Diffusion Tensor Imaging as Neurologic Predictor in Patients Affected by Traumatic Brain Injury: Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
- Fractional anisotropy (FA) is a scalar value between zero and one that describes the degree of anisotropy of a diffusion process. FA assumes values in a range from 0 (completely isotropic diffusion) to 1 (fully anisotropic, unidirectional diffusion). In this context, some authors have proposed using FA as a potential biomarker of axonal integrity [4].
- Mean diffusivity (MD) quantifies cellular and membrane density. An increase in MD indicates pathological processes such as edema or necrosis, according to [5].
- The apparent diffusion coefficient (ADC) value is a quantitative measure of the degree of impedance encountered by the diffusion of water molecules, enabling a more accurate definition of tissue reodynamic and pathological conditions, such as stroke, brain edema, or tumors.
- Radial diffusivity (RD) represents the apparent diffusion coefficient in the direction perpendicular to axonal fibers, and its increase could be used as biomarker for microstructural damage or demyelination processes [6].
- Axial diffusivity (AD) refers to the magnitude of diffusion parallel to fiber tracts, and its decrease might reflect axonal injury, reduced axonal caliber, or a less coherent orientation of axons. Some authors believe that AD assumes different regional values depending on the severity of the trauma [7].
- DTI AND traumatic brain injury: 749 articles;
- DTI AND brain trauma: 735 articles;
- DTI AND brain trauma AND outcome: 135 articles;
- DTI AND traumatic brain injury AND outcome: 143 articles;
- DTI AND brain recovery: 346 articles;
- Tracts AND brain trauma: 635 articles;
- DTI AND diffuse axonal injury: 78 articles;
- MR AND traumatic brain injury: 623 articles;
- DAI (diffuse axonal injury) AND MR intensity variations: 1 article.
- Full-text articles available;
- English language only;
- Patients older than 18 years with a history of head trauma;
- Use of DTI sequences to detect brain alterations in moderate to severe traumatic brain injury;
- Evaluation of neurological outcomes (no restrictions on the timing of the evaluation after trauma);
- Articles published from 2015 onwards.
- Full-text articles in languages other than English;
- Studies focused on patients with mild traumatic brain injury;
- Patients younger than 18 years;
- No available data on neurological outcomes;
- Studies not utilizing DTI MRI sequences.
3. Results
3.1. DTI Parameters and Their Use in TBI Assessment
3.2. Relationship Between DTI Metrics and Neurological Outcomes
3.3. Brain Regions and Neurological Functions Analyzed
3.4. Diffuse Axonal Injury (DAI) Detection Using DTI
3.5. Clinical Prognostic Relevance of DTI in TBI
4. Discussion
4.1. Diffusion Tensor Imaging
4.2. Current Applications of DTI in TBI
4.3. Current Clinical Prognostic Relations of DTI in TBI
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Håberg, A.K.; Olsen, A.; Moen, K.G.; Schirmer-Mikalsen Visser, E.; Finnanger, T.; Evensen, K.; Skandsen, T.; Vik, A.; Eikenes, L. White matter microstructure in chronic moderate-to-severe traumatic brain injury: Impact of acute-phase injury-related variables and associations with outcome measures. J. Neurosci. Res. 2015, 93, 1109–1126. [Google Scholar] [CrossRef]
