Advanced Magnetic Resonance Imaging for Early Diagnosis and Monitoring of Movement Disorders
Abstract
:1. Introduction
2. Magnetic Resonance Imaging Techniques
2.1. Qualitative MRI
2.1.1. Structural Image Analysis Techniques—Traditional Imaging with Proton Density, T1, T2, and T2* Contrasts
2.1.2. Adiabatic Techniques
2.1.3. Voxel-Based Morphometry
2.1.4. Susceptibility Weighted Imaging and T2* Measurements
2.1.5. Neuromelanin-Sensitive Imaging
2.1.6. Functional MRI
2.1.7. Diffusion-Weighted Imaging and Diffusion Tensor Imaging
2.1.8. Magnetic Resonance Elastography
2.2. Quantitative MRI
2.2.1. Morphometric Measurements (Cortical Thickness and Brain Volumes)
2.2.2. Quantitative Magnetization Transfer
2.2.3. Perfusion MRI
2.2.4. Magnetic Resonance Spectroscopy
2.3. Other Magnetic Resonance Techniques
3. Methods
4. MRI in Movement Disorders
4.1. Parkinson’s Disease
Study | MR Techniques | Main Findings |
---|---|---|
Sasaki et al., 2006 [45] | NM-MRI (T1-FSE) | ↓ Signal in SN and LC. |
Helmich et al., 2009 [51] | fMRI | ↓ FC of posterior putamen and primary and secondary somatosensory cortex, IPC, insula, and cingulate motor area. ↑ FC of anterior putamen and IPC. |
Lipp et al., 2013 [66] | MRE | ↓ Viscosity in lentiform nucleus. Strong correlation between UPDRS-Part III and MRE parameters. |
Ziegler et al., 2013 [79] | T1, T2, PDWI, FLAIR | ↓ SNpc volume in early-PD (Hoehn and Yahr stage 1). ↓ SNpc volume, more pronounced in Hoehn and Yahr stages 2 or 3. ↓ Cholinergic basal forebrain volume in Hoehn and Yahr stages 2 or 3. |
Langley et al., 2016 [59] | DWI, DTI, NM-MRI | ↓ FA in SN (maximal in rostral and lateral). ↓ T2* in SN. |
Saeed et al., 2020 [50] | T1, T2, T2*, R2*, PDWI, NM-MRI, FLAIR, SWI, DWI, DTI, fMRI, MRS | ↓ Signal in frontal lobe, basal ganglia, hippocampus, anterior cingulate and superior temporal gyri, olfactory bulb, orbitofrontal, ventrolateral prefrontal, occipitoparietal, left cuneus, praecuneus, lingual gyrus, posterior cingulate, right perisylvian, and inferior temporal cortex. FC abnormalities in networks (default mode, salience, central executive, sensorimotor) and circuits (basal ganglia–thalamocortical, cortical–subcortical–sensorimotor, cerebellothalamic). ↓ FA in SN and olfactory bulb. ↑ MD in olfactory tract. ↓ NAA/Cre in LN, SN, temporoparietal and posterior cingulate cortex, and pre-SMA. |
Alves et al., 2022 [33] | T1, T2, NM-MRI (T1-FSE), FLAIR, DWI | ↓ Area and signal of NM-MRI in SN and LC. = Frequency of lacunes, micro-beds, infarcts or enlarged perivascular spaces. |
Donahue et al., 2022 [77] | T1, MRS | ↓ NAA associated with greater PVS volume in anterior middle cingulate cortex. ↑ Cho associated with greater PVS volume in frontal white matter. |
Haghshomar et al., 2022 [55] | DWI, DTI | ↓ FA, ↑ MD, ↑ RD, and ↑ AD in cerebellum. |
Brown et al., 2023 [35] | T1, T2, DWI | ↓ Volume in striatum. Faster decline in hippocampal volume, FSWM FA, and fornix FA. |
Feng et al., 2023 [65] | MRE | ↓ Shear modulus magnitude of global brain (mostly in frontal lobes and mesencephalic region). |
Joshi et al., 2023 [71] | pMRI (ASL) | ↓ CBF in basal ganglia (caudate nucleus, putamen, globus pallidus), frontoparietal network, precuneus, occipital lobe, sensorimotor area regions, visual network. |
Marapin et al., 2023 [52] | fMRI | FC abnormalities in cerebellum, sensorimotor cortex, SMA, prefrontal cortex, thalamus, and insula. ↓ Local efficiency and ↑ global efficiency in the functional brain network. ↑ FC of sensorimotor network and cognitive control network. ↑ FC dentate nucleus and cerebellum. ↓ FC dentate nucleus and caudate. |
Shih et al., 2023 [63] | DWI, DTI | ↓ FA in corpus callosum, internal and external capsule, corona radiata, posterior thalamic radiation, sagittal stratum, cingulum, superior longitudinal fasciculus, STN. ↑ MD in internal and external capsule, corona radiata, corpus callosum, cingulum, fronto-occipital and longitudinal fasciculus. |
Duan et al., 2024 [44] | T1, T2*, PDWI, SWI | ↓ T1 signal in SNpc and habenular nuclei. ↓ T2* in STN. ↑ QSM values in STN. = PDWI values. |
Lakhani et al., 2024 [80] | NM-MRI, R2*, SWI | ↓ SNpc volume. ↓ NM in SNpc. |
4.2. Progressive Supranuclear Palsy
4.3. Multiple System Atrophy
4.4. Corticobasal Degeneration
4.5. Lewy Body Dementia
4.6. Frontotemporal Dementia
Dis. | Study | MR Techniques | Main Findings |
---|---|---|---|
PSP | Tedeschi et al., 1997 [96] | T1, T2, MRS | ↓ NAA/Cre in brainstem, centrum semiovale, frontal, and precentral cortex. ↓ NAA/Cho in lentiform nucleus. |
Brenneis et al., 2004 [83] | T1 (VBM) | ↓ Grey matter volume in prefrontal cortex (medial and left lateral middle frontal gyrus), insula (frontal opercula), SMA and left medio-temporal area. ↓ White matter volume in frontotemporal and mesencephalon regions. | |
Nicoletti et al., 2006 [53] | T1, T2, PDWI, DWI | Atrophy of the midbrain and putamen, third ventricle dilation, ↑ T2 in periaqueductal. ↑ ADC in putamen, caudate, globus pallidus, thalamus. | |
Seppi et al., 2010 [29] | T1, T2, T2*, PDWI, VBM, DWI, DTI, QMT | Atrophy in midbrain (“penguin silhouette” or “hummingbird” sign), tegmental area, superior cerebellar peduncle, frontal and temporal lobes. Enlargement of third ventricle. ↑ T2 in midbrain and inferior olives. ↓ Volume in whole brain, striatum, brainstem (midbrain), frontal lobe. ↑ Diffusivity in superior cerebellar peduncle and ↓ FA in midbrain. ↓ MTR in SN. | |
Bharti et al., 2017 [93] | rsfMRI | ↑ FC in default mode and cerebellum networks. ↓ FC between cerebellum and insula. ↓ FC between lateral visual and auditory networks. | |
Heim et al., 2021 [86] | T1 | MRPI and M/P ratio showed high diagnostic accuracy in distinguishing PSP from MSA. | |
Mazzucchi et al., 2022 [98] | T1, SWI | ↑ MRPI and ↑ P/M. MRPI and P/M showed high accuracy in distinguishing PSP from PD but not for MSA. QSM values in red nucleus, putamen, and SN differentiate PD, PSP, and MSA. | |
Kawazoe et al., 2024 [118] | NM-MRI | ↓ NMR in SN. | |
MSA | Watanabe et al., 2004 [113] | MRS | ↓ NAA/Cre in putamen and pons. |
Nicoletti et al., 2006 [53] | T1, T2, PDWI, DWI | ↑ ADC in middle cerebellar peduncle, putamen and caudate. | |
Minnerop et al., 2007 [106] | VBM, VBR | ↓ Volumes in cerebellum, right thalamus, both putamina, cortical regions. ↓ R2 in cerebellum, pontine brainstem, cortical regions. | |
Seppi et al., 2010 [29] | T1, T2, T2*, PDWI, VBM, DWI, DTI, QMT | ↓ T2 in putamen. Atrophy in putamen, pons (“hot-cross bun” sign), cerebellum. ↓ Volume in striatum, brainstem, cerebellum. ↑ ADC and ↓ FA in putamen. ↓ MTR in putamen. | |
Péran et al., 2018 [104] | T1, T2, T2* and PDWI, DTI and VBM | T1, T2, T2*, DTI, and VBM measurements combined are biomarkers to distinguish MSA from PD patients. Atrophy in putamen, pons, cerebellum. ↑ R2* in putamen and cerebellum. ↑ MD and ↓ FA in cerebellum, brain stem, superior corona radiata, corpus callosum, external and internal capsules. | |
Lyu et al., 2023 [110] | rsfMRI | Altered FC between central autonomic network and putamen, cerebellum, sensorimotor control, and limbic networks. ↓ FC in insula, putamen, and cerebellum. ↑ FC in superior frontal gyrus, posterior middle temporal gyrus, hippocampus. FC alterations correlate with disease severity. | |
Kawazoe et al., 2024 [118] | NM-MRI | ↓ NMR in SN and locus coeruleus. | |
CBD | Tedeschi et al., 1997 [96] | T1, T2, MRS | ↓ NAA/Cre in centrum semiovale. ↓ NAA/Cho in lentiform nucleus and parietal cortex. |
Seppi et al., 2010 [29] | T1, T2, T2*, PDWI, VBM, DWI, DTI, QMT | Atrophy in frontoparietal cortex and corpus callosum. ↑ T2 in motor cortex, subcortical white matter. ↓ T2 in putamen. ↑ Diffusivity in middle cerebellar peduncle. | |
Bharti et al., 2017 [93] | rsfMRI | ↑ FC in default mode, cerebellum, sensorimotor, executive-control, and insula networks. ↓ FC between the lateral visual and auditory networks. ↑ FC between salience and executive-control networks. | |
Constantinides et al., 2019 [117] | T1, T2 T2*, PDWI, VBM, DWI, DTI, rsfMRI | Asymmetrical cortical atrophy in the perirolandic region, posterior frontal, and parietal lobes, midbrain, corpus callosum, basal ganglia. ↑ T2 in basal ganglia. ↑ MD in central, middle, superior, and inferior frontal gyri. ↓ FA and ↑ ADC in corticospinal tract and posterior corpus callosum. ↓ Cortical thickness in prefrontal cortex, precentral gyrus, SMA, insula, and temporal pole. ↓ Volume in putamen, hippocampus, accumbens, corpus callosum. Altered FC in thalamic and cerebellar dentate nucleus networks. | |
Kawazoe et al., 2024 [118] | NM-MRI | ↓ NMR in SN. | |
LBD | Bozzali et al., 2005 [136] | DWI, DTI | ↓ Grey matter volume. ↑ MD and ↓ FA in frontal, parietal, occipital, corpus callosum, pericallosal areas, caudate nucleus, putamen. |
