The Place of Local Field Potentials in Deep Brain Stimulation Programming for Parkinson’s Disease: A Review
Abstract
:1. Introduction
2. Methods
3. Local Field Potentials in Parkinson’s Disease
LFP Biomarkers | Recording Technique | Recording Location | Associated Motor Symptoms | References |
---|---|---|---|---|
LF oscillations (2–7 Hz) | Macroelectrodes three days post-implantation | STN | Improvement in UPDRS III after levodopa or DBS stimulation | Giannicola et al., 2013 [16] |
LF oscillations (4–10 Hz) | Postoperative macroeletrodes | GPi | Improved motor symptoms in the treated state | Silberstein et al., 2003 [31] |
Alpha oscillations (7–10 Hz) | Post-operative macroeletrodes | PPN | Improved gait function | Thevathasan et al., 2012 [25] |
Theta-alpha activity (4–10 Hz) | Postoperative macroelectrodes | STN | Peak dose and diphasic dyskinesia | Alonso-Frech et al., 2006 [27] |
Beta oscillations (8–30 Hz) | Postoperative macroeletrodes | STN | Untreated PD state | Canessa et al., 2016 [11] Kühn et al., 2004 [7] |
Beta oscillations (8–30 Hz) | Postoperative macroeletrodes | STN | Contralateral hemibody rigidity and bradykinesia | Neurmann et al., 2017 [32] Kühn et al., 2008 [33] Özkurt et al., 2011 [34] |
Low beta bands (13–20 Hz) | Postoperative macroeletrodes | GPi | Rigidity and bradykinesia | Tsiokos et al., 2017 [2] |
Low beta bands (13–20 Hz) | Postoperative macroeletrodes | STN | UPDRS III total score | Darcy et al., 2022 [17] Merk et al., 2022 [18] |
High beta (21–35 Hz) | Postoperative macroeletrodes before IPG connection | STN | Predicts improvement in motor symptoms with stimulation | Chen et al., 2022 [20] |
LF/beta ratio | Macroeletrodes 7 years post-implantation | STN | In a treated state after DBS stimulation | Giannicola et al., 2012 [13] |
Gamma (69–90 Hz) | Postoperative macroeletrodes | STN | Correlates with fast movement | Lofredi et al., 2018 [8] |
High-frequency band (>200 Hz) PAC | Postoperative macroeletrodes | STN | Prokinetics | Litvak et al., 2012 [12] Lopez-Azcarate et al., 2010 [15] |
Tremor frequency (4–8 Hz) | Chronic sensing with macroeletrodes | STN | Rest tremor | Hirschmann et al., 2019 [22] |
Beta-Gamma PAC | Scalp EEG | Sensorimotor cortex | Freezing of gait | Kimoto et al., [30] |
4. Current Approach to Deep Brain Stimulation in Parkinson’s Disease
4.1. Current Practice for Initial Deep Brain Stimulation Programming
4.2. Limitations and Challenges in Deep Brain Stimulation Programming
5. Technological Advancement in Deep Brain Stimulation
5.1. Brain Sensing Technology
5.2. Directional DBS
5.3. Closed Loop Systems and Adaptive DBS
6. Current Algorithms Using LFPs to Guide DBS Contact Selection and Programming
7. Gaps and Future Needs for an Efficient Algorithm That Utilizes LFPs in DBS
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, Y.; Li, W.; Tan, C.; Liu, X.; Wang, X.; Gui, Y.; Qin, L.; Deng, F.; Hu, C.; Chen, L. Meta-analysis comparing deep brain stimulation of the globus pallidus and subthalamic nucleus to treat advanced Parkinson disease. J. Neurosurg. 2014, 121, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Tsiokos, C.; Malekmohammadi, M.; AuYong, N.; Pouratian, N. Pallidal low β-low γ phase-amplitude coupling inversely correlates with Parkinson disease symptoms. Clin. Neurophysiol. 2017, 128, 2165–2178. [Google Scholar] [CrossRef]