- Edlow, B.L.; Copen, W.A.; Izzy, S.; van der Kouwe, A.; Glenn, M.B.; Greenberg, S.M.; Greer, D.M.; Wu, O. Longitudinal Diffusion Tensor Imaging Detects Recovery of Fractional Anisotropy Within Traumatic Axonal Injury Lesions. Neurocrit. Care 2016, 24, 342–352. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic re-views and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Mahan, M.Y.; Rafter, D.J.; Truwit, C.L.; Oswood, M.; Samadani, U. Evaluation of diffusion measurements reveals radial diffusivity indicative of microstructural damage following acute, mild traumatic brain injury. Magn. Reson. Imaging 2021, 77, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Latini, F.; Fahlström, M.; Vedung, F.; Stensson, S.; Larsson, E.-M.; Lubberink, M.; Tegner, Y.; Haller, S.; Johansson, J.; Wall, A.; et al. Refined Analysis of Chronic White Matter Changes after Traumatic Brain Injury and Repeated Sports-Related Concussions: Of Use in Targeted Rehabilitative Approaches? J. Clin. Med. 2022, 11, 358. [Google Scholar] [CrossRef] [PubMed]
- Darwish, H.S.; Elshafey, R.; Kamel, H. Prediction of Motor Recovery after Stroke by Assessment of Corticospinal Tract Wallerian Degeneration Using Diffusion Tensor Imaging. Indian J. Radiol. Imaging 2021, 31, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Panesar, S.S.; Abhinav, K.; Yeh, F.C.; Jacquesson, T.; Collins, M.; Fernandez-Miranda, J. Tractography for Surgical Neuro-Oncology Planning: Towards a Gold Standard. Neurotherapeutics 2019, 16, 36–51. [Google Scholar] [CrossRef]
- Graham, N.S.N.; Jolly, A.; Zimmerman, K.; Bourke, N.J.; Scott, G.; Cole, J.H.; Schott, J.M.; Sharp, D.J. Diffuse axonal injury predicts neurodegeneration after moderate-severe traumatic brain injury. Brain 2020, 143, 3685–3698. [Google Scholar] [CrossRef] [PubMed]
- Newcombe, V.F.; Correia, M.M.; Ledig, C.; Abate, M.G.; Outtrim, J.G.; Chatfield, D.; Geeraerts, T.; Manktelow, A.E.; Garyfallidis, E.; Pickard, J.D.; et al. Dynamic Changes in White Matter Abnormalities Correlate with Late Improvement and Deterioration Following TBI: A Diffusion Tensor Imaging Study. Neurorehabilit. Neural Repair 2016, 30, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Munakomi, S.; Poudel, D.; Shrestha, S. Reliability of Magnetic Resonance Tractography in Predicting Early Clinical Improvements in Patients with Diffuse Axonal Injury Grade III. Adv. Exp. Med. Biol. 2020, 1251, 19–28. [Google Scholar] [PubMed]
- Andreasen, S.H.; Andersen, K.W.; Conde, V.; Dyrby, T.B.; Puonti, O.; Kammersgaard, L.P.; Madsen, C.G.; Madsen, K.H.; Poulsen, I.; Siebner, H.R. Two Coarse Spatial Patterns of Altered Brain Microstructure Predict Post-traumatic Amnesia in the Subacute Stage of Severe Traumatic Brain Injury. Front. Neurol. 2020, 11, 800. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.J.; Jang, S.H. Relationship between post-traumatic amnesia and white matter integrity in traumatic brain injury using tract-based spatial statistics. Sci. Rep. 2021, 11, 6898. [Google Scholar] [CrossRef] [PubMed]
- Genova, H.M.; Rajagopalan, V.; Chiaravalloti, N.; Binder, A.; Deluca, J.; Lengenfelder, J. Facial affect recognition linked to damage in specific white matter tracts in traumatic brain injury. Soc. Neurosci. 2015, 10, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Magnoni, S.; Mac Donald, C.L.; Esparza, T.J.; Conte, V.; Sorrell, J.; Macrì, M.; Bertani, G.; Biffi, R.; Costa, A.; Sammons, B.; et al. Quantitative assessments of traumatic axonal injury in human brain: Concordance of microdialysis and advanced MRI. Brain 2015, 138 Pt 8, 2263–2277. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Edlow, B.L.; Copen, W.A.; Izzy, S.; Bakhadirov, K.; van der Kouwe, A.; Glenn, M.B.; Greenberg, S.M.; Greer, D.M.; Wu, O. Diffusion tensor imaging in acute-to-subacute traumatic brain injury: A longitudinal analysis. BMC Neurol. 2016, 16, 2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sours, C.; Raghavan, P.; Medina, A.E.; Roys, S.; Jiang, L.; Zhuo, J.; Gullapalli, R.P. Structural and Functional Integrity of the Intraparietal Sulcus in Moderate and Severe Traumatic Brain Injury. J. Neurotrauma 2017, 34, 1473–1481. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- O’Phelan, K.H.; Otoshi, C.K.; Ernst, T.; Chang, L. Common Patterns of Regional Brain Injury Detectable by Diffusion Tensor Imaging in Otherwise Normal-Appearing White Matter in Patients with Early Moderate to Severe Traumatic Brain Injury. J. Neurotrauma 2018, 35, 739–749. [Google Scholar] [CrossRef]