Xuan et al., 2008 [125] | MRS | ↓ NAA/Cre in hippocampus. | |
Pizzi et al., 2016 [122] | T1 | ↓ Volume in hippocampus. ↓ Thickness of perirhinal cortex and parahippocampus. | |
Saeed et al., 2020 [50] | T1, T2, T2*, R2*, PDWI, NM-MRI, FLAIR, SWI, DWI, DTI, fMRI, MRS | ↓ Volumes in occipital, temporal, right frontal and left parietal lobes, putamen, hippocampus, parahippocampal region, anterior cingulate gyrus, nucleus accumbens, and the thalamic nuclei. ↑ MD and ↓ FA in corpus callosum, pericallosal regions, caudate nucleus, amygdala, inferior longitudinal fasciculus, precuneus, frontal, parietal, and occipital lobe. ↓ NAA/Cr in hippocampus. | |
Ma et al., 2022 [137] | rsfMRI | ↑ Node degree (a measure of connectivity) in frontal and parietal lobes. ↓ Node degree in SMN and auditory network. ↑ Rich club nodes (highly interconnected regions) in the frontoparietal network. ↓ Rich club nodes in the SMN. | |
FTD | Mihara et al., 2006 [134] | MRS | ↓ NAA/Cre, ↓ Cho/Cre and ↑ MI/Cre in frontal white matter. ↓ NAA/Cre in posterior cingulate cortex. |
Rabinovici et al., 2007 [129] | VBM | Atrophy in medial prefrontal and medial temporal cortex, insula, hippocampus, amygdala, anterior cingulate, subcallosal gyrus, striatum. | |
Zhang et al., 2009 [131] | DWI, DTI | ↓ FA, ↑ RD and ↑ AD in anterior corpus callosum, anterior and descending cingulum, uncinate tracts. | |
Daianu et al., 2016 [133] | DWI, DTI | ↑ MD, ↑ RD, ↑ AD and ↓ FA in uncinate fasciculus, frontal segment of the corpus callosum, anterior thalamic radiation fibers, cingulum bundles, superior longitudinal and inferior fronto-occipital fasciculus. | |
Ducharme et al., 2020 [128] | T1, T2, VBM, DTI | ↓ Volume in frontal and anterior temporal areas. | |
Ferreira et al., 2022 [126] | rsfMRI | ↓ FC within the salience network (dorsal anterior cingulate cortex, anterior insula). ↓ Overall connectivity and ↓ network efficiency. Altered FC within default mode network. ↓ FC within frontoparietal attentional, executive, dorsal attentional networks. |
4.7. Huntington’s Disease
4.8. Dystonia
Dis. | Study | MR Techniques | Main Findings |
---|---|---|---|
HD | Aylward et al., 2011 [148] | T1, T2, T2*, PDWI, VBM | ↓ Volume in striatum (caudate, putamen), globus pallidus, thalamus and frontal lobes. |
Chen et al., 2012 [164] | pMRI | ↓ CBF in the cortex (paracentral, sensorimotor, medial occipital areas, inferior temporal and lateral occipital regions, insula and postcentral gyrus) and subcortical regions (caudate and putamen). ↑ CBF in pallidum. ↓ Volume in caudate, putamen, pallidum, thalamus, amygdala, hippocampus. | |
Dumas et al., 2013 [155] | rsfMRI | ↓ FC within left middle frontal and pre-central gyrus, default mode and executive control networks. ↓ FC between right post-central gyrus, and cingulate gyrus with medial visual network. | |
Werner et al., 2013 [157] | rsfMRI, VBM | Grey matter atrophy in striatum, insula, parietal operculum, middle temporal gyrus, left inferior parietal cortex, premotor cortex, and sensorimotor cortex. ↑ FC in thalamus, striatum, prefrontal, premotor, and parietal cortex. ↓ FC between inter-resting-state networks. | |
Tambasco et al., 2015 [161] | QMT | ↓ MTR in whole brain, subcortical gray matter. ↑ MTR in putamen (premanifest disease). | |
van Bergen et al., 2016 [151] | SWI | ↑ QSM values in caudate nucleus, putamen, globus pallidus. ↓ QSM values in SN, hippocampus. ↓ Volume and ↑ effective relaxation in caudate nucleus and putamen. | |
Gregory et al., 2018 [154] | fMRI (rsfMRI, tbfMRI) | ↑ Activation in SMA and superior parietal regions, dorsolateral prefrontal cortex. ↓ Activation in rostral SMA, inferior frontal gyrus, anterior insula, and striatum. ↓ FC between medial prefrontal cortex and left premotor region. ↓ FC within medial visual, dorsal attention, and executive function networks. ↑ FC within default mode and motor networks. | |
Wilson et al., 2018 [144] | T1, T2, T2*, PDWI, VBM, SWI, DTI, DWI, QMT | ↓ Volume in striatum (caudate, putamen), frontal lobe, frontal white matter. ↑ FA in striatum (putamen, globus pallidus). ↓ FA in corpus callosum, frontal, parietal, and occipital white matter, and surrounding the striatum, thalamus, and corpus callosum. ↑ RD and ↑ AD in corpus callosum, frontal tracts, thalamic tracts, and white matter surrounding the striatum. ↓ MTR in cortical grey and white matter. ↑ MTR in putamen. ↑ [Fe] in basal ganglia (caudate, putamen, globus pallidus). ↓ [Fe] in frontal lobe white matter. | |
Leitao et al., 2020 [150] | NM-MRI | ↓ Area in SN. ↓ SN to midbrain area ratio. ↓ NM contrast SN/crus cerebri ratio. | |
Lowe et al., 2022 [166] | MRS | ↓ Volume in caudate. ↓ Cre and ↓ NAA. Cre and MI correlated with caudate volume. | |
DTN | Egger et al., 2007 [174] | VBM | ↑ Volume bilaterally in globus pallidus internus, nucleus accumbens, orbitofontal cortex, medial frontal gyrus, left inferior parietal lobe. = Grey matter volume |
Simonyan et al., 2008 [179] | DTI, DWI | (Laryngeal dystonia). ↓ FA in right genu of the internal capsule. ↑ Water diffusivity in white matter along the corticobulbar/corticospinal tract. ↑ Water diffusivity in lentiform nucleus, ventral thalamus, cerebellar white and gray matter. | |
Marjanska et al., 2013 [187] | MRS | = Concentration of NAA, Glx, and GABA in motor cortex, lentiform nucleus, and occipital region. ↓ NAA, ↓ GABA, and ↓ Glx after 5 Hz rTMS in motor cortex. Asymmetry of NAA and Glx in lentiform nucleus. | |
Simonyan et al., 2018 [176] | T1, VBM, DWI, DTI, rsfMRI | ↑ Volume in putamen. ↓ Axonal integrity and ↑ water diffusivity in cortical and subcortical structures along the cortico-striato-pallido-thalamic and cerebello-thalamo-cortical pathways. Structural alterations in frontoparietal, supplementary motor, and primary sensorimotor areas, caudate nucleus, globus pallidus, thalamus, and cerebellum. ↓ FC within primary somatosensory region. ↑ FC in the putamen. ↓ FC between dorsal premotor cortex and parietal cortex. ↓ FC in sensorimotor and inferior parietal cortices. ↓ FC and activity of the preparatory cortical regions and basal ganglia. Dysfunctional striato-thalamo-cortical and cerebellar-thalamo-cortical pathways. | |
MacIver et al., 2022 [171] | T1, T2, T2*, PDWI, VBM, DTI, QMT | = Volume in prefrontal, sensorimotor, non-frontal cortex, thalamus, striatum, cerebellum. ↓ FA and ↑ MD in brainstem, cerebellum, basal ganglia, thalamus and sensorimotor cortex. ↑ R2* in globus pallidus. ↓ Cerebellothalamic fibers | |
Waller et al., 2022 [173] | T2-FLAIR | (EIF2AK2-related dystonia). ↑ T2 in putamen, frontal and posterior periventricular white matter | |
Yang et al., 2023 [184] | pMRI, fMRI | (Meige syndrome). ↑ Whole gray matter CBF–FCS coupling. ↑ CBF in the middle frontal gyrus and precentral gyrus | |
Maciver et al., 2024 [175] | T1, DWI, DTI, DKI, TG, NODDI | = Volume in prefrontal, sensorimotor, non-frontal, thalamic striatal, cerebellar regions = Cortical thickness in prefrontal, sensorimotor and non-frontal areas. ↑ RK in striatum. = FA, MD, MK, AK, RK in white matter. ↑ FA in mid-right superior cerebellar peduncle. ↑ FA and ↓ ODI in anterior thalamic radiations. ↓ ODI in striatopremotor tracts. |
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morris, H.R. Blood based biomarkers for movement disorders. Acta Neurol. Scand. 2022, 146, 353–361. [Google Scholar] [CrossRef]
- Yan, Y.Y.; Zhang, M.C.; Ren, W.H.; Zheng, X.Q.; Chang, Y. Neuromelanin-sensitive magnetic resonance imaging: Possibilities and promises as an imaging biomarker for Parkinson’s disease. Eur. J. Neurosci. 2024, 59, 2616–2627. [Google Scholar] [CrossRef]
- Ghaderi, S.; Karami, A.; Ghalyanchi-Langeroudi, A.; Abdi, N.; Sharif Jalali, S.S.; Rezaei, M.; Kordestani-Moghadam, P.; Banisharif, S.; Jalali, M.; Mohammadi, S.; et al. MRI findings in movement disorders and associated sleep disturbances. Am. J. Nucl. Med. Mol. Imaging 2023, 13, 77–94. [Google Scholar]
- Botvinik-Nezer, R.; Wager, T.D. Reproducibility in Neuroimaging Analysis: Challenges and Solutions. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2023, 8, 780–788. [Google Scholar] [CrossRef]
- Oren, O.; Gersh, B.J.; Bhatt, D.L. Artificial intelligence in medical imaging: Switching from radiographic pathological data to clinically meaningful. Lancet Digit. Health 2020, 2, E486–E488. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Coelho, L. How Artificial Intelligence Is Shaping Medical Imaging Technology: A Survey of Innovations and Applications. Bioengineering 2023, 10, 1435. [Google Scholar] [CrossRef]
- Grover, V.P.B.; Tognarelli, J.M.; Crossey, M.M.E.; Cox, I.J.; Taylor-Robinson, S.D.; McPhail, M.J.W. Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians. J. Clin. Exp. Hepatol. 2015, 5, 246–255. [Google Scholar] [CrossRef]
