A New Way to Treat Central Nervous System Dysfunction Caused by Musculoskeletal Injuries Using Transcranial Direct Current Stimulation: A Narrative Review
Abstract
:1. Introduction
2. The Multifaceted Repercussions of Musculoskeletal Injuries on the Central Nervous System
2.1. Altered Neural Control and (Mal)Adaptative Changes
2.2. Altered Cortical Inhibition, Spinal Reflexes, and Reduced Proprioception
2.3. Increased Pain Sensitivity (Central Sensitization)
3. Effectiveness of Transcranial Direct Current Stimulation in Musculoskeletal Injuries Rehabilitation
3.1. The Promises/Benefits of Transcranial Direct Current Stimulation
3.2. Motor Recovery After Musculoskeletal Injuries and tDCS-Induced Neuroplasticity
3.3. Pain Management Using tDCS in Musculoskeletal Injury Recovery
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
Abbreviations
ACL | Anterior cruciate ligament |
CAI | Chronic ankle instability |
CNS | Central nervous system |
CAR | Central activation ratio |
KO | Knee osteoarthritis |
EMG | Electromyography |
M1 | Primary motor cortex |
KOOS | Knee Injury Osteoarthritis Outcome Score |
LICI | Long-interval intracortical inhibition |
MVIC | Maximal voluntary isometric contraction |
PFC | Prefrontal cortex |
PFP | Patellofemoral pain |
PT | Physiotherapy training |
RM | Repetition maximum |
RT | Resistance training |
SICI | Short-interval intracortical inhibition |
SICF | Short-interval intracortical facilitation |
tDCS | Transcranial direct current stimulation |
tES | Transcranial electrical stimulation |
References
- Montalvo, A.M.; Schneider, D.K.; Webster, K.E.; Yut, L.; Galloway, M.T.; Heidt, R.S., Jr.; Kaeding, C.C.; Kremcheck, T.E.; Magnussen, R.A.; Parikh, S.N.; et al. Anterior Cruciate Ligament Injury Risk in Sport: A Systematic Review and Meta-Analysis of Injury Incidence by Sex and Sport Classification. J. Athl. Train. 2019, 54, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Herzog, M.M.; Kerr, Z.Y.; Marshall, S.W.; Wikstrom, E.A. Epidemiology of Ankle Sprains and Chronic Ankle Instability. J. Athl. Train. 2019, 54, 603–610. [Google Scholar] [CrossRef]
- Smith, B.E.; Selfe, J.; Thacker, D.; Hendrick, P.; Bateman, M.; Moffatt, F.; Rathleff, M.S.; Smith, T.O.; Logan, P. Incidence and prevalence of patellofemoral pain: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0190892. [Google Scholar] [CrossRef] [PubMed]
- Driban, J.B.; Hootman, J.M.; Sitler, M.R.; Harris, K.P.; Cattano, N.M. Is Participation in Certain Sports Associated with Knee Osteoarthritis? A Systematic Review. J. Athl. Train. 2017, 52, 497–506. [Google Scholar] [CrossRef]
- Romero-Morales, C.; López-López, D.; Almazán-Polo, J.; Mogedano-Cruz, S.; Sosa-Reina, M.D.; García-Pérez-de-Sevilla, G.; Martín-Pérez, S.; González-de-la-Flor, Á. Prevalence, diagnosis and management of musculoskeletal disorders in elite athletes: A mini-review. Dis. Mon. 2024, 70, 101629. [Google Scholar] [CrossRef]
- Lepley, A.S.; Lepley, L.K. Mechanisms of Arthrogenic Muscle Inhibition. J. Sport Rehabil. 2021, 31, 707–716. [Google Scholar] [CrossRef]
- Needle, A.; Lepley, A.; Grooms, D. Central Nervous System Adaptation After Ligamentous Injury: A Summary of Theories, Evidence, and Clinical Interpretation. Sports Med. 2017, 47, 1271–1288. [Google Scholar] [CrossRef]
- Neto, T.; Sayer, T.; Theisen, D.; Mierau, A. Functional Brain Plasticity Associated with ACL Injury: A Scoping Review of Current Evidence. Neural Plast. 2019, 2019, 3480512. [Google Scholar] [CrossRef] [PubMed]