- Bichsel, O.; Stieglitz, L.; Oertel, M.; Baumann, C.; Gassert, R.; Imbach, L. The modulatory effect of self-paced and cued motor execution on subthalamic beta-bursts in Parkinson’s disease: Evidence from deep brain recordings in humans. Neurobiol. Dis. 2022, 172, 105818. [Google Scholar] [CrossRef]
- Bronte-Stewart, H.; Barberini, C.; Koop, M.M.; Hill, B.C.; Henderson, J.M.; Wingeier, B. The STN beta-band profile in Parkinson’s disease is stationary and shows prolonged attenuation after deep brain stimulation. Exp. Neurol. 2009, 215, 20–28. [Google Scholar] [CrossRef]
- Giannicola, G.; Marceglia, S.; Rossi, L.; Mrakic-Sposta, S.; Rampini, P.; Tamma, F.; Cogiamanian, F.; Barbieri, S.; Priori, A. The effects of levodopa and ongoing deep brain stimulation on subthalamic beta oscillations in Parkinson’s disease. Exp. Neurol. 2010, 226, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Brown, P. Oscillatory nature of human basal ganglia activity: Relationship to the pathophysiology of Parkinson’s disease. Mov. Disord. 2003, 18, 357–363. [Google Scholar] [CrossRef]
- Williams, D.; Kupsch, A.; Limousin, P.; Hariz, M.; Schneider, G.; Yarrow, K.; Brown, P. Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance. Brain J. Neurol. 2004, 127 Pt 4, 735–746. [Google Scholar] [CrossRef]
- Lofredi, R.; Neumann, W.-J.; Bock, A.; Horn, A.; Huebl, J.; Siegert, S.; Schneider, G.-H.; Krauss, J.K.; A Kühn, A.; Berlin, C.-.U.; et al. Dopamine-dependent scaling of subthalamic gamma bursts with movement velocity in patients with Parkinson’s disease. eLife 2018, 7, e31895. [Google Scholar] [CrossRef]
- Cassidy, M.; Mazzone, P.; Oliviero, A.; Insola, A.; Tonali, P.; Di Lazzaro, V.; Brown, P. Movement-related changes in synchronization in the human basal ganglia. Brain J. Neurol. 2002, 125 Pt 6, 1235–1246. [Google Scholar] [CrossRef] [PubMed]
- Levy, R.; Hutchison, W.D.; Lozano, A.M.; Dostrovsky, J.O. High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor. J. Neurosci. 2000, 20, 7766–7775. [Google Scholar] [CrossRef] [PubMed]
- Canessa, A.; Pozzi, N.G.; Arnulfo, G.; Brumberg, J.; Reich, M.M.; Pezzoli, G.; Ghilardi, M.F.; Matthies, C.; Steigerwald, F.; Volkmann, J.; et al. Striatal Dopaminergic Innervation Regulates Subthalamic Beta-Oscillations and Cortical-Subcortical Coupling during Movements: Preliminary Evidence in Subjects with Parkinson’s Disease. Front. Hum. Neurosci. 2016, 10, 611. [Google Scholar] [CrossRef] [PubMed]
- Litvak, V.; Eusebio, A.; Jha, A.; Oostenveld, R.; Barnes, G.; Foltynie, T.; Limousin, P.; Zrinzo, L.; Hariz, M.I.; Friston, K.; et al. Movement-related changes in local and long-range synchronization in Parkinson’s disease revealed by simultaneous magnetoencephalography and intracranial recordings. J. Neurosci. 2012, 32, 10541–10553. [Google Scholar] [CrossRef]
- Giannicola, G.; Rosa, M.; Servello, D.; Menghetti, C.; Carrabba, G.; Pacchetti, C.; Zangaglia, R.; Cogiamanian, F.; Scelzo, E.; Marceglia, S.; et al. Subthalamic local field potentials after seven-year deep brain stimulation in Parkinson’s disease. Exp. Neurol. 2012, 237, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Foffani, G.; Croci, S.; Bianchi, A.M.; Baselli, G.; Priori, A.; Cerutti, S. Analysis of Local Field Potentials from the Human Subthalamic Nucleus. 2003, pp. 2292–2294. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-1542270996&partnerID=40&md5=91b51204048a2c8bbc579dbb840ded21 (accessed on 10 January 2025).