- Mascalchi, M.; Vella, A.; Ceravolo, R. Movement disorders: Role of imaging in diagnosis. J. Magn. Reson. Imaging 2012, 35, 239–256. [Google Scholar] [CrossRef]
- Mills, A.F.; Sakai, O.; Anderson, S.W.; Jara, H. Principles of Quantitative MR Imaging with Illustrated Review of Applicable Modular Pulse Diagrams. Radiographics 2017, 37, 2083–2105. [Google Scholar] [CrossRef] [PubMed]
- McMahon, K.L.; Cowin, G.; Galloway, G. Magnetic resonance imaging: The underlying principles. J. Orthop. Sports Phys. Ther. 2011, 41, 806–819. [Google Scholar] [CrossRef]
- Michaeli, S.; Gröhn, H.; Gröhn, O.; Sorce, D.J.; Kauppinen, R.; Springer, C.S., Jr.; Uğurbil, K.; Garwood, M. Exchange-influenced T2ρ contrast in human brain images measured with adiabatic radio frequency pulses. Magn. Reson. Med. 2005, 53, 6. [Google Scholar] [CrossRef]
- Michaeli, S.; Sorce, D.J.; Springer, C.S.; Ugurbil, K.; Garwood, M. 1ρ MRI contrast in the human brain: Modulation of the longitudinal rotating frame relaxation shutter-speed during an adiabatic RF pulse. J. Magn. Reson. 2006, 181, 135–147. [Google Scholar] [CrossRef]
- Ashburner, J.; Friston, K.J. Voxel-Based Morphometry—The Methods. Neuroimage 2000, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Haacke, E.M.; Xu, Y.B.; Cheng, Y.C.N.; Reichenbach, J.R. Susceptibility weighted imaging (SWI). Magn. Reson. Med. 2004, 52, 612–618. [Google Scholar] [CrossRef]
- Trujillo, P.; Summers, P.E.; Ferrari, E.; Zucca, F.A.; Sturini, M.; Mainardi, L.T.; Cerutti, S.; Smith, A.K.; Smith, S.A.; Zecca, L.; et al. Contrast Mechanisms Associated With Neuromelanin-MRI. Magn. Reson. Med. 2017, 78, 1790–1800. [Google Scholar] [CrossRef] [PubMed]
- Casey, B.J.; Davidson, M.; Rosen, B. Functional magnetic resonance imaging: Basic principles of and application to developmental science. Dev. Sci. 2002, 5, 301–309. [Google Scholar] [CrossRef]
- Khanna, N.; Altmeyer, W.; Zhuo, J.; Steven, A. Functional Neuroimaging: Fundamental Principles and Clinical Applications. Neuroradiol. J. 2015, 28, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Guo, L.; Nie, J.; Li, G.; Liu, T. Review of methods for functional brain connectivity detection using fMRI. Comput. Med. Imaging Graph. 2009, 33, 131–139. [Google Scholar] [CrossRef]
- Bammer, R. Basic principles of diffusion-weighted imaging. Eur. J. Radiol. 2003, 45, 169–184. [Google Scholar] [CrossRef]
- Mori, S.; Zhang, J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 2006, 51, 527–539. [Google Scholar] [CrossRef]
- Hiscox, L.V.; Johnson, C.L.; Barnhill, E.; McGarry, M.D.; Huston, J.; van Beek, E.J.; Starr, J.M.; Roberts, N. Magnetic resonance elastography (MRE) of the human brain: Technique, findings and clinical applications. Phys. Med. Biol. 2016, 61, R401–R437. [Google Scholar] [CrossRef]
- Heim, B.; Krismer, F.; Marzi, R.D.; Seppi, K. Magnetic resonance imaging for the diagnosis of Parkinson’s disease. J. Neural Transm. 2017, 124, 29. [Google Scholar] [CrossRef]
- Bansal, R.; Gerber, A.J.; Peterson, B.S. Brain morphometry using anatomical magnetic resonance imaging. J. Am. Acad. Child. Adolesc. Psychiatry 2008, 47, 619–621. [Google Scholar] [CrossRef]
- Demerath, T.; Rubensdörfer, L.; Schwarzwald, R.; Schulze-Bonhage, A.; Altenmüller, D.M.; Kaller, C.; Kober, T.; Huppertz, H.J.; Urbach, H. Morphometric MRI Analysis: Improved Detection of Focal Cortical Dysplasia Using the MP2RAGE Sequence. Am. J. Neuroradiol. 2020, 41, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Jahng, G.H.; Li, K.L.; Ostergaard, L.; Calamante, F. Perfusion magnetic resonance imaging: A comprehensive update on principles and techniques. Korean J. Radiol. 2014, 15, 554–577. [Google Scholar] [CrossRef]
- Buonocore, M.H.; Maddock, R.J. Magnetic resonance spectroscopy of the brain: A review of physical principles and technical methods. Rev. Neurosci. 2015, 26, 609–632. [Google Scholar] [CrossRef]
- Samson, E.; Noseworthy, M.D. A review of diagnostic imaging approaches to assessing Parkinson. Brain Disord. 2022, 6, 13. [Google Scholar] [CrossRef]
- Chougar, L.; Pyatigorskaya, N.; Degos, B.; Grabli, D.; Lehericy, S. The Role of Magnetic Resonance Imaging for the Diagnosis of Atypical Parkinsonism. Front. Neurol. 2020, 11, 665. [Google Scholar] [CrossRef]
- Seppi, K.; Poewe, W. Brain Magnetic Resonance Imaging Techniques in the Diagnosis of Parkinsonian Syndromes. Neuroimaging Clin. N. Am. 2010, 20, 29–55. [Google Scholar] [CrossRef]
- Redgrave, P.; Rodriguez, M.; Smith, Y.; Rodriguez-Oroz, M.C.; Lehericy, S.; Bergman, H.; Agid, Y.; DeLong, M.R.; Obeso, J.A. Goal-directed and habitual control in the basal ganglia: Implications for Parkinson’s disease. Nat. Rev. Neurosci. 2010, 11, 760–772. [Google Scholar] [CrossRef]
- Péran, P.; Cherubini, A.; Assogna, F.; Piras, F.; Quattrocchi, C.; Peppe, A.; Celsis, P.; Rascol, O.; Démonet, J.F.; Stefani, A.; et al. Magnetic resonance imaging markers of Parkinson’s disease nigrostriatal signature. Brain 2010, 133, 10. [Google Scholar] [CrossRef] [PubMed]
- Langley, J.; Huddleston, D.E.; Sedlacik, J.; Boelmans, K.; Hu, X.P. Parkinson’s disease-related increase of T2*-weighted hypointensity in substantia nigra pars compacta. Mov. Disord. 2017, 32, 8. [Google Scholar] [CrossRef] [PubMed]
- Alves, M.; Lobo, P.P.; Kauppila, L.A.; Rebordão, L.; Cruz, M.M.; Guerreiro, C.; Ferro, J.M.; Ferreira, J.J.; Reimão, S. Neuroimaging cerebrovascular biomarkers in Parkinson’s disease. Neuroradiol. J. 2022, 35, 6. [Google Scholar] [CrossRef]
- Hutchinson, M.; Raff, U.; Lebedev, S. MRI correlates of pathology in parkinsonism: Segmented inversion recovery ratio imaging (SIRRIM). Neuroimage 2003, 20, 1899–1902. [Google Scholar] [CrossRef]
- Brown, G.; Hakun, J.; Lewis, M.M.; De Jesus, S.; Du, G.W.; Eslinger, P.J.; Kong, L.; Huang, X.M. Frontostriatal and limbic contributions to cognitive decline in Parkinson’s disease. J. Neuroimaging 2023, 33, 121–133. [Google Scholar] [CrossRef]
- Klietz, M.; Elaman, M.H.; Mahmoudi, N.; Nösel, P.; Ahlswede, M.; Wegner, F.; Höglinger, G.U.; Lanfermann, H.; Ding, X.Q. Cerebral Microstructural Alterations in Patients With Early Parkinson’s Disease Detected With Quantitative Magnetic Resonance Measurements. Front. Aging Neurosci. 2021, 13, 763331. [Google Scholar] [CrossRef]
- Mangia, S.; Svatkova, A.; Mascali, D.; Nissi, M.J.; Burton, P.C.; Bednarik, P.; Auerbach, E.J.; Giove, F.; Eberly, L.E.; Howell, M.J.; et al. Multi-modal Brain MRI in Subjects with PD and iRBD. Front. Neurosci. 2017, 11, 709. [Google Scholar] [CrossRef]
- Oikawa, H.; Sasaki, M.; Tamakawa, Y.; Ehara, S.; Tohyama, K. The substantia nigra in Parkinson disease: Proton density-weighted spin-echo and fast short inversion time inversion-recovery MR findings. Am. J. Neuroradiol. 2002, 23, 1747–1756. [Google Scholar]
- Burton, E.J.; McKeith, I.G.; Burn, D.J.; Williams, E.D.; O’Brien, J.T. Cerebral atrophy in Parkinson’s disease with and without dementia: A comparison with Alzheimer’s disease, dementia with Lewy bodies and controls. Brain 2004, 127, 791–800. [Google Scholar] [CrossRef]
- Zeighami, Y.; Ulla, M.; Iturria-Medina, Y.; Dadar, M.; Zhang, Y.; Larcher, K.M.H.; Fonov, V.; Evans, A.C.; Collins, D.L.; Dagher, A. Network structure of brain atrophy in de novo Parkinson’s disease. Elife 2015, 4, e08440. [Google Scholar] [CrossRef]
- Vogt, B.A. Cingulate cortex in Parkinson’s disease. Handb. Clin. Neurol. 2019, 166, 13. [Google Scholar] [CrossRef]
- Mak, E.; Su, L.; Williams, G.; Lawson, R.; Yarnall, A.; Gordon, D.; Adrian, O.; Tien, K.; Brooks, D.; Rowe, J.; et al. Baseline and longitudinal grey matter changes in newly diagnosed Parkinson’s disease: ICICLE-PD study. Int. Psychogeriatr. 2015, 27, S159–S160. [Google Scholar] [CrossRef] [PubMed]
- Andrews, L.; Keller, S.S.; Osman-Farah, J.; Macerollo, A. A structural magnetic resonance imaging review of clinical motor outcomes from deep brain stimulation in movement disorders. Brain Commun. 2023, 5, fcad171. [Google Scholar] [CrossRef] [PubMed]
- Duan, M.; Pan, R.R.; Gao, Q.; Wu, X.Y.; Lin, H.; Yuan, J.M.; Zhang, Y.M.; Liu, L.D.; Tian, Y.Y.; Fu, T. A rapid multi-parametric quantitative MR imaging method to assess Parkinson’s disease: A feasibility study. Bmc Med. Imaging 2024, 24, 58. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, M.; Shibata, E.; Tohyama, K.; Takahashi, J.; Otsuka, K.; Tsuchiya, K.; Takahashi, S.; Ehara, S.; Terayama, Y.; Sakai, A. Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson’s disease. Neuroreport 2006, 17, 1215–1218. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Han, X.W.; Tang, D.P.; Qian, H.; Yan, K.; Shi, X.; Li, Y.W.; Zhang, J.G. Diagnostic value of combined magnetic resonance imaging techniques in the evaluation of Parkinson disease. Quant. Imag. Med. Surg. 2023, 13, 6503–6516. [Google Scholar] [CrossRef] [PubMed]
