuroImage 2009, 47 (Suppl. S1), S58. [Google Scholar] [CrossRef]
- Rajapakse, J.C.; Giedd, J.N.; Rapoport, J.L. Statistical Approach to Segmentation of Single-Channel Cerebral MR Images. IEEE Trans. Med. Imaging 1997, 16, 176–186. [Google Scholar] [CrossRef]
- Manjón, J.V.; Tohka, J.; García-Martí, G.; Carbonell-Caballero, J.; Lull, J.J.; Martí-Bonmatí, L.; Robles, M. Robust MRI Brain Tissue Parameter Estimation by Multistage Outlier Rejection. Magn. Reson. Med. 2008, 59, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Cuadra, M.B.; Cammoun, L.; Butz, T.; Cuisenaire, O.; Thiran, J.-P. Comparison and Validation of Tissue Modelization and Statistical Classification Methods in T1-Weighted MR Brain Images. IEEE Trans. Med. Imaging 2005, 24, 1548–1565. [Google Scholar] [CrossRef] [PubMed]
- Ridgway, G.R.; Omar, R.; Ourselin, S.; Hill, D.L.G.; Warren, J.D.; Fox, N.C. Issues with Threshold Masking in Voxel-Based Morphometry of Atrophied Brains. NeuroImage 2009, 44, 99–111. [Google Scholar] [CrossRef]
- Del Maschio, N.; Sulpizio, S.; Abutalebi, J. Thinking Outside the Box: The Brain-Bilingualism Relationship in the Light of Early Neurobiological Variability. Brain Lang. 2020, 211, 104879. [Google Scholar] [CrossRef]
- Green, D.W.; Abutalebi, J. Language Control in Bilinguals: The Adaptive Control Hypothesis. J. Cogn. Psychol. 2013, 25, 515–530. [Google Scholar] [CrossRef] [PubMed]
- Abutalebi, J.; Green, D. Bilingual Language Production: The Neurocognition of Language Representation and Control. J. Neurolinguistics 2007, 20, 242–275. [Google Scholar] [CrossRef]
- Cachia, A.; Del Maschio, N.; Borst, G.; Della Rosa, P.A.; Pallier, C.; Costa, A.; Houdé, O.; Abutalebi, J. Anterior Cingulate Cortex Sulcation and Its Differential Effects on Conflict Monitoring in Bilinguals and Monolinguals. Brain Lang. 2017, 175, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Abutalebi, J.; Della Rosa, P.A.; Ding, G.; Weekes, B.; Costa, A.; Green, D.W. Language Proficiency Modulates the Engagement of Cognitive Control Areas in Multilinguals. Cortex 2013, 49, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Abutalebi, J.; Della Rosa, P.A.; Green, D.W.; Hernandez, M.; Scifo, P.; Keim, R.; Cappa, S.F.; Costa, A. Bilingualism Tunes the Anterior Cingulate Cortex for Conflict Monitoring. Cereb. Cortex 2012, 22, 2076–2086. [Google Scholar] [CrossRef]
- Crinion, J.; Turner, R.; Grogan, A.; Hanakawa, T.; Noppeney, U.; Devlin, J.T.; Aso, T.; Urayama, S.; Fukuyama, H.; Stockton, K.; et al. Language Control in the Bilingual Brain. Science 2006, 312, 1537–1540. [Google Scholar] [CrossRef] [PubMed]
- Brett, M.; Anton, J.-L.; Valabregue, R.; Poline, J.-B. Region of Interest Analysis Using an SPM Toolbox. In Proceedings of the 8th International Conference on Functional Mapping of the Human Brain, Sendai, Japan, 2–6 June 2002; Volume 16, p. 497. [Google Scholar]
- Pernet, C.; Andersson, J.; Paulesu, E.; Demonet, J.F. When All Hypotheses Are Right: A Multifocal Account of Dyslexia. Hum. Brain Mapp. 2009, 30, 2278–2292. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Green, D.W.; Kherif, F.; Devlin, J.T.; Price, C.J. The Role of the Left Head of Caudate in Suppressing Irrelevant Words. J. Cogn. Neurosci. 2010, 22, 2369–2386. [Google Scholar] [CrossRef] [PubMed]