- Owens, J.A.; Spitz, G.; Ponsford, J.L.; Dymowski, A.R.; Ferris, N.; Willmott, C. White matter integrity of the medial forebrain bundle and attention and working memory deficits following traumatic brain injury. Brain Behav. 2016, 7, e00608. [Google Scholar] [CrossRef] [PubMed]
- Sener, S.; Van Hecke, W.; Feyen, B.F.; Van der Steen, G.; Pullens, P.; Van de Hauwe, L.; Menovsky, T.; Parizel, P.; Jorens, P.; Maas, A. Diffusion Tensor Imaging: A Possible Biomarker in Severe Traumatic Brain Injury and Aneurysmal Subarachnoid Hemorrhage? Neurosurgery 2016, 79, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Abe, H.; Shimoji, K.; Nagamine, Y.; Fujiwara, S.; Izumi, S.I. Predictors of Recovery from Traumatic Brain Injury-Induced Prolonged Consciousness Disorder. Neural Plast. 2017, 2017, 9358092. [Google Scholar] [CrossRef]
- Bonanno, L.; Marino, S.; De Salvo, S.; Ciurleo, R.; Costa, A.; Bruschetta, D.; Milardi, D.; Galletti, F.; Bramanti, P.; Caminiti, F. Role of diffusion tensor imaging in the diagnosis and management of post-traumatic anosmia. Brain Inj. 2017, 31, 1964–1968. [Google Scholar] [CrossRef]
- De Simoni, S.; Jenkins, P.O.; Bourke, N.J.; Fleminger, J.J.; Hellyer, P.J.; Jolly, A.E.; Patel, M.C.; Cole, J.H.; Leech, R.; Sharp, D.J. Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury. Brain 2018, 141, 148–164. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.H.; Kim, S.H.; Kwon, Y.H. Extensive traumatic axonal injury of brain due to violence: A case report. Medicine 2018, 97, e13315. [Google Scholar] [CrossRef]
- McDonald, S.; Rushby, J.A.; Dalton, K.I.; Allen, S.K.; Parks, N. The role of abnormalities in the corpus callosum in social cognition deficits after Traumatic Brain Injury. Soc. Neurosci. 2018, 13, 471–479. [Google Scholar] [CrossRef]
- Chiou, K.S.; Jiang, T.; Chiaravalloti, N.; Hoptman, M.J.; DeLuca, J.; Genova, H. Longitudinal examination of the relationship between changes in white matter organization and cognitive outcome in chronic TBI. Brain Inj. 2019, 33, 846–853. [Google Scholar] [CrossRef]
- McDonald, S.; Dalton, K.I.; Rushby, J.A.; Landin-Romero, R. Loss of white matter connections after severe traumatic brain injury (TBI) and its relationship to social cognition. Brain Imaging Behav. 2019, 13, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Jolly, A.E.; Bălăeţ, M.; Azor, A.; Friedland, D.; Sandrone, S.; Graham, N.S.N.; Zimmerman, K.; Sharp, D.J. Detecting axonal injury in individual patients after traumatic brain injury. Brain 2021, 144, 92–113. [Google Scholar] [CrossRef]
- Debarle, C.; Perlbarg, V.; Jacquens, A.; Pélégrini-Issac, M.; Bisch, M.; Prigent, A.; Lesimple, B.; Caron, E.; Lefort, M.; Bayen, E.; et al. Global mean diffusivity: A radiomarker discriminating good outcome long term after traumatic brain injury. Ann. Phys. Rehabil. Med. 2021, 64, 101433. [Google Scholar] [CrossRef] [PubMed]
- Grassi, D.C.; Zaninotto, A.L.; Feltrin, F.S.; Macruz, F.B.C.; Otaduy, M.C.G.; Leite, C.C.; Guirado, V.M.P.; Paiva, W.S.; Santos Andrade, C. Dynamic changes in white matter following traumatic brain injury and how diffuse axonal injury relates to cognitive domain. Brain Inj. 2021, 35, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Haber, M.; Amyot, F.; Lynch, C.E.; Sandsmark, D.K.; Kenney, K.; Werner, J.K.; Moore, C.; Flesher, K.; Woodson, S.; Silverman, E.; et al. Imaging biomarkers of vascular and axonal injury are spatially distinct in chronic traumatic brain injury. J. Cereb. Blood Flow Metab. 2021, 41, 1924–1938. [Google Scholar] [CrossRef]