- Shibata, E.; Sasaki, M.; Tohyama, K.; Kanbara, Y.; Otsuka, K.; Ehara, S.; Sakai, A. Age-related changes in locus ceruleus on neuromelanin magnetic resonance imaging at 3 Tesla. Magn. Reson. Med. Sci. 2006, 5, 3. [Google Scholar] [CrossRef]
- Pavese, N.; Tai, Y.F. Nigrosome Imaging and Neuromelanin Sensitive MRI in Diagnostic Evaluation of Parkinsonism. Mov. Disord. Clin. Pract. 2018, 5, 131–140. [Google Scholar] [CrossRef]
- Biswas, D.; Banerjee, R.; Sarkar, S.; Choudhury, S.; Sanyal, P.; Tiwari, M.; Kumar, H. Nigrosome and Neuromelanin Imaging as Tools to Differentiate Parkinson’s Disease and Parkinsonism. Ann. Indian Acad. Neurol. 2022, 25, 1029–1035. [Google Scholar] [CrossRef]
- Saeed, U.; Lang, A.E.; Masellis, M. Neuroimaging Advances in Parkinson’s Disease and Atypical Parkinsonian Syndromes. Front. Neurol. 2020, 11, 572976. [Google Scholar] [CrossRef]
- Helmich, R.C.; Derikx, L.C.; Bakker, M.; Scheeringa, R.; Bloem, B.R.; Toni, I. Spatial remapping of cortico-striatal connectivity in Parkinson’s disease. Cereb. Cortex 2010, 20, 1175–1186. [Google Scholar] [CrossRef]
- Marapin, R.S.; van der Horn, H.J.; van der Stouwe, A.M.M.; Dalenberg, J.R.; de Jong, B.M.; Tijssen, M.A.J. Altered brain connectivity in hyperkinetic movement disorders: A review of resting-state fMRI. Neuroimage Clin. 2023, 37, 103302. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, G.; Lodi, R.; Condino, F.; Tonon, C.; Fera, F.; Malucelli, E.; Manners, D.; Zappia, M.; Morgante, L.; Barone, P.; et al. Apparent diffusion coefficient measurements of the middle cerebellar peduncle differentiate the Parkinson variant of MSA from Parkinson’s disease and progressive supranuclear palsy. Brain 2006, 129, 2679–2687. [Google Scholar] [CrossRef]
- Kendi, A.T.K.; Lehericy, S.; Luciana, M.; Ugurbil, K.; Tuite, P. Altered diffusion in the frontal lobe in Parkinson disease. Am. J. Neuroradiol. 2008, 29, 501–505. [Google Scholar] [CrossRef]
- Haghshomar, M.; Shobeiri, P.; Seyedi, S.A.; Abbasi-Feijani, F.; Poopak, A.; Sotoudeh, H.; Kamali, A. Cerebellar Microstructural Abnormalities in Parkinson’s Disease: A Systematic Review of Diffusion Tensor Imaging Studies. Cerebellum 2022, 21, 545–571. [Google Scholar] [CrossRef] [PubMed]
- Seppi, K.; Schocke, M.F.H.; Esterhammer, R.; Kremser, C.; Brenneis, C.; Mueller, J.; Boesch, S.; Jaschke, W.; Poewe, W.; Wenning, P.K. Diffusion weighted imaging discriminates progressive supranuclear palsy from PD, but not from the Parkinson variant of multiple system atrophy. Neurology 2003, 25, 5. [Google Scholar] [CrossRef]
- Chan, L.L.; Rumpel, H.; Yap, K.; Lee, E.; Loo, H.V.; Ho, G.L.; Fook-Chong, S.; Yuen, Y.; Tan, E.K. Case control study of diffusion tensor imaging in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2007, 78, 1383–1386. [Google Scholar] [CrossRef] [PubMed]
- Vaillancourt, D.E.; Spraker, M.B.; Prodoehl, J.; Abraham, I.; Corcos, D.M.; Zhou, X.J.; Comella, C.L.; Little, D.M. High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology 2009, 72, 1378–1384. [Google Scholar] [CrossRef]
- Langley, J.; Huddleston, D.E.; Merritt, M.; Chen, X.C.; McMurray, R.; Silver, M.; Factor, S.A.; Hu, X.P. Diffusion Tensor Imaging of the Substantia Nigra in Parkinson’s Disease Revisited. Hum. Brain Mapp. 2016, 37, 2547–2556. [Google Scholar] [CrossRef]
- Padovani, A.; Borroni, B.; Brambati, S.M.; Agosti, C.; Broli, M.; Alonso, R.; Scifo, P.; Bellelli, G.; Alberici, A.; Gasparotti, R.; et al. Diffusion tensor imaging and voxel based morphometry study in early progressive supranuclear palsy. J. Neurol. Neurosurg. Psychiatry 2006, 77, 457–463. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Nakata, Y.; Yamada, K.; Nakagawa, M. Early pathological changes in the parkinsonian brain demonstrated by diffusion tensor MRI. J. Neurol. Neurosurg. Psychiatry 2004, 75, 481–484. [Google Scholar] [CrossRef]
- Menke, R.A.; Jbabdi, S.; Miller, K.L.; Matthews, P.M.; Zarei, M. Connectivity-based segmentation of the substantia nigra in human and its implications in Parkinson’s disease. Neuroimage 2010, 52, 1175–1180. [Google Scholar] [CrossRef]
- Shih, Y.C.; Tseng, W.Y.I.; Montaser-Kouhsari, L. Recent advances in using diffusion tensor imaging to study white matter alterations in Parkinson’s disease: A mini review. Front. Aging Neurosci. 2023, 14, 1018017. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, T.; Lehéricy, S.; Chiu, S.Y.; Strafella, A.P.; Stoessl, A.J.; Vaillancourt, D.E. Emerging Neuroimaging Biomarkers Across Disease Stage in Parkinson Disease A Review. JAMA Neurol. 2021, 78, 1262–1272. [Google Scholar] [CrossRef]
- Feng, Y.; Murphy, M.C.; Hojo, E.; Li, F.; Roberts, N. Magnetic Resonance Elastography in the Study of Neurodegenerative Diseases. J. Magn. Reson. Imaging 2023, 59, 82–96. [Google Scholar] [CrossRef]
- Lipp, A.; Trbojevic, R.; Paul, F.; Fehlner, A.; Hirsch, S.; Scheel, M.; Noack, C.; Braun, J.; Sack, I. Cerebral magnetic resonance elastography in supranuclear palsy and idiopathic Parkinson’s disease. Neuroimage Clin. 2013, 3, 381–387. [Google Scholar] [CrossRef]
- Murphy, M.C.; Huston, J.; Ehman, R.L. MR elastography of the brain and its application in neurological diseases. Neuroimage 2019, 187, 176–183. [Google Scholar] [CrossRef]
- Helms, G.; Draganski, B.; Frackowiak, R.; Ashburner, J.; Weiskopf, N. Improved segmentation of deep brain grey matter structures using magnetization transfer (MT) parameter maps. Neuroimage 2009, 47, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Rademacher, J.; Engelbrecht, V.; Bürgel, U.; Freund, H.J.; Zilles, K. Measuring myelination of human white matter fiber tracts with magnetization transfer MR. Neuroimage 1999, 9, 393–406. [Google Scholar] [CrossRef]
- Teles, J.B.; Bells, S.; Jones, D.K.; Coulthard, E.; Rosser, A.; Metzler-Baddeleya, C. Myelin Breakdown in Human Huntington’s Disease: Multi-Modal Evidence from Diffusion MRI and Quantitative Magnetization Transfer. Neuroscience 2019, 403, 13. [Google Scholar]
- Joshi, D.; Prasad, S.; Saini, J.; Ingalhalikar, M. Role of Arterial Spin Labeling (ASL) Images in Parkinson’s Disease (PD): A Systematic Review. Acad. Radiol. 2023, 30, 1695–1708. [Google Scholar] [CrossRef] [PubMed]
- Clarke, C.E.; Lowry, M. Systematic review of proton magnetic resonance spectroscopy of the striatum in parkinsonian syndromes. Eur. J. Neurol. 2001, 8, 573–577. [Google Scholar] [CrossRef]
- Firbank, M.J.; Harrison, R.M.; O’Brien, J.T. A comprehensive review of proton magnetic resonance spectroscopy studies in dementia and Parkinson’s disease. Dement. Geriatr. Cogn. Disord. 2002, 14, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Choe, B.Y.; Park, J.W.; Lee, K.S.; Son, B.C.; Kim, M.C.; Kim, B.S.; Suh, T.S.; Lee, H.K.; Shinn, K.S. Neuronal laterality in Parkinson’s disease with unilateral symptom by in vivo 1H magnetic resonance spectroscopy. Invest. Radiol. 1998, 33, 5. [Google Scholar] [CrossRef]
- O’Neill, J.; Schuff, N.; Marks, W.J.; Feiwell, R.; Aminoff, M.J.; Weiner, M.W. Quantitative 1H magnetic resonance spectroscopy and MRI of Parkinson’s disease. Mov. Disord. 2002, 17, 917–927. [Google Scholar] [CrossRef]
- Öz, G.; Terpstra, M.; Tkác, I.; Aia, P.; Lowary, J.; Tuite, P.J.; Gruetter, R. Proton MRS of the unilateral substantia nigra in the human brain at 4 tesla: Detection of high GABA concentrations. Magn. Reson. Med. 2006, 55, 296–301. [Google Scholar] [CrossRef]
- Donahue, E.K.; Bui, V.; Foreman, R.P.; Duran, J.J.; Venkadesh, S.; Choupan, J.; Van Horn, J.D.; Alger, J.R.; Jakowec, M.W.; Petzinger, G.M.; et al. Magnetic resonance spectroscopy shows associations between neurometabolite levels and perivascular space volume in Parkinson’s disease: A pilot and feasibility study. Neuroreport 2022, 33, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.T.; Zheng, X.; Lai, L.F.; Sun, S.Y.; Geng, Y.Q.; Zhang, X.L.; Zhou, T.; Wu, H.Z.; Chen, J.Q.; Yang, Z.X.; et al. Proton Magnetic Resonance Spectroscopy for Diagnosis of Non-Motor Symptoms in Parkinson’s Disease. Front. Neurol. 2022, 13, 594711. [Google Scholar] [CrossRef]
- Ziegler, D.A.; Wonderlick, J.S.; Ashourian, P.; Hansen, L.A.; Young, J.C.; Murphy, A.J.; Koppuzha, C.K.; Growdon, J.H.; Corkin, S. Substantia nigra volume loss before basal forebrain degeneration in early Parkinson disease. JAMA Neurol. 2013, 70, 241–247. [Google Scholar] [CrossRef]
- Lakhani, D.A.; Zhou, X.Z.; Tao, S.Z.; Patel, V.; Wen, S.J.; Okromelidze, L.; Greco, E.; Lin, C.; Westerhold, E.M.; Straub, S.; et al. Diagnostic utility of 7T neuromelanin imaging of the substantia nigra in Parkinson’s disease. npj Park. Dis. 2024, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Seppi, K.; Schocke, M.F. An update on conventional and advanced magnetic resonance imaging techniques in the differential diagnosis of neurodegenerative parkinsonism. Curr. Opin. Neurol. 2005, 18, 370–375. [Google Scholar] [CrossRef]