- Whitfield-Gabrieli, S.; Nieto-Castanon, A. Conn: A Functional Connectivity Toolbox for Correlated and Anticorrelated Brain Networks. Brain Connect. 2012, 2, 125–141. [Google Scholar] [CrossRef]
- Behzadi, Y.; Restom, K.; Liau, J.; Liu, T.T. A Component Based Noise Correction Method (CompCor) for BOLD and Perfusion Based fMRI. NeuroImage 2007, 37, 90–101. [Google Scholar] [CrossRef]
- Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. NeuroImage 2002, 15, 273–289. [Google Scholar] [CrossRef] [PubMed]
- Maldjian, J.A.; Laurienti, P.J.; Kraft, R.A.; Burdette, J.H. An Automated Method for Neuroanatomic and Cytoarchitectonic Atlas-Based Interrogation of fMRI Data Sets. NeuroImage 2003, 19, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Wang, J.; He, Y. BrainNet Viewer: A Network Visualization Tool for Human Brain Connectomics. PLoS ONE 2013, 8, e68910. [Google Scholar] [CrossRef]
- Zhang, R.; Geng, X.; Lee, T.M.C. Large-scale functional neural network correlates of response inhibition: An fMRI meta-analysis. Brain Struct. Funct. 2017, 222, 3973–3990. [Google Scholar] [CrossRef]
- Dixon, M.L.; De La Vega, A.; Mills, C.; Andrews-Hanna, J.; Spreng, R.N.; Cole, M.W.; Christoff, K. Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. Proc. Natl. Acad. Sci. USA 2018, 115, E1598–E1607. [Google Scholar] [CrossRef]
- Medaglia, J.D.; Huang, W.; Karuza, E.A.; Kelkar, A.; Thompson-Schill, S.L.; Ribeiro, A.; Bassett, D.S. Functional alignment with anatomical networks is associated with cognitive flexibility. Nat. Hum. Behav. 2018, 2, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Marian, V.; Bartolotti, J.; Rochanavibhata, S.; Bradley, K.; Hernández, A.E. Bilingual Cortical Control of Between- and Within-Language Competition. Sci. Rep. 2017, 7, 11763. [Google Scholar] [CrossRef] [PubMed]
- Marzecová, A.; Bukowski, M.; Correa, Á.; Boros, M.; Lupiáñez, J.; Wodniecka, Z. Tracing the bilingual advantage in cognitive control: The role of flexibility in temporal preparation and category switching. J. Cogn. Psychol. 2013, 25, 586–604. [Google Scholar] [CrossRef]
- Calabria, M.; Hernández, M.; Branzi, F.M.; Costa, A. Qualitative Differences between Bilingual Language Control and Executive Control: Evidence from Task-Switching. Front. Psychol. 2012, 2, 399. [Google Scholar] [CrossRef] [PubMed]
- Garbin, G.; Costa, A.; Sanjuan, A.; Forn, C.; Rodriguez-Pujadas, A.; Ventura, N.; Belloch, V.; Hernandez, M.; Ávila, C. Neural Bases of Language Switching in High and Early Proficient Bilinguals. Brain Lang. 2011, 119, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Mohades, S.G.; Struys, E.; Van Schuerbeek, P.; Baeken, C.; Van De Craen, P.; Luypaert, R. Age of Second Language Acquisition Affects Nonverbal Conflict Processing in Children: An fMRI Study. Brain Behav. 2014, 4, 626–642. [Google Scholar] [CrossRef]
- Xuan, B. From Evaluation to Prediction: Behavioral Effects and Biological Markers of Cognitive Control Intervention. Neural Plast. Neural Plast. 2020, 2020, 1869459. [Google Scholar] [CrossRef]