- Zaninotto, A.L.; Grassi, D.C.; Duarte, D.; Rodrigues, P.A.; Cardoso, E.; Feltrin, F.S.; Guirado, V.M.d.P.; Macruz, F.B.d.C.; Otaduy, M.C.G.; Leite, C.d.C.; et al. DTI-derived parameters differ between moderate and severe traumatic brain injury and its association with psychiatric scores. Neurol. Sci. 2022, 43, 1343–1350. [Google Scholar] [CrossRef] [PubMed]
- Wallace, E.J.; Mathias, J.L.; Ward, L. Diffusion tensor imaging changes following mild, moderate and severe adult traumatic brain injury: A meta-analysis. Brain Imaging Behav. 2018, 12, 1607–1621. [Google Scholar] [CrossRef] [PubMed]
- Bartnik-Olson, B.; Holshouser, B.; Ghosh, N.; Oyoyo, U.E.; Nichols, J.G.; Pivonka-Jones, J.; Tong, K.; Ashwal, S. Evolving White Matter Injury following Pediatric Traumatic Brain Injury. J. Neurotrauma 2021, 38, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, C.; Rao, J.S.; Yang, F.X.; Wang, Z.J.; Lei, J.F.; Yang, Z.-Y.; Li, X.-G. Structural and metabolic changes in the traumatically injured rat brain: High-resolution in vivo proton magnetic resonance spectroscopy at 7 T. Neuroradiology 2017, 59, 1203–1212. [Google Scholar] [CrossRef]
- Main, K.L.; Soman, S.; Pestilli, F.; Furst, A.; Noda, A.; Hernandez, B.; Kong, J.; Cheng, J.; Fairchild, J.K.; Taylor, J.; et al. DTI measures identify mild and moderate TBI cases among patients with complex health problems: A receiver operating characteristic analysis of U.S. veterans. NeuroImage Clin. 2017, 16, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Hulkower, M.B.; Poliak, D.B.; Rosenbaum, S.B.; Zimmerman, M.E.; Lipton, M.L. A decade of DTI in traumatic brain injury: 10 years and 100 articles later. Am. J. Neuroradiol. 2013, 34, 2064–2074. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wu, W.; Liu, Y.; Wang, T.; Chen, X.; Zhang, J.; Zhou, G.; Chen, R. Altered Cerebellar White Matter Integrity in Patients with Mild Traumatic Brain Injury in the Acute Stage. PLoS ONE 2016, 11, e0151489. [Google Scholar] [CrossRef] [PubMed]
- Visocchi, M.; Chiaretti, A.; Cabezas, D.; Meglio, M. Hypoflow and hyperflow in diffuse axonal injury. Prognostic and therapeutic implications of transcranial Doppler sonography evaluation. J. Neurosurg. Sci. 2002, 46, 10, discussion 17. [Google Scholar] [PubMed]
- Visocchi, M.; Chiaretti, A.; Genovese, O.; Di Rocco, F. Haemodynamic patterns in children with posttraumatic diffuse brain swelling. A preliminary study in 6 cases with neuroradiological features consistent with diffuse axonal injury. Acta Neurochir. 2007, 149, 347–356. [Google Scholar] [CrossRef]
- Visocchi, M. Hyper flow and intracranial hypertension in diffuse axonal injury: An update to gennarelli doctrine. Acta Neurochir. Suppl. 2008, 101, 137–140. [Google Scholar]
- Ma, J.; Zhang, K.; Wang, Z.; Chen, G. Progress of Research on Diffuse Axonal Injury after Traumatic Brain Injury. Neural Plast. 2016, 2016, 9746313. [Google Scholar] [CrossRef]
- Vijayakumari, A.A.; Parker, D.; Osmanlioglu, Y.; Alappatt, J.A.; Whyte, J.; Diaz-Arrastia, R.; Kim, J.J.; Verma, R. Free Water Volume Fraction: An Imaging Biomarker to Characterize Moderate-to-Severe Traumatic Brain Injury. J. Neurotrauma 2021, 38, 2698–2705. [Google Scholar] [CrossRef] [PubMed]
- Palacios, E.M.; Owen, J.P.; Yuh, E.L.; Wang, M.B.; Vassar, M.J.; Ferguson, A.R.; Diaz-Arrastia, R.; Giacino, J.T.; Okonkwo, D.O.; Robertson, C.S.; et al. The evolution of white matter microstructural changes after mild traumatic brain injury: A longitudinal DTI and NODDI study. Sci. Adv. 2020, 6, eaaz6892. [Google Scholar] [CrossRef]