- Baumeister, J.; Reinecke, K.; Weiss, M. Changed cortical activity after anterior cruciate ligament reconstruction in a joint position paradigm: An EEG study. Scand. J. Med. Sci. Sports 2008, 18, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Jette, A.M.; Delitto, A. Physical therapy treatment choices for musculoskeletal impairments. Phys. Ther. 1997, 77, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.C.; Sylvester, C.; Whife, C.; D’Alessandro, P.; Rio, E.K.; Vallence, A.M. Anodal transcranial direct current stimulation (tDCS) modulates quadriceps motor cortex inhibition and facilitation during rehabilitation following anterior cruciate ligament (ACL) reconstruction: A triple-blind, randomised controlled proof of concept trial. BMJ Open Sport Exerc. Med. 2024, 10, e002080. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Paulus, W. Transcranial direct current stimulation-update 2011. Restor. Neurol. Neurosci. 2011, 29, 463–492. [Google Scholar] [CrossRef] [PubMed]
- Cutts, S.; Sack, A.T. tDCS for pain management in knee osteoarthritis: A plea for noninvasive brain stimulation techniques in neuromusculoskeletal rehabilitation. Neurophysiol. Clin. 2023, 53, 102922. [Google Scholar] [CrossRef] [PubMed]
- Fregni, F.; Nitsche, M.A.; Loo, C.K.; Brunoni, A.R.; Marangolo, P.; Leite, J.; Carvalho, S.; Bolognini, N.; Caumo, W.; Paik, N.J.; et al. Regulatory Considerations for the Clinical and Research Use of Transcranial Direct Current Stimulation (tDCS): Review and recommendations from an expert panel. Clin. Res. Regul. Aff. 2015, 32, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Chase, H.W.; Boudewyn, M.A.; Carter, C.S.; Phillips, M.L. Transcranial direct current stimulation: A roadmap for research, from mechanism of action to clinical implementation. Mol. Psychiatry 2020, 25, 397–407. [Google Scholar] [CrossRef]
- Qi, S.; Cao, L.; Wang, Q.; Sheng, Y.; Yu, J.; Liang, Z. The Physiological Mechanisms of Transcranial Direct Current Stimulation to Enhance Motor Performance: A Narrative Review. Biology 2024, 13, 790. [Google Scholar] [CrossRef] [PubMed]
- Cabibel, V.; Muthalib, M.; Teo, W.P.; Perrey, S. High-definition transcranial direct-current stimulation of the right M1 further facilitates left M1 excitability during crossed facilitation. J. Neurophysiol. 2018, 119, 1266–1272. [Google Scholar] [CrossRef]
- Chenot, Q.; Hamery, C.; Lepron, E.; Besson, P.; De Boissezon, X.; Perrey, S.; Scannella, S. Performance after training in a complex cognitive task is enhanced by high-definition transcranial random noise stimulation. Sci. Rep. 2022, 12, 4618. [Google Scholar] [CrossRef]
- Dissanayaka, T.; Nakandala, P.; Malwanage, K.; Hill, A.T.; Ashthree, D.N.; Lane, M.M.; Travicia, N.; Gamage, E.; Marx, W.; Jaberzadeh, S. The effects of anodal tDCS on pain reduction in people with knee osteoarthritis: A systematic review and meta-analysis. Neurophysiol. Clin. 2023, 53, 102921. [Google Scholar] [CrossRef]
- Rahimi, F.; Sadeghisani, M.; Karimzadeh, A. Efficacy of transcranial direct current stimulation in patients with knee osteoarthritis: A systematic review. Neurophysiol. Clin. 2023, 53, 102918. [Google Scholar] [CrossRef]
- Kim, K.M.; Needle, A.R.; Kim, J.S.; An, Y.W.; Cruz-Díaz, D.; Taube, W. What interventions can treat arthrogenic muscle inhibition in patients with chronic ankle instability? A systematic review with meta-analysis. Disabil. Rehabil. 2024, 46, 241–256. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.C.; Wojtys, E.M.; Brandon, C.; Palmieri-Smith, R.M. Muscle atrophy contributes to quadriceps weakness after anterior cruciate ligament reconstruction. J. Sci. Med. Sport 2016, 19, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Cristiani, R.; Mikkelsen, C.; Forssblad, M.; Engstrom, B.; Stalman, A. Only one patient out of five achieves symmetrical knee function 6 months after primary anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 3461–3470. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Li, Y.; Foster, W.; Fukushima, K.; Badlani, N.; Adachi, N.; Usas, A.; Fu, F.H.; Huard, J. Improvement of muscle healing through enhancement of muscle regeneration and prevention of fibrosis. Muscle Nerve 2003, 28, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Kapreli, E.; Athanasopoulos, S. The anterior cruciate ligament deficiency as a model of brain plasticity. Med. Hypotheses 2006, 67, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Criss, C.R.; Melton, M.S.; Ulloa, S.A.; Simon, J.E.; Clark, B.C.; France, C.R.; Grooms, D.R. Rupture, reconstruction, and rehabilitation: A multi-disciplinary review of mechanisms for central nervous system adaptations following anterior cruciate ligament injury. Knee 2021, 30, 78–89. [Google Scholar] [CrossRef]
- Nuccio, S.; Del Vecchio, A.; Casolo, A.; Labanca, L.; Rocchi, J.E.; Felici, F.; Macaluso, A.; Mariani, P.P.; Falla, D.; Farina, D.; et al. Deficit in knee extension strength following anterior cruciate ligament reconstruction is explained by a reduced neural drive to the vasti muscles. J. Physiol. 2021, 599, 5103–5120. [Google Scholar] [CrossRef] [PubMed]
- Lepley, A.S.; Ericksen, H.M.; Sohn, D.H.; Pietrosimone, B.G. Contributions of neural excitability and voluntary activation to quadriceps muscle strength following anterior cruciate ligament reconstruction. Knee 2014, 21, 736–742. [Google Scholar] [CrossRef]
- Suttmiller, A.M.B.; McCann, R.S. Neural excitability of lower extremity musculature in individuals with and without chronic ankle instability: A systematic review and meta-analysis. J. Electromyogr. Kinesiol. 2020, 53, 102436. [Google Scholar] [CrossRef]
- Sole, G.; Milosavljevic, S.; Nicholson, H.; Sullivan, S.J. Altered muscle activation following hamstring injuries. Br. J. Sports Med. 2012, 46, 118–123. [Google Scholar] [CrossRef]
- Grooms, D.R.; Page, S.J.; Nichols-Larsen, D.S.; Chaudhari, A.M.; White, S.E.; Onate, J.A. Neuroplasticity associated with anterior cruciate ligament reconstruction. J. Orthop. Sports Phys. Ther. 2017, 47, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Diekfuss, J.A.; Grooms, D.R.; Nissen, K.S.; Schneider, D.K.; Foss, K.D.B.; Thomas, S.; Bonnette, S.; Dudley, J.A.; Yuan, W.; Reddington, D.L.; et al. Alterations in knee sensorimotor brain functional connectivity contributes to ACL injury in male high-school football players: A prospective neuroimaging analysis. Braz. J. Phys. Ther. 2020, 24, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Criss, C.R.; Lepley, A.S.; Onate, J.A.; Clark, B.C.; Simon, J.E.; France, C.R.; Grooms, D.R. Brain activity associated with quadriceps strength deficits after anterior cruciate ligament reconstruction. Sci. Rep. 2023, 13, 8043. [Google Scholar] [CrossRef]
- Rush, J.L.; Glaviano, N.R.; Norte, G.E. Assessment of Quadriceps Corticomotor and Spinal-Reflexive Excitability in Individuals with a History of Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-analysis. Sports Med. 2021, 51, 961–990. [Google Scholar] [CrossRef] [PubMed]
- Lepley, A.S.; Gribble, P.A.; Thomas, A.C.; Tevald, M.A.; Sohn, D.H.; Pietrosimone, B.G. Quadriceps neural alterations in anterior cruciate ligament reconstructed patients: A 6-month longitudinal investigation. Scand. J. Med. Sci. Sports 2015, 25, 828–839. [Google Scholar] [CrossRef]
- Kim, K.M.; Hart, J.M.; Saliba, S.A.; Hertel, J. Modulation of the Fibularis Longus Hoffmann Reflex and Postural Instability Associated with Chronic Ankle Instability. J. Athl. Train. 2016, 51, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Simis, M.; Imamura, M.; de Melo, P.S.; Marduy, A.; Pacheco-Barrios, K.; Teixeira, P.E.P.; Battistella, L.; Fregni, F. Increased motor cortex inhibition as a marker of compensation to chronic pain in knee osteoarthritis. Sci. Rep. 2021, 11, 24011. [Google Scholar] [CrossRef]
