Short-Term Restriction of Physical and Social Activities Effects on Brain Structure and Connectivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Mental Status Measurement
2.3. MRI Data Acquisition
2.4. MRI Data Processing
2.5. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.2. Regional-Based Comparison of GMV
3.3. Longitudinal Trajectories of Whole-Brain FC
3.4. The Association Between Longitudinal Altered FC and Mental Status Measurement Scores
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dutheil, F.; Mondillon, L.; Navel, V. PTSD as the second tsunami of the SARS-Cov-2 pandemic. Psychol. Med. 2021, 51, 1773–1774. [Google Scholar] [CrossRef] [PubMed]
- Burki, T. Dynamic zero COVID policy in the fight against COVID. Lancet Respir. Med. 2022, 10, e58–e59. [Google Scholar] [CrossRef] [PubMed]
- Fancourt, D.; Steptoe, A.; Bu, F. Trajectories of anxiety and depressive symptoms during enforced isolation due to COVID-19 in England: A longitudinal observational study. Lancet Psychiatry 2021, 8, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.T.T.; Nguyen, M.H.; Pham, T.T.M.; Kim, G.B.; Nguyen, H.T.; Nguyen, N.M.; Dam, H.T.B.; Duong, T.H.; Nguyen, Y.H.; Do, T.T.; et al. Predictors of eHealth Literacy and Its Associations with Preventive Behaviors, Fear of COVID-19, Anxiety, and Depression among Undergraduate Nursing Students: A Cross-Sectional Survey. Int. J. Environ. Res. Public Health 2022, 19, 3766. [Google Scholar] [CrossRef]
- Marroquín, B.; Vine, V.; Morgan, R. Mental health during the COVID-19 pandemic: Effects of stay-at-home policies, social distancing behavior, and social resources. Psychiatry Res. 2020, 293, 113419. [Google Scholar] [CrossRef]
- Racine, N.; McArthur, B.A.; Cooke, J.E.; Eirich, R.; Zhu, J.; Madigan, S. Global Prevalence of Depressive and Anxiety Symptoms in Children and Adolescents During COVID-19: A Meta-analysis. JAMA Pediatr. 2021, 175, 1142–1150. [Google Scholar] [CrossRef]
- Chu, I.Y.; Alam, P.; Larson, H.J.; Lin, L. Social consequences of mass quarantine during epidemics: A systematic review with implications for the COVID-19 response. J. Travel Med. 2020, 27, taaa192. [Google Scholar] [CrossRef]
- Aknin, L.B.; Andretti, B.; Goldszmidt, R.; Helliwell, J.F.; Petherick, A.; De Neve, J.E.; Dunn, E.W.; Fancourt, D.; Goldberg, E.; Jones, S.P.; et al. Policy stringency and mental health during the COVID-19 pandemic: A longitudinal analysis of data from 15 countries. Lancet Public Health 2022, 7, e417–e426. [Google Scholar] [CrossRef]
- Vinceti, M.; Filippini, T.; Rothman, K.J.; Ferrari, F.; Goffi, A.; Maffeis, G.; Orsini, N. Lockdown timing and efficacy in controlling COVID-19 using mobile phone tracking. EClinicalMedicine 2020, 25, 100457. [Google Scholar] [CrossRef]
- Griffiths, D.; Sheehan, L.; Petrie, D.; van Vreden, C.; Whiteford, P.; Collie, A. The health impacts of a 4-month long community-wide COVID-19 lockdown: Findings from a prospective longitudinal study in the state of Victoria, Australia. PLoS ONE 2022, 17, e0266650. [Google Scholar] [CrossRef]