- Litwińczuk, M.C.; Trujillo-Barreto, N.J.; Muhlert, N.; Cloutman, L.; Woollams, A.M. Relating Cognition to both Brain Structure and Function: A Systematic Review of Methods. Brain Connect. 2023, 13, 120–132. [Google Scholar] [CrossRef]
- Navarro-Torres, C.A.; Garcia, D.L.; Chidambaram, V.; Kroll, J.F. Cognitive Control Facilitates Attentional Disengagement during Second Language Comprehension. Brain Sci. 2019, 9, 95. [Google Scholar] [CrossRef]
- Morales, J.; Yudes, C.; Gómez-Ariza, C.J.; Bajo, M.T. Bilingualism modulates dual mechanisms of cognitive control: Evidence from ERPs. Neuropsychologia 2015, 66, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Baene, W.D.; Duyck, W.; Braß, M.; Carreiras, M. Brain Circuit for Cognitive Control Is Shared by Task and Language Switching. J. Cogn. Neurosci. 2015, 27, 1752–1765. [Google Scholar] [CrossRef] [PubMed]
- Sorge, G.B.; Toplak, M.E.; Bialystok, E. Interactions between levels of attention ability and levels of bilingualism in children’s executive functioning. Dev. Sci. 2016, 20, e12408. [Google Scholar] [CrossRef]
- Pliatsikas, C.; Soares, S.M.P.; Voits, T.; DeLuca, V.; Rothman, J. Bilingualism is a long-term cognitively challenging experience that modulates metabolite concentrations in the healthy brain. Sci. Rep. 2021, 11, 7090. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Legault, J.; Litcofsky, K.A. Neuroplasticity as a function of second language learning: Anatomical changes in the human brain. Cortex 2014, 58, 301–324. [Google Scholar] [CrossRef] [PubMed]
- Becker, T.M.; Prat, C.S.; Stocco, A. A network-level analysis of cognitive flexibility reveals a differential influence of the anterior cingulate cortex in bilinguals versus monolinguals. Neuropsychologia 2016, 85, 62–73. [Google Scholar] [CrossRef]
- Legault, J.; Grant, A.; Fang, S.-Y.; Li, P. A longitudinal investigation of structural brain changes during second language learning. Brain Lang. 2019, 197, 104661. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Ma, F.; Zhang, Z.; Li, S.; Zhang, M.; Yuan, Q.; Wu, J.; Lu, C.; Guo, T. Language switching training modulates the neural network of non-linguistic cognitive control. PLoS ONE 2021, 16, e0247100. [Google Scholar] [CrossRef]
- Li, L.; Emmorey, K.; Feng, X.; Lu, C.; Ding, G. Functional Connectivity Reveals Which Language the ‘Control Regions’ Control during Bilingual Production. Front. Hum. Neurosci. 2016, 10, 616. [Google Scholar] [CrossRef] [PubMed]
- Hervais-Adelman, A.; Egorova, N.; Golestani, N. Beyond bilingualism: Multilingual experience correlates with caudate volume. Anat. Embryol. 2018, 223, 3495–3502. [Google Scholar] [CrossRef]
- Gallo, F.; Novitskiy, N.; Myachykov, A.; Shtyrov, Y. Individual differences in bilingual experience modulate executive control network and performance: Behavioral and structural neuroimaging evidence. Biling. Lang. Cogn. 2020, 24, 293–304. [Google Scholar] [CrossRef]
- Greenough, W.T.; Black, J.E.; Wallace, C.E. Experience and brain development. Child Dev. 1987, 58, 539–559. [Google Scholar] [CrossRef] [PubMed]