- Sterling, M.; Jull, G.; Wright, A. The effect of musculoskeletal pain on motor activity and control. J. Pain 2001, 2, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, R.M.; Ingersoll, C.D.; Hoffman, M.A.; Cordova, M.L.; Porter, D.A.; Edwards, J.E.; Babington, J.P.; Krause, B.A.; Stone, M.B. Arthrogenic muscle response to a simulated ankle joint effusion. Br. J. Sports Med. 2004, 38, 26–30. [Google Scholar] [CrossRef]
- Relph, N.; Herrington, L.; Tyson, S. The effects of ACL injury on knee proprioception: A meta-analysis. Physiotherapy 2014, 100, 187–195. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, J.H.; Lee, D.H. Proprioception in Patients with Anterior Cruciate Ligament Tears: A Meta-analysis Comparing Injured and Uninjured Limbs. Am. J. Sports Med. 2017, 45, 2916–2922. [Google Scholar] [CrossRef]
- Röijezon, U.; Clark, N.C.; Treleaven, J. Proprioception in musculoskeletal rehabilitation. Part 1: Basic science and principles of assessment and clinical interventions. Man. Ther. 2015, 20, 368–377. [Google Scholar] [CrossRef] [PubMed]
- van Griensven, H.; Schmid, A.; Trendafilova, T.; Low, M. Central Sensitization in Musculoskeletal Pain: Lost in Translation? J. Orthop. Sports Phys. Ther. 2020, 50, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Woolf, C.J. Central sensitization: Implications for the diagnosis and treatment of pain. Pain 2011, 152 (Suppl. S3), S2–S15. [Google Scholar] [CrossRef]
- Ong, W.Y.; Stohler, C.S.; Herr, D.R. Role of the Prefrontal Cortex in Pain Processing. Mol. Neurobiol. 2019, 56, 1137–1166. [Google Scholar] [CrossRef]
- Bruce, A.S.; Howard, J.S.; Van Werkhoven, H.; McBride, J.M.; Needle, A.R. The Effects of Transcranial Direct Current Stimulation on Chronic Ankle Instability. Med. Sci. Sports Exerc. 2020, 52, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Gao, H.; Fu, H. Effects of transcranial direct current stimulation combined with Bosu ball training on the injury potential during drop landing in people with chronic ankle instability. Front. Physiol. 2024, 15, 1451556. [Google Scholar] [CrossRef]
- Ma, Y.; Yin, K.; Zhuang, W.; Zhang, C.; Jiang, Y.; Huang, J.; Manor, B.; Zhou, J.; Liu, Y. Effects of Combining High-Definition Transcranial Direct Current Stimulation with Short-Foot Exercise on Chronic Ankle Instability: A Pilot Randomized and Double-Blinded Study. Brain Sci. 2020, 10, 749. [Google Scholar] [CrossRef]
- Rush, J.L.; Lepley, L.K.; Davi, S.; Lepley, A.S. The Immediate Effects of Transcranial Direct Current Stimulation on Quadriceps Muscle Function in Individuals with a History of Anterior Cruciate Ligament Reconstruction: A Preliminary Investigation. J. Sport Rehabil. 2020, 29, 1121–1130. [Google Scholar] [CrossRef]
- Tohidirad, Z.; Ehsani, F.; Bagheri, R.; Jaberzadeh, S. Priming Effects of Anodal Transcranial Direct Current Stimulation on the Effects of Conventional Physiotherapy on Balance and Muscle Performance in Athletes with Anterior Cruciate Ligament Injury. J. Sport Rehabil. 2023, 32, 315–324. [Google Scholar] [CrossRef]
- Rodrigues, G.M.; Paixão, A.; Arruda, T.; de Oliveira, B.R.R.; Maranhão Neto, G.A.; Marques Neto, S.R.; Lattari, E.; Machado, S. Anodal transcranial direct current stimulation increases muscular strength and reduces pain perception in women with patellofemoral pain. J. Strength Cond. Res. 2022, 36, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.Y.; Wallace, C.; Aquino, J.; Broadwell, B.; Whimple, M.; Liang, J.N. Exploring the use of bimodal transcranial direct current stimulation to enhance movement in individuals with patellofemoral pain-A sham-controlled double blinded pilot study. Front. Hum. Neurosci. 2024, 18, 1427091. [Google Scholar] [CrossRef]