- Ochnik, D.; Rogowska, A.M.; Kuśnierz, C.; Jakubiak, M.; Schütz, A.; Held, M.J.; Arzenšek, A.; Benatov, J.; Berger, R.; Korchagina, E.V.; et al. Mental health prevalence and predictors among university students in nine countries during the COVID-19 pandemic: A cross-national study. Sci. Rep. 2021, 11, 18644. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.M.; Kunugi, H. Apitherapy for age-related skeletal muscle dysfunction (sarcopenia): A review on the effects of royal jelly, propolis, and bee pollen. Foods 2020, 9, 1362. [Google Scholar] [CrossRef] [PubMed]
- Leaune, E.; Samuel, M.; Oh, H.; Poulet, E.; Brunelin, J. Suicidal behaviors and ideation during emerging viral disease outbreaks before the COVID-19 pandemic: A systematic rapid review. Prev. Med. 2020, 141, 106264. [Google Scholar] [CrossRef] [PubMed]
- Boecker, H.; Hillman, C.H.; Scheef, L.; Strüder, H.K. Functional Neuroimaging in Exercise and Sport Sciences; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Boecker, H.; Sprenger, T.; Spilker, M.E.; Henriksen, G.; Koppenhoefer, M.; Wagner, K.J.; Valet, M.; Berthele, A.; Tolle, T.R. The runner’s high: Opioidergic mechanisms in the human brain. Cereb. Cortex 2008, 18, 2523–2531. [Google Scholar] [CrossRef]
- Boecker, H.; Drzezga, A. A perspective on the future role of brain pet imaging in exercise science. Neuroimage 2016, 131, 73–80. [Google Scholar] [CrossRef]
- Alleaume, C.; Verger, P.; Peretti-Watel, P. Psychological support in general population during the COVID-19 lockdown in France: Needs and access. PLoS ONE 2021, 16, e0251707. [Google Scholar] [CrossRef]
- Fiorenzato, E.; Zabberoni, S.; Costa, A.; Cona, G. Cognitive and mental health changes and their vulnerability factors related to COVID-19 lockdown in Italy. PLoS ONE 2021, 16, e0246204. [Google Scholar] [CrossRef]
- Ganesan, B.; Al-Jumaily, A.; Fong, K.N.K.; Prasad, P.; Meena, S.K.; Tong, R.K. Impact of Coronavirus Disease 2019 (COVID-19) Outbreak Quarantine, Isolation, and Lockdown Policies on Mental Health and Suicide. Front. Psychiatry 2021, 12, 565190. [Google Scholar] [CrossRef]
- Malhi, G.S.; Mann, J.J. Depression. Lancet 2018, 392, 2299–2312. [Google Scholar] [CrossRef]
- Maguire, E.A.; Gadian, D.G.; Johnsrude, I.S.; Good, C.D.; Ashburner, J.; Frackowiak, R.S.; Frith, C.D. Navigation-related structural change in the hippocampi of taxi drivers. Proc. Natl. Acad. Sci. USA 2000, 97, 4398–4403. [Google Scholar] [CrossRef]
- Jung, W.H.; Kim, S.N.; Lee, T.Y.; Jang, J.H.; Choi, C.H.; Kang, D.H.; Kwon, J.S. Exploring the brains of Baduk (Go) experts: Gray matter morphometry, resting-state functional connectivity, and graph theoretical analysis. Front. Hum. Neurosci. 2013, 7, 633. [Google Scholar] [CrossRef] [PubMed]
- Draganski, B.; Gaser, C.; Busch, V.; Schuierer, G.; Bogdahn, U.; May, A. Neuroplasticity: Changes in grey matter induced by training. Nature 2004, 427, 311–312. [Google Scholar] [CrossRef] [PubMed]
- Salomon, T.; Cohen, A.; Barazany, D.; Ben-Zvi, G.; Botvinik-Nezer, R.; Gera, R.; Oren, S.; Roll, D.; Rozic, G.; Saliy, A.; et al. Brain volumetric changes in the general population following the COVID-19 outbreak and lockdown. Neuroimage 2021, 239, 118311. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S.; Morrison, J.H. The brain on stress: Vulnerability and plasticity of the prefrontal cortex over the life course. Neuron 2013, 79, 16–29. [Google Scholar] [CrossRef]