- López-Azcárate, J.; Tainta, M.; Rodríguez-Oroz, M.C.; Valencia, M.; González, R.; Guridi, J.; Iriarte, J.; Obeso, J.A.; Artieda, J.; Alegre, M. Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson’s disease. J. Neurosci. 2010, 30, 6667–6677. [Google Scholar] [CrossRef] [PubMed]
- Giannicola, G.; Rosa, M.; Marceglia, S.; Scelzo, E.; Rossi, L.; Servello, D.; Menghetti, C.; Pacchetti, C.; Zangaglia, R.; Locatelli, M.; et al. The effects of levodopa and deep brain stimulation on subthalamic local field low-frequency oscillations in parkinson’s disease. NeuroSignals 2013, 21, 89–98. [Google Scholar] [CrossRef]
- Darcy, N.; Lofredi, R.; Al-Fatly, B.; Neumann, W.-J.; Hübl, J.; Brücke, C.; Krause, P.; Schneider, G.-H.; Kühn, A. Spectral and spatial distribution of subthalamic beta peak activity in Parkinson’s disease patients. Exp. Neurol. 2022, 356, 114150. [Google Scholar] [CrossRef] [PubMed]
- Merk, T.; Peterson, V.; Lipski, W.J.; Blankertz, B.; Turner, R.S.; Li, N.; Horn, A.; Richardson, R.M.; Neumann, W.-J. Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson’s disease. eLife 2022, 11, e75126. [Google Scholar] [CrossRef]
- Chu, C.; Liu, S.; He, N.; Zeng, Z.; Wang, J.; Zhang, Z.; Zeljic, K.; van der Stelt, O.; Sun, B.; Yan, F.; et al. Subthalamic stimulation modulates motor network in Parkinson’s disease: Recover, relieve and remodel. Brain J. Neurol. 2023, 146, 2780–2791. [Google Scholar] [CrossRef]
- Chen, P.-L.; Chen, Y.-C.; Tu, P.-H.; Liu, T.-C.; Chen, M.-C.; Wu, H.-T.; Yeap, M.-C.; Yeh, C.-H.; Lu, C.-S.; Chen, C.-C. Subthalamic high-beta oscillation informs the outcome of deep brain stimulation in patients with Parkinson’s disease. Front. Hum. Neurosci. 2022, 16, 958521. [Google Scholar] [CrossRef] [PubMed]
- Morelli, N.; Summers, R.L.S. Association of subthalamic beta frequency sub-bands to symptom severity in patients with Parkinson’s disease: A systematic review. Park. Relat. Disord. 2023, 110, 105364. [Google Scholar] [CrossRef] [PubMed]
- Hirschmann, J.; Abbasi, O.; Storzer, L.; Butz, M.; Hartmann, C.J.; Wojtecki, L.; Schnitzler, A. Longitudinal Recordings Reveal Transient Increase of Alpha/Low-Beta Power in the Subthalamic Nucleus Associated With the Onset of Parkinsonian Rest Tremor. Front. Neurol. 2019, 10, 145. [Google Scholar] [CrossRef] [PubMed]
- Dirkx, M.F.; Bologna, M. The pathophysiology of Parkinson’s disease tremor. J. Neurol. Sci. 2022, 435, 120196. [Google Scholar] [CrossRef] [PubMed]
- Thevathasan, W.; Debu, B.; Aziz, T.; Bloem, B.R.; Blahak, C.; Butson, C.; Czernecki, V.; Foltynie, T.; Fraix, V.; Grabli, D.; et al. Pedunculopontine nucleus deep brain stimulation in Parkinson’s disease: A clinical review. Mov. Disord. 2018, 33, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Thevathasan, W.; Pogosyan, A.; Hyam, J.A.; Jenkinson, N.; Foltynie, T.; Limousin, P.; Bogdanovic, M.; Zrinzo, L.; Green, A.L.; Aziz, T.Z.; et al. Alpha oscillations in the pedunculopontine nucleus correlate with gait performance in parkinsonism. Brain J. Neurol. 2012, 135 Pt 1, 148–160. [Google Scholar] [CrossRef] [PubMed]
- Alegre, M.; López-Azcárate, J.; Alonso-Frech, F.; Rodríguez-Oroz, M.C.; Valencia, M.; Guridi, J.; Artieda, J.; Obeso, J.A. Subthalamic activity during diphasic dyskinesias in Parkinson’s disease. Mov. Disord. 2012, 27, 1178–1181. [Google Scholar] [CrossRef]