- Buchweitz, A.; Prat, C.S. The bilingual brain: Flexibility and control in the human cortex. Phys. Life Rev. 2013, 10, 428. [Google Scholar] [CrossRef]
- Blanco-Elorrieta, E.; Emmorey, K.; Pylkkänen, L. Language switching decomposed through MEG and evidence from bimodal bilinguals. Proc. Natl. Acad. Sci. USA 2018, 115, 9708–9713. [Google Scholar] [CrossRef]
- van den Noort, M.; Struys, E.; Bosch, P. Individual Variation and the Bilingual Advantage—Factors that Modulate the Effect of Bilingualism on Cognitive Control and Cognitive Reserve. Behav. Sci. 2019, 9, 120. [Google Scholar] [CrossRef]
- Andrews, E.; Frigau, L.; Voyvodic, C.; Voyvodic, J.; Wright, J. Multilingualism and fMRI: Longitudinal Study of Second Language Acquisition. Brain Sci. 2013, 3, 849–876. [Google Scholar] [CrossRef]
- Berken, J.A.; Gracco, V.L.; Klein, D. Early bilingualism, language attainment, and brain development. Neuropsychologia 2017, 98, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Stocco, A.; Yamasaki, B.; Natalenko, R.; Prat, C.S. Bilingual Brain Training: A Neurobiological Framework of How Bilingual Experience Improves Executive Function. Int. J. Biling. 2014, 18, 67–92. [Google Scholar] [CrossRef]
- Ridderinkhof, K.R.; Ullsperger, M.; Crone, E.A.; Nieuwenhuis, S. The Role of the Medial Frontal Cortex in Cognitive Control. Science 2004, 306, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Hosoda, C.; Tanaka, K.; Nariai, T.; Honda, M.; Hanakawa, T. Dynamic neural network reorganization associated with second language vocabulary acquisition: A multimodal imaging study. J. Neurosci. 2013, 33, 13663–13672. [Google Scholar] [CrossRef] [PubMed]
- Seo, R.; Stocco, A.; Prat, C.S. The bilingual language network: Differential involvement of anterior cingulate, basal ganglia and prefrontal cortex in preparation, monitoring, and execution. NeuroImage 2018, 174, 44–56. [Google Scholar] [CrossRef]
- Branzi, F.M.; Martin, C.D.; Carreiras, M.; Paz-Alonso, P.M. Functional connectivity reveals dissociable ventrolateral prefrontal mechanisms for the control of multilingual word retrieval. Hum. Brain Mapp. 2019, 41, 80–94. [Google Scholar] [CrossRef]
- Pliatsikas, C.; DeLuca, V.; Moschopoulou, E.; Saddy, D. Immersive bilingualism reshapes the core of the brain. Brain Struct. Funct. 2016, 222, 1785–1795. [Google Scholar] [CrossRef] [PubMed]
Language | Daily Activities: Watch TV | Daily Activities: Listen to Radio | Daily Activities: Family Conversation | Daily Activities: Conversation with Friends | Daily Activities: Read | Daily Activities: Hobbies | Exposure: Language Production | Exposure: Language Comprehension | Linguistic Competence Level | Linguistic Competence: Language Production | Linguistic Competence: Language Comprehension |
---|---|---|---|---|---|---|---|---|---|---|---|
German | 2.4 | 0.6 | 10.2 | 8 | 6.7 | 3.3 | 3.3 | 3.4 | L1 | 4 | 4 |
Italian | 2.1 | 0.5 | 6.9 | 4.5 | 1.5 | 2.2 | 2.8 | 3.2 | L2 | 3.2 | 3.6 |
English | 0.4 | 1.4 | 0.3 | 0.7 | 0.5 | 1.0 | 1.4 | 1.5 | L3 | 2.07 | 2.2 |
Ladin | 0.0 | 0.0 | 0.0 | 0.7 | 0.0 | 0.3 | 1.2 | 1.2 | L4 | 1.2 | 1.6 |
Region | Hemisphere | MNI Coordinates | ||
---|---|---|---|---|
x | y | z | ||
Caudate | Left | −18 | 8 | 18 |
DLPFC | Left | −42 | 40 | 22 |