- Dai, L.; Zhou, H.; Xu, X.; Zuo, Z. Brain structural and functional changes in patients with major depressive disorder: A literature review. PeerJ 2019, 7, e8170. [Google Scholar] [CrossRef]
- Moses, T.E.H.; Gray, E.; Mischel, N.; Greenwald, M.K. Effects of neuromodulation on cognitive and emotional responses to psychosocial stressors in healthy humans. Neurobiol. Stress 2023, 22, 100515. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, C.C.; Zhao, J.; Liu, Y.; Xia, M.; Wang, X.; Wei, D.; Chen, Y.; Liu, B.; Zheng, Y.; et al. Resting-state functional connectivity of the raphe nuclei in major depressive Disorder: A Multi-site study. Neuroimage Clin. 2023, 37, 103359. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiang, Q.; Huang, C.C.; Zhao, J.; Liu, Y.; Lin, C.P.; Liu, D.; Lo, C.Z. Short-term Medication Effects on Brain Functional Activity and Network Architecture in First-Episode psychosis: A longitudinal fMRI study. Brain Imaging Behav. 2023, 17, 137–148. [Google Scholar] [CrossRef]
- Feinstein, J.S.; Khalsa, S.S.; Yeh, H.W.; Wohlrab, C.; Simmons, W.K.; Stein, M.B.; Paulus, M.P. Examining the short-term anxiolytic and antidepressant effect of Floatation-REST. PLoS ONE 2018, 13, e0190292. [Google Scholar] [CrossRef]
- Kjellgren, A.; Sundequist, U.; Norlander, T.; Archer, T. Effects of flotation-REST on muscle tension pain. Pain Res. Manag. 2001, 6, 181–189. [Google Scholar] [CrossRef]
- Turbiaux, M. Bruchon-Schweitzer (Marilou), Psychologie de la santé. Modèles, concepts et méthodes, Paris, Dunod, 2002. Bull. Psychol. 2003, 56, 434–435. [Google Scholar]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.; Löwe, B. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef] [PubMed]
- Manea, L.; Gilbody, S.; McMillan, D. A diagnostic meta-analysis of the Patient Health Questionnaire-9 (PHQ-9) algorithm scoring method as a screen for depression. Gen. Hosp. Psychiatry 2015, 37, 67–75. [Google Scholar] [CrossRef]
- Watson, D.; Clark, L.A.; Tellegen, A. Development and validation of brief measures of positive and negative affect: The PANAS scales. J. Personal. Soc. Psychol. 1988, 54, 1063. [Google Scholar] [CrossRef]
- Manjón, J.V.; Coupé, P.; Martí-Bonmatí, L.; Collins, D.L.; Robles, M. Adaptive non-local means denoising of MR images with spatially varying noise levels. J. Magn. Reson. Imaging 2010, 31, 192–203. [Google Scholar] [CrossRef]
- Ashburner, J.; Friston, K.J. Unified segmentation. Neuroimage 2005, 26, 839–851. [Google Scholar] [CrossRef]
- Rajapakse, J.C.; Giedd, J.N.; Rapoport, J.L. Statistical approach to segmentation of single-channel cerebral MR images. IEEE Trans. Med. Imaging 1997, 16, 176–186. [Google Scholar] [CrossRef]
- Rolls, E.T.; Joliot, M.; Tzourio-Mazoyer, N. Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas. Neuroimage 2015, 122, 1–5. [Google Scholar] [CrossRef]