- Alonso-Frech, F.; Zamarbide, I.; Alegre, M.; Rodríguez-Oroz, M.C.; Guridi, J.; Manrique, M.; Valencia, M.; Artieda, J.; Obeso, J.A. Slow oscillatory activity and levodopa-induced dyskinesias in Parkinson’s disease. Brain J. Neurol. 2006, 129 Pt 7, 1748–1757. [Google Scholar] [CrossRef]
- Canolty, R.T.; Knight, R.T. The functional role of cross-frequency coupling. Trends Cogn. Sci. 2010, 14, 506–515. [Google Scholar] [CrossRef]
- de Hemptinne, C.; Ryapolova-Webb, E.S.; Air, E.L.; Garcia, P.A.; Miller, K.J.; Ojemann, J.G.; Ostrem, J.L.; Galifianakis, N.B.; Starr, P.A. Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proc. Natl. Acad. Sci. USA 2013, 110, 4780–4785. [Google Scholar] [CrossRef]
- Kimoto, Y.; Tani, N.; Emura, T.; Matsuhashi, T.; Yamamoto, T.; Fujita, Y.; Oshino, S.; Hosomi, K.; Khoo, H.M.; Miura, S.; et al. Beta-gamma phase-amplitude coupling of scalp electroencephalography during walking preparation in Parkinson’s disease differs depending on the freezing of gait. Front. Hum. Neurosci. 2024, 18, 1495272. [Google Scholar] [CrossRef]
- Silberstein, P.; Kupsch, A.; Trottenberg, T.; Krauss, J.K.; Wöhrle, J.C.; Mazzone, P.; Insola, A.; Di Lazzaro, V.; Oliviero, A.; Aziz, T.; et al. Patterning of globus pallidus local field potentials differs between Parkinson’s disease and dystonia. Brain 2003, 126, 2597–2608. [Google Scholar] [CrossRef] [PubMed]
- Neumann, W.-J.; Staub-Bartelt, F.; Horn, A.; Schanda, J.; Schneider, G.-H.; Brown, P.; Kühn, A.A. Long term correlation of subthalamic beta band activity with motor impairment in patients with Parkinson’s disease. Clin. Neurophysiol. 2017, 128, 2286–2291. [Google Scholar] [CrossRef] [PubMed]
- Kühn, A.A.; Tsui, A.; Aziz, T.; Ray, N.; Brücke, C.; Kupsch, A.; Schneider, G.-H.; Brown, P. Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity. Exp. Neurol. 2009, 215, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Özkurt, T.E.; Butz, M.; Homburger, M.; Elben, S.; Vesper, J.; Wojtecki, L.; Schnitzler, A. High frequency oscillations in the subthalamic nucleus: A neurophysiological marker of the motor state in Parkinson’s disease. Exp. Neurol. 2011, 229, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Lachenmayer, M.L.; Mürset, M.; Antih, N.; Debove, I.; Muellner, J.; Bompart, M.; Schlaeppi, J.-A.; Nowacki, A.; You, H.; Michelis, J.P.; et al. Subthalamic and pallidal deep brain stimulation for Parkinson’s disease—Meta-analysis of outcomes. NPJ Park. Dis. 2021, 7, 77. [Google Scholar] [CrossRef]
- Weaver, F.M.; Follett, K.A.; Stern, M.; Luo, P.; Harris, C.L.; Hur, K.; Marks, W.J.; Rothlind, J.; Sagher, O.; Moy, C.; et al. Randomized trial of deep brain stimulation for Parkinson disease: Thirty-six-month outcomes. Neurology 2012, 79, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Follett, K.A.; Weaver, F.M.; Stern, M.; Hur, K.; Harris, C.L.; Luo, P.; Marks, W.J.J.; Rothlind, J.; Sagher, O.; Moy, C.; et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 2010, 362, 2077–2091. [Google Scholar] [CrossRef]
- Limousin, P.; Foltynie, T. Long-term outcomes of deep brain stimulation in Parkinson disease. Nat. Rev. Neurol. 2019, 15, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Samura, K.; Miyagi, Y.; Kawaguchi, M.; Yoshida, F.; Okamoto, T.; Kawashima, M. Predictive Factors of Antiparkinsonian Drug Reduction after Subthalamic Stimulation for Parkinson’s Disease. Neurol. Med. Chir. 2019, 59, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Bockova, M.; Rektor, I. Electrophysiological biomarkers for deep brain stimulation outcomes in movement disorders: State of the art and future challenges. J. Neural Transm. 2021, 128, 1169–1175. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Kelly, M.; Toth, C. Deep brain stimulation of the ventral intermediate nucleus of the thalamus for control of tremors in Parkinson’s disease and essential tremor. Stereotact. Funct. Neurosurg. 1999, 72, 47–61. [Google Scholar] [CrossRef]