- Costanzo, R.; Brunasso, L.; Paolini, F.; Benigno, U.E.; Porzio, M.; Giammalva, G.R.; Gerardi, R.M.; Umana, G.E.; di Bonaventura, R.; Sturiale, C.L.; et al. Spinal Tractography as a Potential Prognostic Tool in Spinal Cord Injury: A Systematic Review. World Neurosurg. 2022, 164, 25–32. [Google Scholar] [CrossRef]
- Buscemi, F.; Giammalva, G.R.; Gerardi, R.M.; Iacopino, D.G.; Maugeri, R. Letter to the Editor. The weight of functional MRI to predict surgery-induced risk after tumor resection: Enough to be safe? J. Neurosurg. 2022, 137, 313–314. [Google Scholar] [CrossRef]
- Tshibanda, L.; Vanhaudenhuyse, A.; Galanaud, D.; Boly, M.; Laureys, S.; Puybasset, L. Magnetic resonance spectroscopy and diffusion tensor imaging in coma survivors: Promises and pitfalls. Prog. Brain Res. 2009, 177, 215–229. [Google Scholar] [PubMed]
- Lara, M.; Moll, A.; Mas, A.; Picado, M.J.; Gassent, C.; Pomar, J.; Llompart-Pou, J.A.; Brell, M.; Ibáñez, J.; Pérez-Bárcena, J. Use of diffusion tensor imaging to assess the vasogenic edema in traumatic pericontusional tissue. Neurocirugía 2021, 32, 161–169. [Google Scholar] [CrossRef]
- Yang, A.; Xiao, X.H.; Liu, Z.H.; Wan, Z.L.; Wang, Z.Y. A Multimodal Magnetic Resonance Imaging Study of Recovery of Consciousness in Severe Traumatic Brain Injury: Preliminary Results. J. Neurotrauma 2018, 35, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Majdan, M.; Plancikova, D.; Brazinova, A.; Rusnak, M.; Nieboer, D.; Feigin, V.; Maas, A. Epidemiology of Traumatic Brain Injuries in Europe: A Cross-Sectional Analysis. Lancet Public Health 2016, 1, e76–e83. [Google Scholar] [CrossRef] [PubMed]
- Brazinova, A.; Rehorcikova, V.; Taylor, M.S.; Buckova, V.; Majdan, M.; Psota, M.; Peeters, W.; Feigin, V.; Theadom, A.; Holkovic, L.; et al. Epidemiology of Traumatic Brain Injury in Europe: A Living Systematic Review. J. Neurotrauma 2021, 38, 1411–1440. [Google Scholar] [CrossRef] [PubMed]
- Puybasset, L.; Perlbarg, V.; Unrug, J.; Cassereau, D.; Galanaud, D.; Torkomian, G.; Battisti, V.; Lefort, M.; Velly, L.; Degos, V.; et al. Prognostic Value of Global Deep White Matter DTI Metrics for 1-Year Outcome Prediction in ICU Traumatic Brain Injury Patients: An MRI-COMA and CENTER-TBI Combined Study. Intensiv. Care Med. 2022, 48, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Castaño-Leon, A.M.; Cicuendez, M.; Navarro-Main, B.; Paredes, I.; Munarriz, P.M.; Hilario, A.; Ramos, A.; Gomez, P.A.; Lagares, A. Traumatic Axonal Injury: Is the Prognostic Information Produced by Conventional MRI and DTI Complementary or Supplementary? J. Neurosurg. 2022, 136, 242–256. [Google Scholar] [CrossRef]
- Mohamed, A.Z.; Cumming, P.; Nasrallah, F.A. Department of Defense Alzheimer’s Disease Neuroimaging Initiative. White Matter Alterations Are Associated with Cognitive Dysfunction Decades After Moderate-to-Severe Traumatic Brain Injury and/or Posttraumatic Stress Disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 1100–1109. [Google Scholar]
- Bigler, E.D.; Allder, S. Improved neuropathological identification of traumatic brain injury through quantitative neuroimaging and neural network analyses: Some practical approaches for the neurorehabilitation clinician. NeuroRehabilitation 2021, 49, 235–253. [Google Scholar] [CrossRef] [PubMed]
- Iaccarino, C.; Lippa, L.; Munari, M.; Castioni, C.A.; Robba, C.; Caricato, A.; Pompucci, A.; Signoretti, S.; Zona, G.; Rasulo, F.A.; et al. Management of intracranial hypertension following traumatic brain injury: A best clinical practice adoption proposal for intracranial pressure monitoring and decompressive craniectomy. Joint statements by the Traumatic Brain Injury Section of the Italian Society of Neurosurgery (SINch) and the Neuroanesthesia and Neurocritical Care Study Group of the Italian Society of Anesthesia, Analgesia, Resuscitation and Intensive Care (SIAARTI). J. Neurosurg. Sci. 2021, 65, 219–238. [Google Scholar]