- Josephs, K.A.; Whitwell, J.L.; Dickson, D.W.; Boeve, B.F.; Knopman, D.S.; Petersen, R.C.; Parisi, J.E.; Jack, C.R. Voxel-based morphometry in autopsy proven PSP and CBD. Neurobiol. Aging 2008, 29, 280–289. [Google Scholar] [CrossRef]
- Brenneis, C.; Seppi, K.; Schocke, M.; Benke, T.; Wenning, G.K.; Poewe, W. Voxel based morphometry reveals a distinct pattern of frontal atrophy in progressive supranuclear palsy. J. Neurol. Neurosurg. Psychiatry 2004, 75, 246–249. [Google Scholar]
- Gröschel, K.; Kastrup, A.; Litvan, I.; Schulz, J.B. Penguins and hummingbirds: Midbrain atrophy in progressive supranuclear palsy. Neurology 2006, 66, 949–950. [Google Scholar] [CrossRef]
- Righini, A.; Antonini, A.; De Notaris, R.; Bianchini, E.; Meucci, N.; Sacilotto, G.; Canesi, M.; De Gaspari, D.; Triulzi, F.; Pezzoli, G. MR imaging of the superior profile of the midbrain: Differential diagnosis between progressive supranuclear palsy and Parkinson disease. Am. J. Neuroradiol. 2004, 25, 927–932. [Google Scholar] [PubMed]
- Heim, B.; Krismer, F.; Seppi, K. Differentiating PSP from MSA using MR planimetric measurements: A systematic review and meta-analysis. J. Neural Transm. 2021, 128, 1497–1505. [Google Scholar] [CrossRef]
- Zhang, K.J.; Liang, Z.Z.; Wang, C.P.; Zhang, X.Y.; Yu, B.B.; Liu, X. Diagnostic validity of magnetic resonance parkinsonism index in differentiating patients with progressive supranuclear palsy from patients with Parkinson’s disease. Park. Relat. Disord. 2019, 66, 176–181. [Google Scholar] [CrossRef]
- Quattrone, A.; Nicoletti, G.; Messina, D.; Fera, F.; Condino, F.; Pugliese, P.; Lanza, P.; Barone, P.; Morgante, L.; Zappia, M.; et al. MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variant of multiple system atrophy. Radiology 2008, 246, 214–221. [Google Scholar] [CrossRef]
- Quattrone, A.; Morelli, M.; Quattrone, A.; Vescio, B.; Nigro, S.; Arabia, G.; Nisticò, R.; Novellino, F.; Salsone, M.; Arcuri, P.; et al. Magnetic Resonance Parkinsonism Index for evaluating disease progression rate in progressive supranuclear palsy: A longitudinal 2-year study. Park. Relat. Disord. 2020, 72, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Lehéricy, S.; Hartmann, A.; Lannuzel, A.; Galanaud, D.; Delmaire, C.; Bienaimée, M.J.; Jodoin, N.; Roze, E.; Gaymard, B.; Vidailhet, M. Magnetic resonance imaging lesion pattern in Guadeloupean parkinsonism is distinct from progressive supranuclear palsy. Brain 2010, 133, 2410–2425. [Google Scholar] [CrossRef] [PubMed]
- Sjöström, H.; van Westen, D.; Hall, S.; Tjerkaski, J.; Westman, E.; Muehlboeck, S.; Hansson, O.; Svenningsson, P.; Granberg, T. Putaminal T1/T2-weighted ratio is increased in PSP compared to PD and healthy controls, a multi-cohort study. Park. Relat. Disord. 2024, 121, 106047. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.A.; Hua, A.Y.; Trujillo, A.; Attygalle, S.; Binney, R.J.; Spina, S.; Lee, S.E.; Kramer, J.H.; Miller, B.L.; Rosen, H.J.; et al. Advancing functional dysconnectivity and atrophy in progressive supranuclear palsy. Neuroimage Clin. 2017, 16, 564–574. [Google Scholar] [CrossRef]
- Bharti, K.; Bologna, M.; Upadhyay, N.; Piattella, M.C.; Suppa, A.; Petsas, N.; Giannì, C.; Tona, F.; Berardelli, A.; Pantano, P. Abnormal Resting-State Functional Connectivity in Progressive Supranuclear Palsy and Corticobasal Syndrome. Front. Neurol. 2017, 8, 248. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, T.; Wilkes, B.J.; Archer, D.B.; Chu, W.T.; Coombes, S.A.; Lai, S.; McFarland, N.R.; Okun, M.S.; Black, M.L.; Herschel, E.; et al. Advanced diffusion imaging to track progression in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Neuroimage Clin. 2022, 34, 103022. [Google Scholar] [CrossRef]
- Federico, F.; Simone, I.L.; Lucivero, V.; De Mari, M.; Giannini, P.; Iliceto, G.; Mezzapesa, D.M.; Lamberti, P. Proton magnetic resonance spectroscopy in Parkinson’s disease and progressive supranuclear palsy. J. Neurol. Neurosurg. Psychiatry 1997, 62, 3. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, G.; Litvan, I.; Bonavita, S.; Bertolino, A.; Lundbom, N.; Patronas, M.J.; Hallett, M. Proton magnetic resonance spectroscopic imaging in progressive supranuclear palsy, Parkinson’s disease and corticobasal degeneration. Brain 1997, 9, 9. [Google Scholar] [CrossRef]
- Pyatigorskaya, N.; Yahia-Cherif, L.; Gaurav, R.; Ewenczyk, C.; Gallea, C.; Valabregue, R.; Gargouri, F.; Magnin, B.; Degos, B.; Roze, E.; et al. Multimodal Magnetic Resonance Imaging Quantification of Brain Changes in Progressive Supranuclear Palsy. Mov. Disord. 2020, 35, 161–170. [Google Scholar] [CrossRef]
- Mazzucchi, S.; Del Prete, E.; Costagli, M.; Frosini, D.; Paoli, D.; Migaleddu, G.; Cecchi, P.; Donatelli, G.; Morganti, R.; Siciliano, G.; et al. Morphometric imaging and quantitative susceptibility mapping as complementary tools in the diagnosis of parkinsonisms. Eur. J. Neurol. 2022, 29, 2944–2955. [Google Scholar] [CrossRef]
- Quinn, N. Multiple System Atrophy-the Nature of the Beast. J. Neurol. Neurosurg. Psychiatry 1989, 52, 78–89. [Google Scholar] [CrossRef]
- Graham, J.G.; Oppenheimer, D.R. Orthostatic hypotension and nicotine sensitivity in a case of multiple system atrophy. J. Neurol. Neurosurg. Psychiatry 1969, 32, 6. [Google Scholar] [CrossRef]
- Papp, M.I.; Lantos, P.L. The Distribution of Oligodendroglial Inclusions in Multiple System Atrophy and Its Relevance to Clinical Symptomatology. Brain 1994, 117, 235–243. [Google Scholar] [CrossRef]
- Schulz, J.B.; Klockgether, T.; Petersen, D.; Jauch, M.; Mullerschauenburg, W.; Spieker, S.; Voigt, K.; Dichgans, J. Multiple System Atrophy-Natural-History, Mri Morphology, and Dopamine-Receptor Imaging with (123)Ibzm-Spect. J. Neurol. Neurosurg. Psychiatry 1994, 57, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Wenning, G.K.; Benshlomo, Y.; Magalhaes, M.; Daniel, S.E.; Quinn, N.P. Clinical-Features and Natural-History of Multiple System Atrophy-an Analysis of 100 Cases. Brain 1994, 117, 835–845. [Google Scholar] [CrossRef] [PubMed]
- Péran, P.; Barbagallo, G.; Nemmi, F.; Sierra, M.; Galitzky, M.; Traon, A.P.L.; Payoux, P.; Meissner, W.G.; Rascol, O. MRI supervised and unsupervised classification of Parkinson’s disease and multiple system atrophy. Mov. Disord. 2018, 33, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Pasquini, J.; Firbank, M.J.; Best, L.; Foster, V.; Galley, D.; Silani, V.; Ceravolo, R.; Petrides, G.; Brooks, D.J.; Anderson, K.N.; et al. Hypothalamic involvement in multiple system atrophy: A structural MRI study. J. Neurol. Sci. 2024, 460, 122985. [Google Scholar] [CrossRef]
- Minnerop, M.; Specht, K.; Ruhlmann, J.; Schimke, N.; Abele, M.; Weyer, A.; Wüllner, U.; Klockgether, T. Voxel-based morphometry and voxel-based relaxometry in multiple system atrophy -: A comparison between clinical subtypes and correlations with clinical parameters. Neuroimage 2007, 36, 1086–1095. [Google Scholar] [CrossRef]
- Kraft, E.; Schwarz, J.; Trenkwalder, C.; Vogl, T.; Pfluger, T.; Oertel, W.H. The combination of hypointense and hyperintense signal changes on T-weighted magnetic resonance imaging sequences: A specific marker of multiple system atrophy? Arch. Neurol. 1999, 56, 225–228. [Google Scholar] [CrossRef]
- Ebina, J.; Hara, K.; Watanabe, H.; Kawabata, K.; Yamashita, F.; Kawaguchi, A.; Yoshida, Y.; Kato, T.; Ogura, A.; Masuda, M.; et al. Individual voxel-based morphometry adjusting covariates in multiple system atrophy. Park. Relat. Disord. 2021, 90, 114–119. [Google Scholar] [CrossRef]
- Zheng, W.M.; Ge, Y.X.; Ren, S.; Ran, W.Z.; Zhang, X.N.; Tian, W.Y.; Chen, Z.G.; Dou, W.B.; Wang, Z.Q. Abnormal static and dynamic functional connectivity of resting-state fMRI in multiple system atrophy. Aging 2020, 12, 16341. [Google Scholar] [CrossRef]
- Lyu, H.Y.; Zhu, X.; He, N.Y.; Li, Q.; Yin, Q.Y.; Huang, Y.F.; Yan, F.H.; Liu, J.; Lu, Y. Alterations in Resting-State MR Functional Connectivity of the Central Autonomic Network in Multiple System Atrophy and Relationship with Disease Severity. J. Magn. Reson. Imaging 2023, 58, 1472–1487. [Google Scholar] [CrossRef]
- Paviour, D.C.; Thornton, J.S.; Lees, A.J.; Jäger, H.R. Diffusion-weighted magnetic resonance imaging differentiates parkinsonian variant of multiple-system atrophy from progressive supranuclear palsy. Mov. Disord. 2007, 22, 68–74. [Google Scholar] [CrossRef]
- Abos, A.; Baggio, H.C.; Segura, B.; Campabadal, A.; Uribe, C.; Giraldo, D.M.; Perez-Soriano, A.; Muñoz, E.; Compta, Y.; Junque, C.; et al. Differentiation of multiple system atrophy from Parkinson’s disease by structural connectivity derived from probabilistic tractography. Sci. Rep. 2019, 9, 16488. [Google Scholar] [CrossRef]