- Picillo, M.; Lozano, A.M.; Kou, N.; Munhoz, R.P.; Fasano, A. Programming Deep Brain Stimulation for Parkinson’s Disease: The Toronto Western Hospital Algorithms. Brain Stimul. 2016, 9, 425–437. [Google Scholar] [CrossRef]
- Volkmann, J.; Herzog, J.; Kopper, F.; Deuschl, G. Introduction to the programming of deep brain stimulators. Mov. Disord. 2002, 17, S181–S187. [Google Scholar] [CrossRef] [PubMed]
- Moro, E.; Esselink, R.J.A.; Xie, J.; Hommel, M.; Benabid, A.L.; Pollak, P. The impact on Parkinson’s disease of electrical parameter settings in STN stimulation. Neurology 2002, 59, 706–713. [Google Scholar] [CrossRef]
- Volkmann, J.; Moro, E.; Pahwa, R. Basic algorithms for the programming of deep brain stimulation in Parkinson’s disease. Mov. Disord. 2006, 21 (Suppl. S14), S284–S289. [Google Scholar] [CrossRef] [PubMed]
- Pourfar, M.H.; Mogilner, A.Y.; Farris, S.; Giroux, M.; Gillego, M.; Zhao, Y.; Blum, D.; Bokil, H.; Pierre, M.C. Model-Based Deep Brain Stimulation Programming for Parkinson’s Disease: The GUIDE Pilot Study. Stereotact. Funct. Neurosurg. 2015, 93, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Hamel, W.; Fietzek, U.; Morsnowski, A.; Schrader, B.; Herzog, J.; Weinert, D.; Pfister, G.; Müller, D.; Volkmann, J.; Deuschl, G.; et al. Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: Evaluation of active electrode contacts. J. Neurol. Neurosurg. Psychiatry 2003, 74, 1036–1046. [Google Scholar] [CrossRef]
- Au, K.L.K.; Wong, J.K.; Tsuboi, T.; Eisinger, R.S.; Moore, K.; Lopes, J.L.M.L.J.; Holland, M.T.; Holanda, V.M.; Peng-Chen, Z.; Patterson, A.; et al. Globus Pallidus Internus (GPi) Deep Brain Stimulation for Parkinson’s Disease: Expert Review and Commentary. Neurol. Ther. 2020, 10, 7–30. [Google Scholar] [CrossRef]
- Waldthaler, J.; Bopp, M.; Kühn, N.; Bacara, B.; Keuler, M.; Gjorgjevski, M.; Carl, B.; Timmermann, L.; Nimsky, C.; Pedrosa, D.J. Imaging-based programming of subthalamic nucleus deep brain stimulation in Parkinson’s disease. Brain Stimul. 2021, 14, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Lange, F.; Steigerwald, F.; Malzacher, T.; Brandt, G.A.; Odorfer, T.M.; Roothans, J.; Reich, M.M.; Fricke, P.; Volkmann, J.; Matthies, C.; et al. Reduced Programming Time and Strong Symptom Control Even in Chronic Course Through Imaging-Based DBS Programming. Front. Neurol. 2021, 12, 785529. [Google Scholar] [CrossRef] [PubMed]
- Moro, E.; Poon, Y.-Y.W.; Lozano, A.M.; Saint-Cyr, J.A.; Lang, A.E. Subthalamic nucleus stimulation: Improvements in outcome with reprogramming. Arch. Neurol. 2006, 63, 1266–1272. [Google Scholar] [CrossRef]
- Steigerwald, F.; Müller, L.; Johannes, S.; Matthies, C.; Volkmann, J. Directional deep brain stimulation of the subthalamic nucleus: A pilot study using a novel neurostimulation device. Mov. Disord. 2016, 31, 1240–1243. [Google Scholar] [CrossRef] [PubMed]
- França, C.; Barbosa, E.R.; Iglesio, R.; Teixeira, M.J.; Cury, R.G. Interleaving Stimulation in Parkinson Disease: Interesting to Whom? World Neurosurg. 2019, 130, e786–e793. [Google Scholar] [CrossRef] [PubMed]