- Ahn, H.; Suchting, R.; Woods, A.J.; Miao, H.; Green, C.; Cho, R.Y.; Choi, E.; Fillingim, R.B. Bayesian analysis of the effect of transcranial direct current stimulation on experimental pain sensitivity in older adults with knee osteoarthritis: Randomized sham-controlled pilot clinical study. J. Pain Res. 2018, 11, 2071–2082. [Google Scholar] [CrossRef]
- Chang, W.J.; Bennell, K.L.; Hodges, P.W.; Hinman, R.S.; Young, C.L.; Buscemi, V.; Liston, M.B.; Schabrun, S.M. Addition of transcranial direct current stimulation to quadriceps strengthening exercise in knee osteoarthritis: A pilot randomised controlled trial. PLoS ONE 2017, 12, e0180328. [Google Scholar] [CrossRef]
- Rahimi, F.; Nejati, V.; Nassadj, G.; Ziaei, B.; Mohammadi, H.K. The effect of transcranial direct stimulation as an add-on treatment to conventional physical therapy on pain intensity and functional ability in individuals with knee osteoarthritis: A randomized controlled trial. Neurophysiol. Clin. 2021, 51, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Jamil, A.; Batsikadze, G.; Kuo, H.I.; Labruna, L.; Hasan, A.; Paulus, W.; Nitsche, M.A. Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation. J. Physiol. 2017, 595, 1273–1288. [Google Scholar] [CrossRef] [PubMed]
- Barbati, S.A.; Podda, M.V.; Grassi, C. Tuning brain networks: The emerging role of transcranial direct current stimulation on structural plasticity. Front. Cell. Neurosci. 2022, 16, 945777. [Google Scholar] [CrossRef]
- Schestatsky, P.; Morales-Quezada, L.; Fregni, F. Simultaneous EEG monitoring during transcranial direct current stimulation. J. Vis. Exp. 2013, 76, 50426. [Google Scholar] [CrossRef]
- Polanía, R.; Paulus, W.; Nitsche, M.A. Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum. Brain Mapp. 2012, 33, 2499–2508. [Google Scholar] [CrossRef]
- Muthalib, M.; Besson, P.; Rothwell, J.; Perrey, S. Focal Hemodynamic Responses in the Stimulated Hemisphere During High-Definition Transcranial Direct Current Stimulation. Neuromodulation 2018, 21, 348–354. [Google Scholar] [CrossRef]
- Kantak, S.S.; Mummidisetty, C.K.; Stinear, J.W. Primary motor and premotor cortex in implicit sequence learning--evidence for competition between implicit and explicit human motor memory systems. Eur. J. Neurosci. 2012, 36, 2710–2715. [Google Scholar] [CrossRef] [PubMed]
- Besson, P.; Muthalib, M.; De Vassoigne, C.; Rothwell, J.; Perrey, S. Effects of Multiple Sessions of Cathodal Priming and Anodal HD-tDCS on Visuo Motor Task Plateau Learning and Retention. Brain Sci. 2020, 10, 875. [Google Scholar] [CrossRef]
- Greeley, B.; Barnhoorn, J.S.; Verwey, W.B.; Seidler, R.D. Multi-session Transcranial Direct Current Stimulation Over Primary Motor Cortex Facilitates Sequence Learning, Chunking, and One Year Retention. Front. Hum. Neurosci. 2020, 14, 75. [Google Scholar] [CrossRef]
- Besson, P.; Muthalib, M.; Dray, G.; Rothwell, J.; Perrey, S. Concurrent anodal transcranial direct-current stimulation and motor task to influence sensorimotor cortex activation. Brain Res. 2019, 1710, 181–187. [Google Scholar] [CrossRef]
- Llorens, R.; Fuentes, M.A.; Borrego, A.; Latorre, J.; Alcañiz, M.; Colomer, C.; Noé, E. Effectiveness of a combined transcranial direct current stimulation and virtual reality-based intervention on upper limb function in chronic individuals post-stroke with persistent severe hemiparesis: A randomized controlled trial. J. Neuroeng. Rehabil. 2021, 18, 108. [Google Scholar] [CrossRef]