- Watanabe, H.; Fukatsu, H.; Katsuno, M.; Sugiura, M.; Hamada, K.; Okada, Y.; Hirayama, M.; Ishigaki, T.; Sobue, G. Multiple regional H-MR spectroscopy in multiple system atrophy: NAA/Cr reduction in pontine base as a valuable diagnostic marker. J. Neurol. Neurosurg. Psychiatry 2004, 75, 103–109. [Google Scholar]
- Kim, H.J.; Jeon, B.; Fung, V.S.C. Role of Magnetic Resonance Imaging in the Diagnosis of Multiple System Atrophy. Mov. Disord. Clin. Pract. 2017, 4, 12–20. [Google Scholar] [CrossRef]
- Upadhyay, N.; Suppa, A.; Piattella, M.C.; Giannì, C.; Bologna, M.; Di Stasio, F.; Petsas, N.; Tona, F.; Fabbrini, G.; Berardelli, A.; et al. Functional disconnection of thalamic and cerebellar dentate nucleus networks in progressive supranuclear palsy and corticobasal syndrome. Park. Relat. Disord. 2017, 39, 52–57. [Google Scholar] [CrossRef]
- Prezzi, E.D.; Vasconcellos, L.F.; Marussi, V.H. Overlapping MRI findings in progressive supranuclear palsy-corticobasal syndrome. Arq. Neuropsiquiatr. 2014, 72, 569–570. [Google Scholar] [CrossRef]
- Constantinides, V.C.; Paraskevas, G.P.; Paraskevas, P.G.; Stefanis, L.; Kapaki, E. Corticobasal degeneration and corticobasal syndrome: A review. Clin. Park. Relat. 2019, 1, 5. [Google Scholar] [CrossRef] [PubMed]
- Kawazoe, T.; Sugaya, K.; Nakata, Y.; Okitsu, M.; Takahashi, K. Two distinct degenerative types of nigrostriatal dopaminergic neuron in the early stage of parkinsonian disorders. Clin. Park. Relat. 2024, 10, 100242. [Google Scholar] [CrossRef]
- Tovar-Moll, F.; de Oliveira-Souza, R.; Bramati, I.E.; Zahn, R.; Cavanagh, A.; Tierney, M.; Moll, J.; Grafman, J. White Matter Tract Damage in the Behavioral Variant of Frontotemporal and Corticobasal Dementia Syndromes. PLoS ONE 2014, 9, e102656. [Google Scholar] [CrossRef]
- Valverdea, A.H.; Costa, S.; Timoteo, A.; Ginestal, R.; Pimentel, J. Rapidly Progressive Corticobasal Degeneration Syndrome. Case Rep. Neurol. 2011, 3, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.Y.; Tian, M.J.; Yao, Q.; Li, Q.; Tang, F.Y.; Xiao, C.Y.; Shi, J.P.; Chen, J. Neuroimaging alterations in dementia with Lewy bodies and neuroimaging differences between dementia with Lewy bodies and Alzheimer’s disease: An activation likelihood estimation meta-analysis. Cns Neurosci. Ther. 2022, 28, 183–205. [Google Scholar] [CrossRef]
- Delli Pizzi, S.; Franciotti, R.; Bubbico, G.; Thomas, A.; Onofrj, M.; Bonanni, L. Atrophy of hippocampal subfields and adjacent extrahippocampal structures in dementia with Lewy bodies and Alzheimer’s disease. Neurobiol. Aging 2016, 40, 103–109. [Google Scholar] [CrossRef]
- Borroni, B.; Premi, E.; Formenti, A.; Turrone, R.; Alberici, A.; Cottini, E.; Rizzetti, C.; Gasparotti, R.; Padovani, A. Structural and functional imaging study in dementia with Lewy bodies and Parkinson’s disease dementia. Park. Relat. Disord. 2015, 21, 1049–1055. [Google Scholar] [CrossRef]
- Schonecker, S.; Martinez-Murcia, F.J.; Denecke, J.; Franzmeier, N.; Danek, A.; Wagemann, O.; Prix, C.; Wlasich, E.; Voglein, J.; Loosli, S.V.; et al. Frequency and Longitudinal Course of Behavioral and Neuropsychiatric Symptoms in Participants With Genetic Frontotemporal Dementia. Neurology 2024, 103, e209569. [Google Scholar] [CrossRef]
- Xuan, X.Q.; Ding, M.P.; Gong, X.Y. Proton magnetic resonance spectroscopy detects a relative decrease of N-acetylaspartate in the hippocampus of patients with dementia with lewy bodies. J. Neuroimaging 2008, 18, 137–141. [Google Scholar] [CrossRef]
- Ferreira, L.K.; Lindberg, O.; Santillo, A.F.; Wahlund, L.O. Functional connectivity in behavioral variant frontotemporal dementia. Brain Behav. 2022, 12, e2790. [Google Scholar] [CrossRef]
- Rabinovici, G.D.; Miller, B.L. Frontotemporal lobar degeneration: Epidemiology, pathophysiology, diagnosis and management. CNS Drugs 2010, 24, 375–398. [Google Scholar] [CrossRef]
- Ducharme, S.; Dols, A.; Laforce, R.; Devenney, E.; Kumfor, F.; van den Stock, J.; Dallaire-Théroux, C.; Seelaar, H.; Gossink, F.; Vijverberg, E.; et al. Recommendations to distinguish behavioural variant frontotemporal dementia from psychiatric disorders. Brain 2020, 143, 1632. [Google Scholar] [CrossRef]
- Rabinovici, G.B.; Seeley, W.W.; Kim, E.J.; Gorno-Tempini, M.L.; Rascovsky, K.; Pagliaro, T.A.; Allison, S.C.; Halabi, C.; Kramer, J.H.; Johnson, J.K.; et al. Distinct MRI atrophy patterns in autopsy-proven Alzheimer’s disease and frontotemporal lobar degeneration. Am. J. Alzheimers Dis. Other Demen. 2007, 22, 14. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Z.; Xiong, L.C.; Xie, T.; Wang, Z.J.; Li, T.; Zhang, H.F.; Wang, L.C.; Yu, X.; Wang, H.L. Incongruent gray matter atrophy and functional connectivity of striatal subregions in behavioral variant frontotemporal dementia. Cereb. Cortex 2023, 33, 6103–6110. [Google Scholar] [CrossRef]
- Zhang, Y.; Schuff, N.; Du, A.T.; Rosen, H.J.; Kramer, J.H.; Gorno-Tempini, M.L.; Miller, B.L.; Weiner, M.W. White matter damage in frontotemporal dementia and Alzheimer’s disease measured by diffusion MRI. Brain 2009, 12, 14. [Google Scholar] [CrossRef]
- Torso, M.; Bozzali, M.; Cercignani, M.; Jenkinson, M.; Chance, S.A. Using diffusion tensor imaging to detect cortical changes in fronto-temporal dementia subtypes. Sci. Rep. 2020, 10, 11237. [Google Scholar] [CrossRef]
- Daianu, M.; Mendez, M.F.; Baboyan, V.G.; Jin, Y.; Melrose, R.J.; Jimenez, E.E.; Thompson, P.M. An advanced white matter tract analysis in frontotemporal dementia and early-onset Alzheimer’s disease. Brain Imaging Behav. 2016, 10, 1038–1053. [Google Scholar] [CrossRef]
- Mihara, M.; Hattori, N.; Abe, K.; Sakoda, S.; Sawada, T. Magnetic resonance spectroscopic study of Alzheimer’s disease and frontotemporal dementia/Pick complex. Neuroreport 2006, 17, 413–416. [Google Scholar] [CrossRef] [PubMed]
- Thijssen, E.H.; La Joie, R.; Strom, A.; Fonseca, C.; Iaccarino, L.; Wolf, A.; Spina, S.; Allen, I.E.; Cobigo, Y.; Heuer, H.; et al. Plasma phosphorylated tau 217 and phosphorylated tau 181 as biomarkers in Alzheimer’s disease and frontotemporal lobar degeneration: A retrospective diagnostic performance study. Lancet Neurol. 2021, 20, 739–752. [Google Scholar] [CrossRef]
- Bozzali, M.; Falini, A.; Cercignani, M.; Baglio, F.; Farina, E.; Alberoni, M.; Vezzulli, P.; Olivotto, F.; Mantovani, F.; Shallice, T.; et al. Brain tissue damage in dementia with Lewy bodies: An in vivo diffusion tensor MRI study. Brain 2005, 128, 1595–1604. [Google Scholar] [CrossRef]
- Ma, W.Y.; Yao, Q.; Hu, G.J.; Ge, H.L.; Xue, C.; Wang, Y.Y.; Yan, Y.X.; Xiao, C.Y.; Shi, J.P.; Chen, J. Reorganization of rich clubs in functional brain networks of dementia with Lewy bodies and Alzheimer’s disease. Neuroimage Clin. 2022, 33, 102930. [Google Scholar] [CrossRef]
- Bohanna, I.; Georgiou-Karistianis, N.; Egan, G.F. Connectivity-based segmentation of the striatum in Huntington’s disease: Vulnerability of motor pathways. Neurobiol. Dis. 2011, 42, 475–481. [Google Scholar] [CrossRef]
- Tabrizi, S.J.; Langbehn, D.R.; Leavitt, B.R.; Roos, R.A.C.; Durr, A.; Craufurd, D.; Kennard, C.; Hicks, S.L.; Fox, N.C.; Scahill, R.I.; et al. Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: Cross-sectional analysis of baseline data. Lancet Neurol. 2009, 8, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, J.S.; Magnotta, V.A.; Mikos, A.E.; Paulson, H.L.; Penziner, E.; Andreasen, N.C.; Nopoulos, P.C. Brain structure in preclinical Huntington’s disease. Biol. Psychiatry 2006, 59, 6. [Google Scholar] [CrossRef]
- Rosas, H.D.; Goodman, J.; Chen, Y.I.; Jenkins, B.G.; Kennedy, D.N.; Makris, N.; Patti, M.; Seidman, L.J.; Beal, M.F.; Koroshetz, W.J. Striatal volume loss in HD as measured by MRI and the influence of CAG repeat. Neurology 2001, 57, 1025–1028. [Google Scholar] [CrossRef]
- Aylward, E.H.; Sparks, B.F.; Field, K.M.; Yallapragada, V.; Shpritz, B.D.; Rosenblatt, A.; Brandt, J.; Gourley, L.M.; Liang, K.; Zhou, H.; et al. Onset and rate of striatal atrophy in preclinical Huntington disease. Neurology 2004, 63, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Rosas, H.D.; Lee, S.Y.; Bender, A.C.; Zaleta, A.K.; Vangel, M.; Yu, P.; Fischl, B.; Pappu, V.; Onorato, C.; Cha, J.H.; et al. Altered white matter microstructure in the corpus callosum in Huntington’s disease: Implications for cortical “disconnection”. Neuroimage 2010, 49, 2995–3004. [Google Scholar] [CrossRef]
- Wilson, H.; Dervenoulas, G.; Politis, M. Chapter Nine-Structural Magnetic Resonance Imaging in Huntington’s Disease. Int. Rev. Neurobiol. 2018, 142, 45. [Google Scholar]