- Aquino, C.C.; Duffley, G.; Hedges, D.M.; Vorwerk, J.; House, P.A.; Ferraz, H.B.; Rolston, J.D.; Butson, C.R.; Schrock, L.E. Interleaved deep brain stimulation for dyskinesia management in Parkinson’s disease. Mov. Disord. 2019, 34, 1722–1727. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Zamora, A.; Kahn, M.; Campbell, J.; DeLaCruz, P.; Pilitsis, J.G. Interleaved programming of subthalamic deep brain stimulation to avoid adverse effects and preserve motor benefit in Parkinson’s disease. J. Neurol. 2015, 262, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Zibetti, M.; Moro, E.; Krishna, V.; Sammartino, F.; Picillo, M.; Munhoz, R.P.; Lozano, A.M.; Fasano, A. Low-frequency Subthalamic Stimulation in Parkinson’s Disease: Long-term Outcome and Predictors. Brain Stimul. Brain Stimul. 2016, 9, 774–779. [Google Scholar] [CrossRef]
- Dayal, V.; Grover, T.; Limousin, P.; Akram, H.; Cappon, D.; Candelario, J.; Salazar, M.; Tripoliti, E.; Zrinzo, L.; Hyam, J.; et al. The Effect of Short Pulse Width Settings on the Therapeutic Window in Subthalamic Nucleus Deep Brain Stimulation for Parkinson’s disease. J. Park. Dis. 2018, 8, 273–279. [Google Scholar] [CrossRef]
- Alterman, R.L.; Shils, J.L.; Gudesblatt, M.; Tagliati, M. Immediate and sustained relief of levodopa-induced dyskinesias after dorsal relocation of a deep brain stimulation lead. Case report. Neurosurg. Focus 2004, 17, E6. [Google Scholar] [CrossRef] [PubMed]
- Matias, C.M.; Silva, D.; Machado, A.G.; Cooper, S.E. ‘Rescue’ of bilateral subthalamic stimulation by bilateral pallidal stimulation: Case report. J. Neurosurg. 2016, 124, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Minafra, B.; Fasano, A.; Pozzi, N.G.; Zangaglia, R.; Servello, D.; Pacchetti, C. Eight-years failure of subthalamic stimulation rescued by globus pallidus implant. Brain Stimul. 2014, 7, 179–181. [Google Scholar] [CrossRef]
- Moreau, C.; Defebvre, L.; Destée, A.; Bleuse, S.; Clement, F.; Blatt, J.L.; Krystkowiak, P.; Devos, D. STN-DBS frequency effects on freezing of gait in advanced Parkinson disease. Neurology 2008, 71, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Chu, H.; Zhang, Y.; Wang, X. Deep Brain Stimulation to Alleviate Freezing of Gait and Cognitive Dysfunction in Parkinson’s Disease: Update on Current Research and Future Perspectives. Front. Neurosci. 2018, 12, 29. [Google Scholar] [CrossRef] [PubMed]
- Weiss, D.; Walach, M.; Meisner, C.; Fritz, M.; Scholten, M.; Breit, S.; Plewnia, C.; Bender, B.; Gharabaghi, A.; Wächter, T.; et al. Nigral stimulation for resistant axial motor impairment in Parkinson’s disease? A randomized controlled trial. Brain J. Neurol. 2013, 136 Pt 7, 2098–2108. [Google Scholar] [CrossRef]
- Butson, C.R.; McIntyre, C.C. Current Steering to Control the Volume of Tissue Activated During Deep Brain Stimulation. Brain Stimul. 2008, 1, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Shahed, J. Device profile of the percept PC deep brain stimulation system for the treatment of Parkinson’s disease and related disorders. Expert Rev. Med. Devices 2021, 18, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Pollo, C.; Kaelin-Lang, A.; Oertel, M.F.; Stieglitz, L.; Taub, E.; Fuhr, P.; Lozano, A.M.; Raabe, A.; Schüpbach, M. Directional deep brain stimulation: An intraoperative double-blind pilot study. Brain J. Neurol. 2014, 137 Pt 7, 2015–2026. [Google Scholar] [CrossRef] [PubMed]