- Vestring, S.; Wolf, E.; Dinkelacker, J.; Frase, S.; Hessling-Zeinen, C.; Insan, S.; Kumlehn, M.M.; Feige, B.; Domschke, K.; Normann, C.; et al. Lasting effects of transcranial direct current stimulation on the inducibility of synaptic plasticity by paired-associative stimulation in humans. J. Neuroeng. Rehabil. 2024, 21, 162. [Google Scholar] [CrossRef]
- Hertel, J.; Corbett, R.O. An Updated Model of Chronic Ankle Instability. J. Athl. Train. 2019, 54, 572–588. [Google Scholar] [CrossRef]
- Frazer, A.; Williams, J.; Spittles, M.; Rantalainen, T.; Kidgell, D. Anodal transcranial direct current stimulation of the motor cortex increases cortical voluntary activation and neural plasticity. Muscle Nerve 2016, 54, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Fregni, F.; Freedman, S.; Pascual-Leone, A. Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques. Lancet Neurol. 2007, 6, 188–191. [Google Scholar] [CrossRef] [PubMed]
- Khedr, E.M.; Sharkawy, E.S.A.; Attia, A.M.A.; Ibrahim Osman, N.M.; Sayed, Z.M. Role of transcranial direct current stimulation on reduction of postsurgical opioid consumption and pain in total knee arthroplasty: Double randomized clinical trial. Eur. J. Pain 2017, 21, 1355–1365. [Google Scholar] [CrossRef]
- Wu, Y.L.; Luo, Y.; Yang, J.M.; Wu, Y.Q.; Zhu, Q.; Li, Y.; Hu, H.; Zhang, J.H.; Zhong, Y.B.; Wang, M.Y. Effects of transcranial direct current stimulation on pain and physical function in patients with knee osteoarthritis: A systematic review and meta-analysis. BMC Musculoskelet. Disord. 2024, 25, 703. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.M.; Li, C.C.; Wang, Y.; Li, J.Y.; Xu, J.M.; Liang, M.G.; Ou, L.; Shen, Z.; Chen, Z.H. Transcranial Direct Current Stimulation for Knee Osteoarthritis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Arthritis Care Res. 2024, 76, 376–384. [Google Scholar] [CrossRef]
- Bornhövd, K.; Quante, M.; Glauche, V.; Bromm, B.; Weiller, C.; Büchel, C. Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: A single-trial fMRI study. Brain 2002, 125 Pt 6, 1326–1336. [Google Scholar] [CrossRef] [PubMed]
- Muthalib, M.; Re, R.; Zucchelli, L.; Perrey, S.; Contini, D.; Caffini, M.; Spinelli, L.; Kerr, G.; Quaresima, V.; Ferrari, M.; et al. Effects of Increasing Neuromuscular Electrical Stimulation Current Intensity on Cortical Sensorimotor Network Activation: A Time Domain fNIRS Study. PLoS ONE 2015, 10, e0131951. [Google Scholar] [CrossRef]
- Flood, A.; Waddington, G.; Cathcart, S. High-Definition Transcranial Direct Current Stimulation Enhances Conditioned Pain Modulation in Healthy Volunteers: A Randomized Trial. J. Pain 2016, 17, 600–605. [Google Scholar] [CrossRef] [PubMed]
- Li, L.M.; Uehara, K.; Hanakawa, T. The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Front. Cell. Neurosci. 2015, 9, 181. [Google Scholar] [CrossRef] [PubMed]
- Vergallito, A.; Feroldi, S.; Pisoni, A.; Romero Lauro, L.J. Inter-Individual Variability in tDCS Effects: A Narrative Review on the Contribution of Stable, Variable, and Contextual Factors. Brain Sci. 2022, 12, 522. [Google Scholar] [CrossRef] [PubMed]
- Perrey, S. How effective is transcranial direct current stimulation? Lancet 2024, 403, 2688–2689. [Google Scholar] [CrossRef]
Type of Injury Author | Aim | Study Design Intervention tDCS Participants | Outcomes Measures Testing | Main Findings Beyond Those of Sham |
---|---|---|---|---|