- Grant, M.; Liu, J.; Wintermark, M.; Bagci, U.; Douglas, D. Current State of Diffusion-Weighted Imaging and Diffusion Tensor Imaging for Traumatic Brain Injury Prognostication. Neuroimaging Clin. N. Am. 2023, 33, 279–297. [Google Scholar] [CrossRef]
- Simeone, P.; Auzias, G.; Lefevre, J.; Takerkart, S.; Coulon, O.; Lesimple, B.; Torkomian, G.; Battisti, V.; Jacquens, A.; Couret, D.; et al. Long-Term Follow-up of Neurodegenerative Phenomenon in Severe Traumatic Brain Injury Using MRI. Ann. Phys. Rehabilitation Med. 2022, 65, 101599. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.; Wang, L.; Zhao, Y.; Tong, W.; Wang, J.; Li, G.; Cheng, W.; Gao, L.; Dong, Y. Cortical and Subcortical Alterations and Clinical Correlates after Traumatic Brain Injury. J. Clin. Med. 2022, 11, 4421. [Google Scholar] [CrossRef] [PubMed]
- Giammalva, G.R.; Brunasso, L.; Costanzo, R.; Paolini, F.; Umana, G.E.; Scalia, G.; Gagliardo, C.; Gerardi, R.M.; Basile, L.; Graziano, F.; et al. Brain Mapping-Aided SupraTotal Resection (SpTR) of Brain Tumors: The Role of Brain Connectivity. Front. Oncol. 2021, 11, 645854. [Google Scholar] [CrossRef] [PubMed]
- Umana, G.E.; Scalia, G.; Graziano, F.; Maugeri, R.; Alberio, N.; Barone, F.; Crea, A.; Fagone, S.; Giammalva, G.R.; Brunasso, L.; et al. Navigated Transcranial Magnetic Stimulation Motor Mapping Usefulness in the Surgical Management of Patients Affected by Brain Tumors in Eloquent Areas: A Systematic Review and Meta-Analysis. Front. Neurol. 2021, 12, 644198. [Google Scholar] [CrossRef] [PubMed]
- Barone, F.; Alberio, N.; Iacopino, D.G.; Giammalva, G.R.; D’Arrigo, C.; Tagnese, W.; Graziano, F.; Cicero, S.; Maugeri, R. Brain Mapping as Helpful Tool in Brain Glioma Surgical Treatment-Toward the “Perfect Surgery”? Brain Sci. 2018, 8, 192. [Google Scholar] [CrossRef] [PubMed]
- Visocchi, M.; Meglio, M.; Pentimalli, L.; Cioni, B.; Chiaretti, A.; Mignani, V. Transcranial Doppler sonography in neurotraumatology: Hemodynamic monitoring of diffuse axonal injury. Rays 1995, 20, 473–481. [Google Scholar]
N° | Authors/Year | N° of TBI Patients | DTI Parameters | Brain Areas | DAI | Outcome | Results |
---|---|---|---|---|---|---|---|
1 | Edlow B.L. et al., 2015 [2] | 13 pts | FA, ADC, AD, RD | Corpus callosum | 7 pts | Disability | FA may return to normal values in DAI. No clinical correlation is found. |
2 | Genova et al., 2015 [13] | 42 pts + 23 HC | FA, MD, AD, and RD | Inferior longitudinal fasciculus and inferior-fronto-occipital fasciculus | no | Emotional process | DTI parameters variations in damaged WM tracts after TBI are linked to impairments in the ability to recognize facial expressions. |
3 | Magnoni et al., 2015 [14] | 15 pts | FA | Lobar and/or cerebellar white matter, corpus callosum and brainstem | all | Global neurological functions | DTI and cerebral microdialysis can assess the extent of axonal injury. |
4 | Newcombe V.F. et al., 2015 [9] | 12 pts | FA, MD, AD, RD | Corpus callosum, parasagittal white matter, thalamus | 9 pts | Visual memory, learning task | Variation in DTI parameters are linked to variations in visual memory and learning task functions. |
5 | Edlow et al., 2016 [15] | 11 pts + 1 HC | FA | Corpus callosum, inferior longitudinal fasciculus | yes | Global Neurological Function | Variability in acute WM FA is related to neurological outcome, and subacute FA correlated more consistently with disability rating score than acute FA. |
6 | Sours et al., 2016 [16] | 27 pts + 27 HC | FA, MD, MK | Intraparietal sulcus | yes | Multi-sensory processing and top-down attention | Reduced structural integrity of SLF, measured by reduced MK and FA and increased MD, was associated with a reduction in overall cognitive performance. |