- Dembek, T.A.; Reker, P.; Visser-Vandewalle, V.; Wirths, J.; Treuer, H.; Klehr, M.; Roediger, J.; Dafsari, H.S.; Barbe, M.T.; Timmermann, L. Directional DBS increases side-effect thresholds-A prospective, double-blind trial. Mov. Disord. 2017, 32, 1380–1388. [Google Scholar] [CrossRef] [PubMed]
- Schnitzler, A.; Mir, P.; Brodsky, M.A.; Groppa, S.; Alvarez, R.; Evans, A.; Blazquez, M.; Nagel, S.; Pilitsis, J.G.; Pötter-Nerger, M.; et al. Directional Deep Brain Stimulation for Parkinson’s Disease: Results of an International Crossover Study With Randomized, Double-Blind Primary Endpoint. J. Int. Neuromodulation Soc. 2022, 25, 817–828. [Google Scholar] [CrossRef] [PubMed]
- Heldman, D.A.; Pulliam, C.L.; Mendoza, E.U.; Gartner, M.; Giuffrida, J.P.; Montgomery, E.B., Jr.; Espay, A.J.; Revilla, F.J. Computer-Guided Deep Brain Stimulation Programming for Parkinson’s Disease. Neuromodulation 2016, 19, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Rosa, M.; Arlotti, M.; Marceglia, S.; Cogiamanian, F.; Ardolino, G.; Di Fonzo, A.; Lopiano, L.; Scelzo, E.; Merola, A.; Locatelli, M.; et al. Adaptive deep brain stimulation controls levodopa-induced side effects in Parkinsonian patients. Mov. Disord. 2017, 32, 628–629. [Google Scholar] [CrossRef] [PubMed]
- Little, S.; Pogosyan, A.; Neal, S.; Zavala, B.; Zrinzo, L.; Hariz, M.; Foltynie, T.; Limousin, P.; Ashkan, K.; FitzGerald, J.; et al. Adaptive deep brain stimulation in advanced Parkinson disease. Ann. Neurol. 2013, 74, 449–457. [Google Scholar] [CrossRef]
- Piña-Fuentes, D.; van Dijk, J.M.C.; van Zijl, J.C.; Moes, H.R.; van Laar, T.; Oterdoom, D.; Little, S.; Brown, P.; Beudel, M. Acute effects of adaptive Deep Brain Stimulation in Parkinson’s disease. Brain Stimul. 2020, 13, 1507–1516. [Google Scholar] [CrossRef]
- Swann, N.C.; de Hemptinne, C.; Thompson, M.C.; Miocinovic, S.; Miller, A.M.; Gilron, R.; Ostrem, J.L.; Chizeck, H.J.; Starr, P.A. Adaptive deep brain stimulation for Parkinson’s disease using motor cortex sensing. J. Neural Eng. 2018, 15, 046006. [Google Scholar] [CrossRef]
- An, Q.; Yin, Z.; Ma, R.; Fan, H.; Xu, Y.; Gan, Y.; Gao, Y.; Meng, F.; Yang, A.; Jiang, Y.; et al. Adaptive deep brain stimulation for Parkinson’s disease: Looking back at the past decade on motor outcomes. J. Neurol. 2023, 270, 1371–1387. [Google Scholar] [CrossRef]
- Xu, S.S.; Lee, W.-L.; Perera, T.; Sinclair, N.C.; Bulluss, K.J.; McDermott, H.J.; Thevathasan, W. Can brain signals and anatomy refine contact choice for deep brain stimulation in Parkinson’s disease? J. Neurol. Neurosurg. Psychiatry 2022, 93, 1338–1341. [Google Scholar] [CrossRef]
- Ince, N.F.; Gupte, A.; Wichmann, T.; Ashe, J.; Henry, T.; Bebler, M.; Eberly, L.; Abosch, A. Selection of optimal programming contacts based on local field potential recordings from subthalamic nucleus in patients with Parkinson’s disease. Neurosurgery 2010, 67, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.; Radcliffe, E.; Ojemann, S.; Kramer, D.R.; Hirt, L.; Case, M.; Holt-Becker, A.B.; Raike, R.; Kern, D.S.; Thompson, J.A. Pilot Study to Investigate the Use of In-Clinic Sensing to Identify Optimal Stimulation Parameters for Deep Brain Stimulation Therapy in Parkinson’s Disease. Neuromodulation 2024, 27, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Binder, T.; Lange, F.; Pozzi, N.; Musacchio, T.; Daniels, C.; Odorfer, T.; Fricke, P.; Matthies, C.; Volkmann, J.; Capetian, P. Feasibility of local field potential-guided programming for deep brain stimulation in Parkinson’s disease: A comparison with clinical and neuro-imaging guided approaches in a randomized, controlled pilot trial. Brain Stimul. 2023, 16, 1243–1251. [Google Scholar] [CrossRef] [PubMed]