- Kassubek, J.; Juengling, F.D.; Kioschies, T.; Henkel, K.; Karitzky, J.; Kramer, B.; Ecker, D.; Andrich, J.; Saft, C.; Kraus, P.; et al. Topography of cerebral atrophy in early Huntington’s disease: A voxel based morphometric MRI study. J. Neurol. Neurosurg. Psychiatry 2004, 75, 7. [Google Scholar]
- Rosas, H.D.; Salat, D.H.; Lee, S.Y.; Zaleta, A.K.; Pappu, V.; Fischl, B.; Greve, D.; Hevelone, N.; Hersch, S.M. Cerebral cortex and the clinical expression of Huntington’s disease: Complexity and heterogeneity. Brain 2008, 131, 1057–1068. [Google Scholar] [CrossRef]
- Kipps, C.M.; Duggins, A.J.; McCusker, E.A.; Calder, A.J. Disgust and happiness recognition correlate with anteroventral insula and amygdala volume respectively in preclinical Huntington’s disease. J. Cogn. Neurosci. 2007, 19, 1206–1217. [Google Scholar] [CrossRef] [PubMed]
- Aylward, E.H.; Nopoulos, P.C.; Ross, C.A.; Langbehn, D.R.; Pierson, R.K.; Mills, J.A.; Johnson, H.J.; Magnotta, V.A.; Juhl, A.R.; Paulsen, J.S.; et al. Longitudinal change in regional brain volumes in prodromal Huntington disease. J. Neurol. Neurosurg. Psychiatry 2011, 82, 405–410. [Google Scholar] [CrossRef]
- Tabrizi, S.J.; Scahill, R.I.; Owen, G.; Durr, A.; Leavitt, B.R.; Roos, R.A.; Borowsky, B.; Landwehrmeyer, B.; Frost, C.; Johnson, H.; et al. Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s disease in the TRACK-HD study: Analysis of 36-month observational data. Lancet Neurol. 2013, 12, 637–649. [Google Scholar] [CrossRef] [PubMed]
- Leitao, R.; Guerreiro, C.; Nunes, R.G.; Gonçalves, N.; Galati, G.; Rosário, M.; Guedes, L.C.; Ferreira, J.J.; Reimao, S. Neuromelanin Magnetic Resonance Imaging of the Substantia Nigra in Huntington’s Disease. J. Huntingt. Dis. 2020, 9, 143–148. [Google Scholar] [CrossRef]
- van Bergen, J.M.G.; Hua, J.; Unschuld, P.G.; Lim, I.A.L.; Jones, C.K.; Margolis, R.L.; Ross, C.A.; van Zijl, P.C.M.; Li, X. Quantitative Susceptibility Mapping Suggests Altered Brain Iron in Premanifest Huntington Disease. Am. J. Neuroradiol. 2016, 37, 789–796. [Google Scholar] [CrossRef]
- Rosas, H.; Tuch, D.S.; Hevelone, N.D.; Zaleta, A.K.; Vangel, M.; Hersch, S.M.; Salat, D.H. Diffusion tensor imaging in presymptomatic and early Huntington’s disease: Selective white matter pathology and its relationship to clinical measures. Mov. Disord. 2006, 21, 8. [Google Scholar] [CrossRef]
- Liu, W.L.; Yang, J.; Burgunder, J.; Cheng, B.C.; Shang, H.F. Diffusion imaging studies of Huntington’s disease: A meta-analysis. Park. Relat. Disord. 2016, 32, 94–101. [Google Scholar] [CrossRef]
- Gregory, S.; Scahill, R.I. Chapter Ten-Functional Magnetic Resonance Imaging in Huntington’s Disease. Neurobiology 2018, 142, 27. [Google Scholar]
- Dumas, E.M.; van den Bogaard, S.J.A.; Hart, E.P.; Soeter, R.P.; van Buchem, M.A.; van der Grond, J.; Rombouts, S.A.R.B.; Roos, R.A.C.; Grp, T.-H.I. Reduced functional brain connectivity prior to and after disease onset in Huntington’s disease. Neuroimage Clin. 2013, 2, 377–384. [Google Scholar] [CrossRef]
- Liu, W.L.; Yang, J.; Chen, K.; Luo, C.Y.; Burgunder, J.; Gong, Q.Y.; Shang, H.F. Resting-state fMRI reveals potential neural correlates of impaired cognition in Huntington’s disease. Park. Relat. Disord. 2016, 27, 41–46. [Google Scholar] [CrossRef]
- Werner, C.J.; Dogan, I.; Sass, C.; Mirzazade, S.; Schiefer, J.; Shah, N.J.; Schulz, J.B.; Reetz, K. Altered Resting-State Connectivity in Huntington’s Disease. Hum. Brain Mapp. 2014, 35, 2582–2593. [Google Scholar] [CrossRef]
- Gargouri, F.; Messé, A.; Perlbarg, V.; Valabregue, R.; McColgan, P.; Yahia-Cherif, L.; Fernandez-Vidal, S.; Ben Hamida, A.; Benali, H.; Tabrizi, S.; et al. Longitudinal changes in functional connectivity of cortico-basal ganglia networks in manifests and premanifest huntington’s disease. Hum. Brain Mapp. 2016, 37, 4112–4128. [Google Scholar] [CrossRef]
- van den Bogaard, S.J.A.; Dumas, E.M.; Hart, E.P.; Milles, J.; Reilmann, R.; Stout, J.C.; Craufurd, D.; Gibbard, C.R.; Tabrizi, S.J.; van Buchem, M.A.; et al. Magnetization Transfer Imaging in Premanifest and Manifest Huntington Disease: A 2-Year Follow-Up. Am. J. Neuroradiol. 2013, 34, 317–322. [Google Scholar] [CrossRef]
- Ginestroni, A.; Battaglini, M.; Diciotti, S.; Della Nave, R.; Mazzoni, L.N.; Tessa, C.; Giannelli, M.; Piacentini, S.; De Stefano, N.; Mascalchi, M. Magnetization Transfer MR Imaging Demonstrates Degeneration of the Subcortical and Cortical Gray Matter in Huntington Disease. Am. J. Neuroradiol. 2010, 31, 1807–1812. [Google Scholar] [CrossRef] [PubMed]
- Tambasco, N.; Nigro, P.; Romoli, M.; Simoni, S.; Parnetti, L.; Calabresi, P. Magnetization transfer MRI in dementia disorders, Huntington’s disease and parkinsonism. J. Neurol. Sci. 2015, 353, 1–8. [Google Scholar] [CrossRef]
- Hobbs, N.Z.; Papoutsi, M.; Delva, A.; Kinnunen, K.M.; Nakajima, M.; Van Laere, K.; Vandenberghe, W.; Herath, P.; Scahill, R.I. Neuroimaging to Facilitate Clinical Trials in Huntington’s Disease: Current Opinion from the EHDN Imaging Working Group. J. Huntingt. Dis. 2024, 13, 163–199. [Google Scholar] [CrossRef]
- Wolf, R.C.; Grön, G.; Sambataro, F.; Vasic, N.; Wolf, N.D.; Thomann, P.A.; Saft, C.; Landwehrmeyer, G.B.; Orth, M. Magnetic resonance perfusion imaging of resting-state cerebral blood flow in preclinical Huntington’s disease. J. Cereb. Blood Flow. Metab. 2011, 31, 1908–1918. [Google Scholar] [CrossRef]
- Chen, J.J.; Salat, D.H.; Rosas, H.D. Complex relationships between cerebral blood flow and brain atrophy in early Huntington’s disease. Neuroimage 2012, 59, 1043–1051. [Google Scholar] [CrossRef] [PubMed]
- van den Bogaard, S.J.A.; Dumas, E.M.; Teeuwisse, W.M.; Kan, H.E.; Webb, A.; Roos, R.A.C.; van der Grond, J. Exploratory 7-Tesla magnetic resonance spectroscopy in Huntington’s disease provides in vivo evidence for impaired energy metabolism. J. Neurol. 2011, 258, 2230–2239. [Google Scholar] [CrossRef]
- Lowe, A.J.; Rodrigues, F.B.; Arridge, M.; De Vita, E.; Johnson, E.B.; Scahill, R.I.; Byrne, L.M.; Tortelli, R.; Heslegrave, A.; Zetterberg, H.; et al. Longitudinal evaluation of proton magnetic resonance spectroscopy metabolites as biomarkers in Huntington’s disease. Brain Commun. 2022, 4, fcac258. [Google Scholar] [CrossRef]
- Jing, Y.H.; Dogan, I.; Reetz, K.; Romanzetti, S. Neurochemical changes in the progression of Huntington’s disease: A meta-analysis of in vivo H-MRS studies. Neurobiol. Dis. 2024, 199, 106574. [Google Scholar] [CrossRef]
- LeDoux, M.S.; Brady, K.A. Secondary cervical dystonia associated with structural lesions of the central nervous system. Mov. Disord. 2003, 18, 60–69. [Google Scholar] [CrossRef]
- Kim, J.S. Delayed onset mixed involuntary movements after thalamic stroke-Clinical, radiological and pathophysiological findings. Brain 2001, 124, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Neychev, V.K.; Gross, R.E.; Lehéricy, S.; Hess, E.J.; Jinnah, H.A. The functional neuroanatomy of dystonia. Neurobiol. Dis. 2011, 42, 185–201. [Google Scholar] [CrossRef] [PubMed]
- MacIver, C.L.; Tax, C.M.W.; Jones, D.K.; Peall, K.J. Structural magnetic resonance imaging in dystonia: A systematic review of methodological approaches and findings. Eur. J. Neurol. 2022, 29, 3418–3448. [Google Scholar] [CrossRef] [PubMed]
- Kumandas, S.; Per, H.; Gümüs, H.; Tucer, B.; Yikilmaz, A.; Kontas, O.; Coskun, A.; Kurtsoy, A. Torticollis secondary to posterior fossa and cervical spinal cord tumors: Report of five cases and literature review. Neurosurg. Rev. 2006, 29, 333–338. [Google Scholar] [CrossRef]
- Waller, S.E.; Morales-Briceño, H.; Williams, L.; Mohammad, S.S.; Fellner, A.; Kumar, K.R.; Tchan, M.; Fung, V.S.C. Possible-Associated Stress-Related Neurological Decompensation with Combined Dystonia and Striatal Lesions. Mov. Disord. Clin. Pract. 2022, 9, 240–244. [Google Scholar] [CrossRef]
- Egger, K.; Mueller, J.; Schocke, M.; Brenneis, C.; Rinnerthaler, M.; Seppi, K.; Trieb, T.; Wenning, G.K.; Hallett, M.; Poewe, W. Voxel based morphometry reveals specific gray matter changes in primary dystonia. Mov. Disord. 2007, 22, 1538–1542. [Google Scholar] [CrossRef]
- Maciver, C.L.; Bailey, G.; Laguna, P.L.; Wadon, M.E.; Schalkamp, A.K.; Sandor, C.; Jones, D.K.; Tax, C.M.W.; Peall, K.J. Macro- and micro-structural insights into primary dystonia: A UK Biobank study. J. Neurol. 2024, 271, 1416–1427. [Google Scholar] [CrossRef] [PubMed]
- Simonyan, K. Neuroimaging Applications in Dystonia. Int. Rev. Neurobiol. 2018, 143, 1–30. [Google Scholar] [CrossRef]
- Obermann, M.; Yaldizli, O.; De Greiff, A.; Lachenmayer, M.L.; Buhl, A.R.; Tumczak, F.; Gizewski, E.R.; Diener, H.C.; Maschke, M. Morphometric changes of sensorimotor structures in focal dystonia. Mov. Disord. 2007, 22, 1117–1123. [Google Scholar] [CrossRef]
- Granert, O.; Peller, M.; Gaser, C.; Groppa, S.; Hallett, M.; Knutzen, A.; Deuschl, G.; Zeuner, K.E.; Siebner, H.R. Manual activity shapes structure and function in contralateral human motor hand area. Neuroimage 2011, 54, 32–41. [Google Scholar] [CrossRef]