CAI Bruce et al. [46] | Conduct a preliminary investigation into the feasibility and efficacy of an intervention of eccentric ankle exercise in conjunction with tDCS in improving cortical excitability, functional performance, and patient-reported outcomes | Longitudinal randomized, single-blinded and sham-controlled 4-weeks eccentric ankle strength training (60% maximal torque)-tDCS Anodal tDCS (1.5 mA, 18 min) over M1 22 adults (18–40 years, 17 females): 2 groups of 11 | Functional performance, strength Cortical excitability, inhibition Dynamic balance, muscle activation | ↑ M1 excitability, dynamic postural stability, muscle recruitment during a hop- to-stabilization, and ↓ perceived disablement with tDCS in conjunction with eccentric training (extra effect) Improvements most notable at the retention +2 weeks |
CAI Huang et al. [47] | Investigate the effects of tDCS combined with Bosu ball training on the injury during drop landing | Single-blinded and sham-controlled 18 sessions Bosu ball training barefoot-tDCS, 6 weeks (3/week) Anodal tDCS (2 mA, 20 min) over M1 34 adults (20.5 years, tDCS + Bosu: 18) | Drop landing test (peak ankle inversion angle, velocity, and time to peak) | ↓ peak ankle inversion angular velocity and the plantar flexion angle at the peak angle inversion for combined tDCS + Bosu ball (extra effect) |
CAI Ma et al. [48] | Examine the effects of an intervention comprising short-foot exercise combined with high definition tDCS on proprioception and dynamic balance | Double-blinded and sham-controlled 12 sessions short-foot exercise-tDCS, 4-weeks (3/week) Anodal tDCS (2 mA, 20 min) over M1 28 adults (18–30 years, 15 females): 2 groups of 14 | Ankle inversion judgement, joint position perception, Y balance test, sensory organization test equilibrium score | ↑ performance (Y-balance test, the sensory organization test, and the joint position test with the ankle at 15° inversion); extra effects of exercise combined with tDCS |
ACL Rush et al. [49] | To determine if a single treatment of tDCS would improve quadriceps muscle activity and reduce self-reported levels of pain during exercise | Randomized Crossover tDCS during Walking (2.0 mph 1% incline) tDCS Halo unit (around 1.1 mA, 20 min) over M1 10 adults (23 years, 5 females) | Quadriceps: maximal voluntary isometric contraction (MVIC), central activation ratio (CAR), muscle EMG, vasti Knee Injury Osteoarthritis Outcome Score (KOOS) | No differences in quadriceps MVIC and CAR or KOOS when comparing active tDCS and sham |
ACL Murphy et al. [11] | To determine if anodal tDCS can alter quadriceps intracortical inhibition and facilitation in an ACL population after 6 weeks of application during exercise (from week 2 post ACL) | Randomized, triple-blind controlled trial 18 sessions tDCS, 6 weeks (3/week), from week 2 add-on exercise rehabilitation (20–60 min) Anodal tDCS (2 mA, 20 min) over M1 21 adults (24 years, 8 females, anodal group: 11) | Quadriceps/hamstring: short-interval intracortical inhibition (SICI), long-interval intracortical inhibition (LICI), short-interval intracortical facilitation (SICF) Quadriceps MVIC | Benefit for the tDCS group on the muscle function: Quadriceps ↓ SICI and SICF No changes MVIC, LICI Hamstring ↓ SICF No changes SICI, LICI and SICF |
ACL Tohidirad et al. [50] | To examine the effects of anodal tDCS over (M1) concurrent with physiotherapy training (PT) on postural control and muscular performance | Randomized, single-blinded and sham-controlled 10 sessions tDCS with PT. Anodal tDCS (2 mA, 20 min) over M1 34 adults (anodal with PT group: 16) | Center of pressure displacement Power of flexors and extensors | Benefit for the tDCS group on the postural control: one month after, ↓ center of pressure, ↑ power flexors and extensors |