- Tustison, N.J.; Yang, Y.; Salerno, M. Advanced normalization tools for cardiac motion correction. In Statistical Atlases and Computational Models of the Heart—Imaging and Modelling Challenges; Revised Selected Papers 5; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Kam, T.E.; Wen, X.; Jin, B.; Jiao, Z.; Hsu, L.M.; Zhou, Z.; Liu, Y.; Yamashita, K.; Hung, S.C.; Lin, W.; et al. A deep learning framework for noise component detection from resting-state functional MRI. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2019; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Yeo, B.T.; Krienen, F.M.; Sepulcre, J.; Sabuncu, M.R.; Lashkari, D.; Hollinshead, M.; Roffman, J.L.; Smoller, J.W.; Zöllei, L.; Polimeni, J.R.; et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 2011, 106, 1125–1165. [Google Scholar]
- Verbeke, G.; Molenberghs, G.; Verbeke, G. Linear Mixed Models for Longitudinal Data; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Paterson, R.W.; Brown, R.L.; Benjamin, L.; Nortley, R.; Wiethoff, S.; Bharucha, T.; Jayaseelan, D.L.; Kumar, G.; Raftopoulos, R.E.; Zambreanu, L.; et al. The emerging spectrum of COVID-19 neurology: Clinical, radiological and laboratory findings. Brain 2020, 143, 3104–3120. [Google Scholar] [CrossRef]
- Yang, A.C.; Kern, F.; Losada, P.M.; Agam, M.R.; Maat, C.A.; Schmartz, G.P.; Fehlmann, T.; Stein, J.A.; Schaum, N.; Lee, D.P.; et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature 2021, 595, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Helms, J.; Kremer, S.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; Kummerlen, C.; Collange, O.; Boulay, C.; Fafi-Kremer, S.; Ohana, M.; et al. Neurologic Features in Severe SARS-CoV-2 Infection. N. Engl. J. Med. 2020, 382, 2268–2270. [Google Scholar] [CrossRef] [PubMed]
- Douaud, G.; Lee, S.; Alfaro-Almagro, F.; Arthofer, C.; Wang, C.; McCarthy, P.; Lange, F.; Andersson, J.L.R.; Griffanti, L.; Duff, E.; et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 2022, 604, 697–707. [Google Scholar] [CrossRef]
- Manca, R.; De Marco, M.; Ince, P.G.; Venneri, A. Heterogeneity in Regional Damage Detected by Neuroimaging and Neuropathological Studies in Older Adults with COVID-19: A Cognitive-Neuroscience Systematic Review to Inform the Long-Term Impact of the Virus on Neurocognitive Trajectories. Front. Aging Neurosci. 2021, 13, 646908. [Google Scholar] [CrossRef]
- Mohammadi, S.; Ghaderi, S. Post-COVID-19 conditions: A systematic review on advanced magnetic resonance neuroimaging findings. Neurol. Sci. 2024, 45, 1815–1833. [Google Scholar] [CrossRef]
- Invernizzi, A.; Renzetti, S.; van Thriel, C.; Rechtman, E.; Patrono, A.; Ambrosi, C.; Mascaro, L.; Corbo, D.; Cagna, G.; Gasparotti, R.; et al. COVID-19 related cognitive, structural and functional brain changes among Italian adolescents and young adults: A multimodal longitudinal case-control study. Transl. Psychiatry 2024, 14, 402. [Google Scholar] [CrossRef]
- Orrison, W.W. Atlas of Brain Function; Thieme: Stuttgart-Feuerbach, Germany, 2008. [Google Scholar]
- Li, W.; Lou, W.; Zhang, W.; Tong, R.K.; Jin, R.; Peng, W. Gyrus rectus asymmetry predicts trait alexithymia, cognitive empathy, and social function in neurotypical adults. Cereb. Cortex 2023, 33, 1941–1954. [Google Scholar] [CrossRef]
- Soares, J.M.; Sampaio, A.; Ferreira, L.M.; Santos, N.C.; Marques, P.; Marques, F.; Palha, J.A.; Cerqueira, J.J.; Sousa, N. Stress Impact on Resting State Brain Networks. PLoS ONE 2013, 8, e66500. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Wang, R.; Bi, Y.; Li, Y.; Yi, Z.; Liu, J.; Yu, D.; Yuan, K. Abnormal brain white matter network in young smokers: A graph theory analysis study. Brain Imaging Behav. 2018, 12, 345–356. [Google Scholar] [CrossRef]