- Fernández-García, C.; Monje, M.H.; Gómez-Mayordomo, V.; Foffani, G.; Herranz, R.; Catalán, M.J.; González-Hidalgo, M.; Matias-Guiu, J.; Alonso-Frech, F. Long-term directional deep brain stimulation: Monopolar review vs. local field potential guided programming. Brain Stimul. 2022, 15, 727–736. [Google Scholar] [CrossRef]
- Strelow, J.N.; Dembek, T.A.; Baldermann, J.C.; Andrade, P.; Jergas, H.; Visser-Vandewalle, V.; Barbe, M.T. Local Field Potential-Guided Contact Selection Using Chronically Implanted Sensing Devices for Deep Brain Stimulation in Parkinson’s Disease. Brain Sci. 2022, 12, 1726. [Google Scholar] [CrossRef] [PubMed]
- Strelow, J.N.; Dembek, T.A.; Baldermann, J.C.; Andrade, P.; Fink, G.R.; Visser-Vandewalle, V.; Barbe, M.T. Low beta-band suppression as a tool for DBS contact selection for akinetic-rigid symptoms in Parkinson’s disease. Park. Relat. Disord. 2023, 112, 105478. [Google Scholar] [CrossRef]
- Seifried, C.; Weise, L.; Hartmann, R.; Gasser, T.; Baudrexel, S.; Szelényi, A.; van de Loo, S.; Steinmetz, H.; Seifert, V.; Roeper, J.; et al. Intraoperative microelectrode recording for the delineation of subthalamic nucleus topography in Parkinson’s disease. Brain Stimul. 2012, 5, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Roh, H.; Kim, J.H.; Koh, S.B. Correlating Beta Oscillations from Intraoperative Microelectrode and Postoperative Implanted Electrode in Patients Undergoing Subthalamic Nucleus Deep Brain Stimulation for Parkinson Disease; A Feasibility Study. World Neurosurg. 2021, 152, e532–e539. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, M.; Telkes, I.; Jimenez-Shahed, J.; Viswanathan, A.; Tarakad, A.; Kumar, S.; Sheth, S.A.; Ince, N.F. Randomized, Double-Blind Assessment of LFP Versus SUA Guidance in STN-DBS Lead Implantation: A. Pilot Study. Front. Neurosci. 2020, 14, 611. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Qiu, C.; Chang, L.; Sun, J.; Yan, J.; Luo, B.; Lu, Y.; Liu, W.; Zhang, L.; Zhang, W. The guiding effect of local field potential during deep brain stimulation surgery for programming in Parkinson’s disease patients. CNS Neurosci. Ther. 2024, 30, 4. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leung, C.H.S.; Simpson, H.D.; Thyagarajan, D. The Place of Local Field Potentials in Deep Brain Stimulation Programming for Parkinson’s Disease: A Review. Brain Sci. 2025, 15, 116. https://doi.org/10.3390/brainsci15020116
Leung CHS, Simpson HD, Thyagarajan D. The Place of Local Field Potentials in Deep Brain Stimulation Programming for Parkinson’s Disease: A Review. Brain Sciences. 2025; 15(2):116. https://doi.org/10.3390/brainsci15020116
Chicago/Turabian StyleLeung, Chun Him Shelton, Hugh D. Simpson, and Dominic Thyagarajan. 2025. "The Place of Local Field Potentials in Deep Brain Stimulation Programming for Parkinson’s Disease: A Review" Brain Sciences 15, no. 2: 116. https://doi.org/10.3390/brainsci15020116
APA StyleLeung, C. H. S., Simpson, H. D., & Thyagarajan, D. (2025). The Place of Local Field Potentials in Deep Brain Stimulation Programming for Parkinson’s Disease: A Review. Brain Sciences, 15(2), 116. https://doi.org/10.3390/brainsci15020116