Inferior Frontal Gyrus (pars triangularis) | Left | −32 | −30 | 14 |
Putamen | Left | −22 | 0 | 6 |
Occipital Fusiform | Left | −36 | −79 | −14 |
DLPFC | Right | 38 | 44 | 24 |
Variable | N | Mean | Std. Deviation | Minimum | Maximum | Interaction Coefficients |
---|---|---|---|---|---|---|
Intercept | - | - | - | - | - | −0.643 |
Delta Left Caudate (milliliters) (T2 − T1) | 15 | −0.036 | 0.080 | −0.132 | 0.132 | Independent Term: −24.451 |
Delta Multilingual Competence (T2 − T1) | 15 | −0.142 | 0.464 | −1.300 | 0.820 | Moderator Term: −26.272 |
Interaction Term on fCE BOLD Activity (T2 − T1) | 15 | 3.04 | 15.60 | −22.05 | 30.21 | Interaction Term: −231.304 |
dACC/preSMA + LC | MNI Coordinates | |||
---|---|---|---|---|
Region | x | y | z | Cluster Size |
Left Supramarginal Gyrus | −58 | 22 | 26 | 18 |
Left Cerebellum | 8 | −60 | −48 | 58 |
Right Inferior Frontal Gyrus (Pars Triangularis) | 38 | 34 | 2 | 56 |
Right Insula/Angular Gyrus | 44 | −54 | 28 | 68 |
dACC/preSMA vs. LC | ||||
Region | x | y | z | Cluster Size |
Left Dorsolateral Prefrontal Cortex | −18 | 66 | 26 | 73 |
Right Dorsolateral Prefrontal Cortex | 60 | 28 | 22 | 45 |
Right Angular Gyrus | 56 | −54 | 28 | 76 |
Right Pre-supplementary Motor Area | 6 | 2 | 52 | 54 |
LC vs. dACC/preSMA | ||||
Region | x | y | z | Cluster Size |
Left Fusiform Gyrus/Posterior Inferior Temporal Gyrus | −32 | −48 | 20 | 38 |
Left Hippocampus | −20 | −16 | −14 | 13 |
Left Parahippocampal Gyrus | −22 | −32 | −28 | 29 |
Left Putamen | −22 | 8 | 2 | 14 |
Left Middle/Superior Frontal Gyrus | −24 | 8 | 60 | 26 |
Right Cerebellum | 26 | −32 | −34 | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Della Rosa, P.A.; Videsott, G.; Borsa, V.M.; Catricalà, E.; Pecco, N.; Alemanno, F.; Canini, M.; Falini, A.; Franceschini, R.; Abutalebi, J. The Neurodevelopmental Dynamics of Multilingual Experience During Childhood: A Longitudinal Behavioral, Structural, and Functional MRI Study. Brain Sci. 2025, 15, 54. https://doi.org/10.3390/brainsci15010054
Della Rosa PA, Videsott G, Borsa VM, Catricalà E, Pecco N, Alemanno F, Canini M, Falini A, Franceschini R, Abutalebi J. The Neurodevelopmental Dynamics of Multilingual Experience During Childhood: A Longitudinal Behavioral, Structural, and Functional MRI Study. Brain Sciences. 2025; 15(1):54. https://doi.org/10.3390/brainsci15010054
Chicago/Turabian StyleDella Rosa, Pasquale Anthony, Gerda Videsott, Virginia Maria Borsa, Eleonora Catricalà, Nicolò Pecco, Federica Alemanno, Matteo Canini, Andrea Falini, Rita Franceschini, and Jubin Abutalebi. 2025. "The Neurodevelopmental Dynamics of Multilingual Experience During Childhood: A Longitudinal Behavioral, Structural, and Functional MRI Study" Brain Sciences 15, no. 1: 54. https://doi.org/10.3390/brainsci15010054
APA StyleDella Rosa, P. A., Videsott, G., Borsa, V. M., Catricalà, E., Pecco, N., Alemanno, F., Canini, M., Falini, A., Franceschini, R., & Abutalebi, J. (2025). The Neurodevelopmental Dynamics of Multilingual Experience During Childhood: A Longitudinal Behavioral, Structural, and Functional MRI Study. Brain Sciences, 15(1), 54. https://doi.org/10.3390/brainsci15010054