- Lu, L.; Yang, W.; Zhang, X.; Tang, F.; Du, Y.; Fan, L.; Luo, J.; Yan, C.; Zhang, J.; Li, J.; et al. Potential brain recovery of frontostriatal circuits in heroin users after prolonged abstinence: A preliminary study. J. Psychiatr. Res. 2022, 152, 326–334. [Google Scholar] [CrossRef]
- Raichle, M.E. A default mode of brain function. Proc. Natl. Acad. Sci. USA 2001, 98, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Raichle, M.E. The brain’s default mode network. Annu. Rev. Neurosci. 2015, 38, 433–447. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R., Jr.; Thompson, R.M.; Butts, R.K.; Sharbrough, F.W.; Kelly, P.J.; Hanson, D.P.; Riederer, S.J.; Ehman, R.L.; Hangiandreou, N.J.; Cascino, G.D. Sensory motor cortex: Correlation of presurgical mapping with functional MR imaging and invasive cortical mapping. Radiology 1994, 190, 85–92. [Google Scholar] [CrossRef]
- Boly, M.; Balteau, E.; Schnakers, C.; Degueldre, C.; Moonen, G.; Luxen, A.; Phillips, C.; Peigneux, P.; Maquet, P.; Laureys, S. Baseline brain activity fluctuations predict somatosensory perception in humans. Proc. Natl. Acad. Sci. USA 2007, 104, 12187–12192. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, C.C.; Zhao, J.; Liu, Y.; Xia, M.; Wang, X.; Wei, D.; Chen, Y.; Liu, B.; Zheng, Y.; et al. Dysfunction in sensorimotor and default mode networks in major depressive disorder with insights from global brain connectivity. Nat. Ment. Health 2024, 2, 1371–1381. [Google Scholar] [CrossRef]
- Al Zoubi, O.; Misaki, M.; Bodurka, J.; Kuplicki, R.; Wohlrab, C.; Schoenhals, W.A.; Refai, H.H.; Khalsa, S.S.; Stein, M.B.; Paulus, M.P.; et al. Taking the body off the mind: Decreased functional connectivity between somatomotor and default-mode networks following Floatation-REST. Hum. Brain Mapp. 2021, 42, 3216–3227. [Google Scholar] [CrossRef]
- Ali, A.M.; Kunugi, H. COVID-19: A pandemic that threatens physical and mental health by promoting physical inactivity. Sports Med. Health Sci. 2020, 2, 221–223. [Google Scholar] [CrossRef]
- Zhai, L.; Zhang, Y.; Zhang, D. Sedentary behaviour and the risk of depression: A meta-analysis. Br. J. Sports Med. 2015, 49, 705–709. [Google Scholar] [CrossRef]
- Lubans, D.; Richards, J.; Hillman, C.; Faulkner, G.; Beauchamp, M.; Nilsson, M.; Kelly, P.; Smith, J.; Raine, L.; Biddle, S. Physical Activity for Cognitive and Mental Health in Youth: A Systematic Review of Mechanisms. Pediatrics 2016, 138, e20161642. [Google Scholar] [CrossRef]
- Rodriguez-Ayllon, M.; Cadenas-Sánchez, C.; Estévez-López, F.; Muñoz, N.E.; Mora-Gonzalez, J.; Migueles, J.H.; Molina-García, P.; Henriksson, H.; Mena-Molina, A.; Martínez-Vizcaíno, V.; et al. Role of Physical Activity and Sedentary Behavior in the Mental Health of Preschoolers, Children and Adolescents: A Systematic Review and Meta-Analysis. Sports Med. 2019, 49, 1383–1410. [Google Scholar] [CrossRef]
- Valkenborghs, S.R.; Noetel, M.; Hillman, C.H.; Nilsson, M.; Smith, J.J.; Ortega, F.B.; Lubans, D.R. The Impact of Physical Activity on Brain Structure and Function in Youth: A Systematic Review. Pediatrics 2019, 144, e20184032. [Google Scholar] [CrossRef] [PubMed]