7 | O’Phelan et al., 2016 [17] | 20 pts + 18 HC | FA, MD | Corpus callosum, superior longitudinal fasciculus, internal capsule, right retrolenticular internal capsule, posterior corona radiata, thalamus | N.R. | Global neurological functions | DTI quantifies the extent of damaged areas in early TBI. |
8 | Owens et al., 2016 [18] | 20 + 20 HC | FA, MD | Medial forebrain bundle (MFB) | 3 pts | Attention, working memory | Lower FA and higher MD in MFB is seen in patients with impaired attention and working memory after TBI. |
9 | Sener et al., 2016 [19] | 43 pts + 23 aSAH | FA, MD | N.R. | 4 pts | Mortality | DTI parameters, assessed at approximately day 12 after injury, correlate with mortality at 6 months in TBI and a SAH. |
10 | Abe et al., 2017 [20] | 14 pts + 8 HC | FA, MD, AD, and RD | N.R. | 7 pts | Disorders of consciousness | Modifications in FA and AD are linked to recovery from prolonged disorders of consciousness. |
11 | Bonanno et al., 2017 [21] | 1 | FA | Right hemisphere, left hemisphere | N.R. | Anosmia | Decrease in FA is related to recovery in post-TBI anosmia. |
12 | De Simoni et al., 2018 [22] | 42 pts + 21 HC | FA, MD | Thalamus, caudate, corticostriatal tracts | N.R. | Processing speed, cognitive functions, memory, intellectual ability | DTI helps in identifying altered subcortical connectivity, linked to a large-scale network disruption and cognitive impairments after TBI. |
13 | Jang et al., 2018 [23] | 1 pt | FA | Right corticospinal tract, left corticobulbar tract, anterior portion of both cingula, left fornical crus, right dorsolateral prefronto-thalamic tract, both lower ventral ascending reticular activating systems. | yes | Dysarthria, memory impairment, excessive daytime sleepiness | FA variations can detection DAI in patients showing several neurological deficits after TBI. |
14 | McDonald et al., 2018 [24] | 17 pts + 17 HC | FA, MD | Corpus callosum | Gesture, facial expression, prosody, basic emotions | FA and MD alterations in CC are linked to loss of social cognition, and complex social information processing deficits after TBI. | |
15 | Chiou et al., 2019 [25] | 15 pts + 8 HC | FA | Left forceps minor and cingulum, right superior longitudinal fasciculus, forceps major, inferior fronto-occipital fasciculus, uncinate, and inferior longitudinal fasciculus | N.R. | Verbal fluency, cognitive functions | WM changes in chronic TBI (high FA) are linked to improvement in cognitive performance. |
16 | McDonald et al., 2019 [26] | 17 + 17 HC | FA, MD | Planum temporale, corpus callosum, fornix, left temporal lobe and hippocampus, thalamus, external capsule, cerebellum, orbitofrontal cortex, frontopolar cortex, right temporal lobe | yes | Auditory localization, communication between nonverbal and verbal processes, and in memory in particular (post-traumatic amnesia), semantics and verbal recall, multimodal processing and integration, social cognition, | Loss of white matter connectivity detected by DTI alterations could predict poor social cognition after TBI. |
17 | Munakomi et al., 2019 [10] | 17 pts | FA | Brainstem | yes | Dysautonomia | DWI values along the affected corticospinal tracts were related to the increased number of days required for early clinical recovery in patients with DAI grade III. |
18 | Andreasen et al., 2020 [11] | 14 pts | FA, MD | Fronto-temporal, parieto-occipital, and midsagittal hemispheric white matter, as well as brainstem and basal ganglia. | yes | Post-traumatic amnesia | Two coarse spatial patterns of microstructural damage, indexed as reduction in FA, were relevant to recovery of consciousness after TBI. |