PFP Rodrigues et al. [51] | To investigate the effects of tDCS applied to M1 combined with knee exercises on muscular strength and pain perception | Counterbalanced crossover 12 sessions Resistance Training (RT) protocol: 60% 10 RM, knee open kinetic chain Anodal tDCS (2 mA, 20 min) over M1 before each session 28 women (23 years) | 10 repetition maximum (RM) test Pain perception | ↑ 10 RM load (strength gain) in tDCS + RT no differences for pain perception between groups but lower after intervention in tDCS + RT |
PFP Ho et al. [52] | To explore whether single session of bimodal tDCS over M1 paired with exercise could alleviate PFP and enhance frontal plane kinematics in the lower extremity and trunk | Double-blinded, sham-controlled crossover Resistance exercises (ankle weight at 30% RM) during tDCS Anodal tDCS (2 mA, 19 min) over M1s 10 adults (28.2 years, 4 females) | Frontal plan movements (video) during 5 weight-bearing tests: trunk lean angle, knee frontal plane projection angle, and dynamic valgus index Pain visual analog scale | No improvement in frontal place movements or pains |
KO Ahn et al. [53] | To examine the effect of tDCS on experimental pain sensitivity in older adults with KO and how these changes in experimental pain sensitivity are related to KO-related clinical pain and function changes | Data 5 consecutive days Anodal tDCS (2 mA, 20 min) over M1 40 adults (50–70 years, 21 females); two groups of 20 | Multimodal quantitative sensory testing battery (heat pain, pressure pain threshold, punctate mechanical pain, and conditioned pain modulation) | Active tDCS group: ↑ heat pain thresholds and tolerances pressure pain threshold and conditioned pain modulation ↓ clinical pain |
KO Chang et al. [54] | To assess the safety and feasibility of adding tDCS to quadriceps strengthening exercise | Randomized, participant-blinded controlled trial 8 weeks (16 sessions, 2/week) Anodal tDCS (1 mA, 20 min) prior 30 min of supervised strengthening exercise (ankle cuff weights/resistance bands) 30 adults (60–64 years, 20 females, 2 groups of 15) | Pain (visual analog scale), function (questionnaire) and perceived effect (Likert scale) Pain mechanism (thresholds, reflex) | Adding tDCS to strengthening exercise: ↑ pain function and pain mechanisms |
KO Rahimi et al. [55] | To investigate the effect of adding tDCS to conventional PT on pain and performance | Randomized, double-blind clinal trial 10 sessions (5/week) of PT (6 exercises) Anodal tDCS (1 mA, 20 min) over left M1, left sensorimotor cortex or left PFC 80 adults (58.8 years, 72 females) | Visual analogue scale (VAS) for pain intensity KOOS questionnaire Range of motion knee flexion 10-min walking test | Adding tDCS to PT: ↑ pain and physical performance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perrey, S. A New Way to Treat Central Nervous System Dysfunction Caused by Musculoskeletal Injuries Using Transcranial Direct Current Stimulation: A Narrative Review. Brain Sci. 2025, 15, 101. https://doi.org/10.3390/brainsci15020101
Perrey S. A New Way to Treat Central Nervous System Dysfunction Caused by Musculoskeletal Injuries Using Transcranial Direct Current Stimulation: A Narrative Review. Brain Sciences. 2025; 15(2):101. https://doi.org/10.3390/brainsci15020101
Chicago/Turabian StylePerrey, Stéphane. 2025. "A New Way to Treat Central Nervous System Dysfunction Caused by Musculoskeletal Injuries Using Transcranial Direct Current Stimulation: A Narrative Review" Brain Sciences 15, no. 2: 101. https://doi.org/10.3390/brainsci15020101
APA StylePerrey, S. (2025). A New Way to Treat Central Nervous System Dysfunction Caused by Musculoskeletal Injuries Using Transcranial Direct Current Stimulation: A Narrative Review. Brain Sciences, 15(2), 101. https://doi.org/10.3390/brainsci15020101