- Simonyan, K.; Tovar-Moll, F.; Ostuni, J.; Hallett, M.; Kalasinsky, V.F.; Lewin-Smith, M.R.; Rushing, E.J.; Vortmeyer, A.O.; Ludlow, C.L. Focal white matter changes in spasmodic dysphonia: A combined diffusion tensor imaging and neuropathological study. Brain 2008, 131, 447–459. [Google Scholar] [CrossRef]
- Bonilha, L.; de Vries, P.M.; Hurd, M.W.; Rorden, C.; Morgan, P.S.; Besenski, N.; Bergmann, K.J.; Hinson, V.K. Disrupted thalamic prefrontal pathways in patients with idiopathic dystonia. Park. Relat. Disord. 2009, 15, 64–67. [Google Scholar] [CrossRef]
- Colosimo, C.; Pantano, P.; Calistri, V.; Totaro, P.; Fabbrini, G.; Berardelli, A. Diffusion tensor imaging in primary cervical dystonia. J. Neurol. Neurosurg. Psychiatry 2005, 76, 1591–1593. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, K.; O’Riordan, S.; Gallagher, J.; Hutchinson, M. Paroxysmal torticollis and blepharospasm following bilateral cerebellar Infarction. J. Neurol. 2006, 253, 1644–1645. [Google Scholar] [CrossRef] [PubMed]
- Gallea, C.; Herath, P.; Voon, V.; Lerner, A.; Ostuni, J.; Saad, Z.; Thada, S.; Solomon, J.; Horovitz, S.G.; Hallett, M. Loss of inhibition in sensorimotor networks in focal hand dystonia. Neuroimage Clin. 2018, 17, 90–97. [Google Scholar] [CrossRef]
- Yang, A.C.; Liu, B.; Lv, K.; Luan, J.X.; Hu, P.P.; Yu, H.W.; Shmuel, A.; Li, S.J.; Tian, H.; Ma, G.L.; et al. Altered coupling of resting-state cerebral blood flow and functional connectivity in Meige syndrome. Front. Neurosci. 2023, 17, 1152161. [Google Scholar] [CrossRef] [PubMed]
- Stoeter, P.; Roa-Sanchez, P.; Gonzalez, C.F.; Speckter, H.; Oviedo, J.; Bido, P. Cerebral blood flow in dystonia due to pantothenate kinase-associated neurodegeneration. Neuroradiol. J. 2020, 33, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Garone, C.; Gurgel-Giannetti, J.; Sanna-Cherchi, S.; Krishna, S.; Naini, A.; Quinzii, C.M.; Hirano, M. A Novel Mutation Presenting as a Complex Childhood Movement Disorder. J. Child. Neurol. 2017, 32, 246–250. [Google Scholar] [CrossRef]
- Marjanska, M.; Lehéricy, S.; Valabrègue, R.; Popa, T.; Worbe, Y.; Russo, M.; Auerbach, E.J.; Grabli, D.; Bonnet, C.; Gallea, C.; et al. Brain dynamic neurochemical changes in dystonic patients: A magnetic resonance spectroscopy study. Mov. Disord. 2013, 28, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Inagawa, Y.; Inagawa, S.; Takenoshita, N.; Yamamoto, R.; Tsugawa, A.; Yoshimura, M.; Saito, K.; Shimizu, S. Utility of neuromelanin-sensitive MRI in the diagnosis of dementia with Lewy bodies. PLoS ONE 2024, 19, e0309885. [Google Scholar] [CrossRef]
- Bruun, M.; Koikkalainen, J.; Rhodius-Meester, H.F.M.; Baroni, M.; Gjerum, L.; van Gils, M.; Soininen, H.; Remes, A.M.; Hartikainen, P.; Waldemar, G.; et al. Detecting frontotemporal dementia syndromes using MRI biomarkers. Neuroimage Clin. 2019, 22, 101711. [Google Scholar] [CrossRef]
- Schwarz, A.J. The Use, Standardization, and Interpretation of Brain Imaging Data in Clinical Trials of Neurodegenerative Disorders. Neurotherapeutics 2021, 18, 686–708. [Google Scholar] [CrossRef]
- Ellis, E.G.; Meyer, G.M.; Kaasinen, V.; Corp, D.T.; Pavese, N.; Reich, M.M.; Joutsa, J. Multimodal neuroimaging to characterize symptom-specific networks in movement disorders. npj Park. Dis. 2024, 10, 154. [Google Scholar] [CrossRef]
- Ghaderi, S.; Mohammadi, M.; Sayehmiri, F.; Mohammadi, S.; Tavasol, A.; Rezaei, M.; Ghalyanchi-Langeroudi, A. Machine Learning Approaches to Identify Affected Brain Regions in Movement Disorders Using MRI Data: A Systematic Review and Diagnostic Meta-analysis. J. Magn. Reson. Imaging 2024, 60, 2518–2546. [Google Scholar] [CrossRef]
- Ashour, A.F.; Fouda, M.M. Advancements and Challenges in AI Applications for Movement Disorders. In Proceedings of the 2023 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS), Bali, Indonesia, 28–30 November 2023; pp. 189–195. [Google Scholar]
- Calderone, A.; Latella, D.; Bonanno, M.; Quartarone, A.; Mojdehdehbaher, S.; Celesti, A.; Calabrò, R.S. Towards Transforming Neurorehabilitation: The Impact of Artificial Intelligence on Diagnosis and Treatment of Neurological Disorders. Biomedicines 2024, 12, 2415. [Google Scholar] [CrossRef]
Category | Technique | Description |
---|---|---|
Qualitative MRI | Structural Image Analysis Techniques | |
Proton-density-weighted image (PDWI) | Weighs the signal intensity based on the number of protons, providing information about tissue composition (water and fat content). | |
T1-weighted | Emphasizes differences in the longitudinal relaxation time, useful for anatomical detail and tissue contrast. | |
T2-weighted | Highlights differences in the transverse relaxation time, useful for identifying oedema, inflammation, and fluid-filled structures. | |
T2*-weighted | Sensitive to magnetic field inhomogeneities, useful for detecting microbleeds and iron deposits. | |
Adiabatic Techniques | ||
T1ρ | Measures spin–lattice relaxation in the rotating frame, useful for studying water–protein interactions and assessing brain cell health. | |
T2ρ | Measures spin–spin relaxation in the rotating frame, sensitive to high iron content, aiding in detecting brain iron buildup. | |
Voxel-based morphometry (VBM) | Quantifies brain anatomy differences by analyzing voxel-level tissue density or volume to identify structural abnormalities. | |
Susceptibility weighted imaging (SWI) | Enhances contrast from paramagnetic substances (e.g., deoxyhemoglobin, iron, calcifications), useful for detecting microbleeds, veins, and iron deposits. | |
Neuromelanin-sensitive imaging (NM-MRI) | Highlights neuromelanin-rich regions, useful for studying dopaminergic and noradrenergic neurons. | |
Functional MRI (fMRI) | Measures brain activity by detecting changes in blood oxygenation (BOLD signal). | |
Diffusion-weighted imaging (DWI) | Measures the diffusion of water molecules, useful for detecting ischemic stroke and other pathological conditions. | |
Diffusion tensor imaging (DTI) | Provides detailed information on the orientation and anisotropy of water diffusion, useful for mapping white matter tracts. | |
Magnetic resonance elastography (MRE) | Measures the mechanical properties of tissues, such as stiffness, often used in liver and brain. | |
Quantitative MRI | Morphometric measurements | Measures cortical thickness and brain volumes to assess structural changes over time, useful for studying brain atrophy |
Quantitative magnetization transfer (QMT) | Provides quantitative data on the exchange of magnetization between different pools of protons, useful for studying tissue microstructure. | |
Perfusion MRI (pMRI) | Measures blood flow in the brain, useful for assessing vascular health and brain activity. | |
Magnetic resonance spectroscopy (MRS) | Provides information about the chemical composition of tissues by measuring the magnetic resonance spectra, useful for studying metabolic changes. | |
Other MRI Techniques | Chemical shift | Highlights differences in the chemical environment of protons, useful for distinguishing between different tissues and compounds. |
Artificial intelligence (AI)-assisted MRI | Utilizes machine learning and deep learning algorithms to enhance image acquisition, reconstruction, and analysis. Applications include noise reduction, accelerated imaging, lesion detection, segmentation, and classification for diagnostic purposes. AI models can also predict disease progression and response to therapy using large MRI datasets. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortega-Robles, E.; de Celis Alonso, B.; Cantillo-Negrete, J.; Carino-Escobar, R.I.; Arias-Carrión, O. Advanced Magnetic Resonance Imaging for Early Diagnosis and Monitoring of Movement Disorders. Brain Sci. 2025, 15, 79. https://doi.org/10.3390/brainsci15010079
Ortega-Robles E, de Celis Alonso B, Cantillo-Negrete J, Carino-Escobar RI, Arias-Carrión O. Advanced Magnetic Resonance Imaging for Early Diagnosis and Monitoring of Movement Disorders. Brain Sciences. 2025; 15(1):79. https://doi.org/10.3390/brainsci15010079
Chicago/Turabian StyleOrtega-Robles, Emmanuel, Benito de Celis Alonso, Jessica Cantillo-Negrete, Ruben I. Carino-Escobar, and Oscar Arias-Carrión. 2025. "Advanced Magnetic Resonance Imaging for Early Diagnosis and Monitoring of Movement Disorders" Brain Sciences 15, no. 1: 79. https://doi.org/10.3390/brainsci15010079
APA StyleOrtega-Robles, E., de Celis Alonso, B., Cantillo-Negrete, J., Carino-Escobar, R. I., & Arias-Carrión, O. (2025). Advanced Magnetic Resonance Imaging for Early Diagnosis and Monitoring of Movement Disorders. Brain Sciences, 15(1), 79. https://doi.org/10.3390/brainsci15010079