19 | Graham et al., 2020 [8] | 55 pts + 19 HC | FA | Corpus callosum, superior corona radiata bilaterally, internal capsules, posterior corona radiata and thalamic radiation on the left | yes | Memory performance | FA variations as a measure of DAI strongly predict long-term neurodegeneration after TBI. |
20 | Jolly A.E. et al., 2020 [27] | 117 pts + 103 HC | FA | Corpus callosum, corticospinal tract, corona radiata, inferior longitudinal fasciculi, middle cerebral peduncle | yes | Neuropsychological performance | FA quantifies entity of DAI, related to cognitive and clinical impairments after TBI. |
21 | Cho et al., 2021 [12] | 47 pts + 47 HC | FA | In total, 48 regions of interest, among them the following: column and body of fornix, left crus of fornix, left uncinate fasciculus, right hippocampus part of cingulum, left medial lemniscus, right superior cerebellar peduncle, left superior cerebellar peduncle, and left posterior thalamic radiation | N.R. | Post-traumatic amnesia (PTA) | Negative correlation between FA value, PTA duration, Mini Mental State Examination, and injury severity in TBI patients. |
22 | Debarle et al., 2021 [28] | 96 pts + 22 HC | FA, MD | N.R. | N.R. | Global neurological functions | Long-term normalization of MD values can predict good recovery after TBI. |
23 | Grassi et al., 2021 [29] | 20 pts + 20 HC | MD, AD | Corpus callosum, bilateral superior longitudinal fascicles | yes | Cognitive skills | Variations in DTI parameters could predict improvement in cognitive skills after TBI. |
24 | Haber et al., 2021 [30] | 27 pts + 14 HC | FA, MD | N.R. | yes | Global neurological functions | FA and MD can help to distinguish DAI from DVI. |
25 | Zaninotto et al., 2021 [31] | 20 pts + 20 HC | FA, MD | Corpus callosum | yes | Depression, anxiety | DTI parameters, specifically MD and CC fibers are linked to brain injury severity in TBI, but no correlation was observed with psychiatric outcome scores. |
26 | Latini F. et al., 2022 [5] | 6 pts + 12 athletes with repeated sport related concussion (rSRC) | AD, FA, RD | 37 WM regions | N.R. | Global neurological functions and recovery | Similar regions of the left FAT, the genu of the CC, and the right ATR displayed different focal changes in both rSRC and TBI patients, reflecting possible differences in trauma and recovery mechanisms. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paolini, F.; Marrone, S.; Scalia, G.; Gerardi, R.M.; Bonosi, L.; Benigno, U.E.; Musso, S.; Scerrati, A.; Iacopino, D.G.; Signorelli, F.; et al. Diffusion Tensor Imaging as Neurologic Predictor in Patients Affected by Traumatic Brain Injury: Scoping Review. Brain Sci. 2025, 15, 70. https://doi.org/10.3390/brainsci15010070
Paolini F, Marrone S, Scalia G, Gerardi RM, Bonosi L, Benigno UE, Musso S, Scerrati A, Iacopino DG, Signorelli F, et al. Diffusion Tensor Imaging as Neurologic Predictor in Patients Affected by Traumatic Brain Injury: Scoping Review. Brain Sciences. 2025; 15(1):70. https://doi.org/10.3390/brainsci15010070
Chicago/Turabian StylePaolini, Federica, Salvatore Marrone, Gianluca Scalia, Rosa Maria Gerardi, Lapo Bonosi, Umberto Emanuele Benigno, Sofia Musso, Alba Scerrati, Domenico Gerardo Iacopino, Francesco Signorelli, and et al. 2025. "Diffusion Tensor Imaging as Neurologic Predictor in Patients Affected by Traumatic Brain Injury: Scoping Review" Brain Sciences 15, no. 1: 70. https://doi.org/10.3390/brainsci15010070
APA StylePaolini, F., Marrone, S., Scalia, G., Gerardi, R. M., Bonosi, L., Benigno, U. E., Musso, S., Scerrati, A., Iacopino, D. G., Signorelli, F., Maugeri, R., & Visocchi, M. (2025). Diffusion Tensor Imaging as Neurologic Predictor in Patients Affected by Traumatic Brain Injury: Scoping Review. Brain Sciences, 15(1), 70. https://doi.org/10.3390/brainsci15010070