- Langhammer, B.; Sagbakken, M.; Kvaal, K.; Ulstein, I.; Nåden, D.; Rognstad, M.K. Music Therapy and Physical Activity to Ease Anxiety, Restlessness, Irritability, and Aggression in Individuals with Dementia with Signs of Frontotemporal Lobe Degeneration. J. Psychosoc. Nurs. Ment. Health Serv. 2019, 57, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Voss, M.W.; Prakash, R.S.; Erickson, K.I.; Basak, C.; Chaddock, L.; Kim, J.S.; Alves, H.; Heo, S.; Szabo, A.N.; White, S.M.; et al. Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Front. Aging Neurosci. 2010, 2, 1803. [Google Scholar] [CrossRef] [PubMed]
- Pindus, D.M.; Zwilling, C.E.; Jarrett, J.S.; Talukdar, T.; Schwarb, H.; Anderson, E.; Cohen, N.J.; Barbey, A.K.; Kramer, A.F.; Hillman, C.H. Opposing associations between sedentary time and decision-making competence in young adults revealed by functional connectivity in the dorsal attention network. Sci. Rep. 2020, 10, 13993. [Google Scholar] [CrossRef]
- Ozernov-Palchik, O.; Sury, D.; Turesky, T.K.; Yu, X.; Gaab, N. Longitudinal changes in brain activation underlying reading fluency. Hum. Brain Mapp. 2023, 44, 18–34. [Google Scholar] [CrossRef]
- Logothetis, N.K. What we can do and what we cannot do with fMRI. Nature 2008, 453, 869–878. [Google Scholar] [CrossRef]
Clinical Symptoms | Scan2 (N = 27) | Scan3 (N = 27) | T Value | p-Value a |
---|---|---|---|---|
PSS14 | 27.5 (9.6) | 22.0 (6.9) | 3.00 | 0.0057 ** |
GAD7 | 6.3 (4.9) | 3.7 (2.5) | 2.39 | 0.0239 * |
PHQ9 | 8.0 (4.8) | 4.2 (3.1) | 3.85 | 0.0007 ** |
PANAS (P) | 24.0 (7.0) | 26.4 (5.7) | −1.98 | 0.0583 |
PANAS (N) | 18.6 (8.0) | 18.0 (5.4) | 0.29 | 0.7729 |
Region No. | Region | T Value | p-Value | Cohen’d | Network | |
---|---|---|---|---|---|---|
Scan1 vs. Scan2 | 24 | REC_R | 6.48 | 0.00002 | 0.36 | Limbic |
50 | CUN_R | 4.02 | 0.0015 | 0.30 | Visual | |
Scan1 vs. Scan3 | 17 | OLF_L | 3.93 | 0.0024 | 0.21 | Limbic |
24 | REC_R | 3.59 | 0.0043 | 0.39 | Limbic | |
39 | PCC_L | 3.76 | 0.0032 | 0.34 | Default | |
65 | IPG_L | 3.64 | 0.0039 | 0.31 | Frontoparietal | |
67 | SMG_L | 3.68 | 0.0036 | 0.17 | V-Att | |
71 | PUCN_L | 3.67 | 0.0037 | 0.35 | Default |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Guo, L.; Gu, Z.; Yang, Q.; Han, S.; Zhang, H. Short-Term Restriction of Physical and Social Activities Effects on Brain Structure and Connectivity. Brain Sci. 2025, 15, 7. https://doi.org/10.3390/brainsci15010007
Zhang Y, Guo L, Gu Z, Yang Q, Han S, Zhang H. Short-Term Restriction of Physical and Social Activities Effects on Brain Structure and Connectivity. Brain Sciences. 2025; 15(1):7. https://doi.org/10.3390/brainsci15010007
Chicago/Turabian StyleZhang, Yajuan, Lianghu Guo, Zhuoyang Gu, Qing Yang, Siyan Han, and Han Zhang. 2025. "Short-Term Restriction of Physical and Social Activities Effects on Brain Structure and Connectivity" Brain Sciences 15, no. 1: 7. https://doi.org/10.3390/brainsci15010007
APA StyleZhang, Y., Guo, L., Gu, Z., Yang, Q., Han, S., & Zhang, H. (2025). Short-Term Restriction of Physical and Social Activities Effects on Brain Structure and Connectivity. Brain Sciences, 15(1), 7. https://doi.org/10.3390/brainsci15010007