Circulating Growth Factors and Cytokines Correlate with Temperament and Character Dimensions in Adolescents with Mood Disorders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Temperament and Character Measurement
2.3. Enzyme-Linked Immunosorbent Assays of Serum BDNF, proBDNF, EGF, MIF, SCF, S100B, IL-8, and TNF-Alpha Levels
2.4. Mature BDNF (mBDNF) and mBDNF/proBDNF Ratio Estimation
2.5. Statistical Analyses
3. Results
3.1. Correlations of BDNF, proBDNF, EGF, MIF, SCF, S100B, TNF-Alpha, and IL-8 Serum Levels with Temperament and Character Inventory Dimensions in MDD + BD Patients Group
3.2. Correlations of BDNF, proBDNF, EGF, MIF, SCF, S100B, TNF-Alpha, and IL-8 Serum Levels with Temperament and Character Inventory Dimensions and Its Subcomponents in MDD Patients Group
3.3. Correlations of BDNF, proBDNF, EGF, MIF, SCF, S100B, TNF-Alpha, and IL-8 Serum Levels with Temperament and Character Inventory Dimensions in BD Patients Group
3.4. Correlations of BDNF, proBDNF, EGF, MIF, SCF, S100B, TNF-Alpha, and IL-8 Serum Levels with Temperament and Character Inventory Dimensions in the Group with Diagnosis Change from MDD to BD
4. Discussion
4.1. BDNF
4.2. TNF-Alpha and IL-8
4.3. EGF
4.4. S100B
4.5. Correlations in the Group with Diagnosis Conversion
4.6. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Steel, Z.; Marnane, C.; Iranpour, C.; Chey, T.; Jackson, J.W.; Patel, V.; Silove, D. The Global Prevalence of Common Mental Disorders: A Systematic Review and Meta-Analysis 1980–2013. Int. J. Epidemiol. 2014, 43, 476–493. [Google Scholar] [CrossRef] [PubMed]
- Birmaher, B.; Axelson, D.; Strober, M.; Gill, M.K.; Valeri, S.; Chiappetta, L.; Ryan, N.; Leonard, H.; Hunt, J.; Iyengar, S.; et al. Clinical Course of Children and Adolescents with Bipolar Spectrum Disorders. Arch. Gen. Psychiatry 2006, 63, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Birmaher, B.; Axelson, D.; Goldstein, B.; Strober, M.; Gill, M.K.; Hunt, J.; Houck, P.; Ha, W.; Iyengar, S.; Kim, E.; et al. Four-Year Longitudinal Course of Children and Adolescents with Bipolar Spectrum Disorders: The Course and Outcome of Bipolar Youth (COBY) Study. Am. J. Psychiatry 2009, 166, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Cloninger, C.R.; Svrakic, D.M.; Przybeck, T.R. A Psychobiological Model of Temperament and Character. Arch. General. Psychiatry 1993, 50, 975–990. [Google Scholar] [CrossRef] [PubMed]
- Garcia, D.; Lester, N.; Cloninger, K.M.; Robert Cloninger, C. Temperament and Character Inventory (TCI). In Encyclopedia of Personality and Individual Differences; Zeigler-Hill, V., Shackelford, T.K., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–3. ISBN 978-3-319-28099-8. [Google Scholar]
- Cloninger, C.R. A Unified Biosocial Theory of Personality and Its Role in the Development of Anxiety States. Psychiatr. Dev. 1986, 4, 167–226. [Google Scholar]
- Akiskal, K.K.; Akiskal, H.S. The Theoretical Underpinnings of Affective Temperaments: Implications for Evolutionary Foundations of Bipolar Disorder and Human Nature. J. Affect. Disord. 2005, 85, 231–239. [Google Scholar] [CrossRef]
- McCrae, R.R.; Costa, P.T.; Martin, T.A. The NEO-PI-3: A More Readable Revised NEO Personality Inventory. J. Pers. Assess. 2005, 84, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Favaretto, E.; Bedani, F.; Brancati, G.E.; De Berardis, D.; Giovannini, S.; Scarcella, L.; Martiadis, V.; Martini, A.; Pampaloni, I.; Perugi, G.; et al. Synthesising 30 Years of Clinical Experience and Scientific Insight on Affective Temperaments in Psychiatric Disorders: State of the Art. J. Affect. Disord. 2024, 362, 406–415. [Google Scholar] [CrossRef]
- Fountoulakis, K.N.; Gonda, X. Modeling Human Temperament and Character on the Basis of Combined Theoretical Approaches. Ann. Gen. Psychiatry 2019, 18, 21. [Google Scholar] [CrossRef] [PubMed]
- Mehterov, N.; Minchev, D.; Gevezova, M.; Sarafian, V.; Maes, M. Interactions Among Brain-Derived Neurotrophic Factor and Neuroimmune Pathways Are Key Components of the Major Psychiatric Disorders. Mol. Neurobiol. 2022, 59, 4926–4952. [Google Scholar] [CrossRef]
- Numakawa, T.; Suzuki, S.; Kumamaru, E.; Adachi, N.; Richards, M.; Kunugi, H. BDNF Function and Intracellular Signaling in Neurons. Histol. Histopathol. 2010, 25, 237–258. [Google Scholar] [CrossRef]
- Gibon, J.; Barker, P.A. Neurotrophins and Proneurotrophins: Focus on Synaptic Activity and Plasticity in the Brain. Neuroscientist 2017, 23, 587–604. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Harte-Hargrove, L.C.; Siao, C.-J.; Marinic, T.; Clarke, R.; Ma, Q.; Jing, D.; Lafrancois, J.J.; Bath, K.G.; Mark, W.; et al. proBDNF Negatively Regulates Neuronal Remodeling, Synaptic Transmission, and Synaptic Plasticity in Hippocampus. Cell Rep. 2014, 7, 796–806. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, B.W.; Heizmann, C.W. The S100 Family of EF-Hand Calcium-Binding Proteins: Functions and Pathology. Trends Biochem. Sci. 1996, 21, 134–140. [Google Scholar] [CrossRef]
- Kroksmark, H.; Vinberg, M. Does S100B Have a Potential Role in Affective Disorders? A Literature Review. Nord. J. Psychiatry 2018, 72, 462–470. [Google Scholar] [CrossRef]
- Sotoyama, H.; Namba, H.; Tohmi, M.; Nawa, H. Schizophrenia Animal Modeling with Epidermal Growth Factor and Its Homologs: Their Connections to the Inflammatory Pathway and the Dopamine System. Biomolecules 2023, 13, 372. [Google Scholar] [CrossRef]
- Bond, D.J.; Torres, I.J.; Lam, R.W.; Yatham, L.N. Serum Epidermal Growth Factor, Clinical Illness Course, and Limbic Brain Volumes in Early-Stage Bipolar Disorder. J. Affect. Disord. 2020, 270, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, F.; Poletti, S.; Hoogenboezem, T.A.; Locatelli, C.; Ambrée, O.; de Wit, H.; Wijkhuijs, A.J.M.; Mazza, E.; Bulgarelli, C.; Vai, B.; et al. Stem Cell Factor (SCF) Is a Putative Biomarker of Antidepressant Response. J. Neuroimmune Pharmacol. 2016, 11, 248–258. [Google Scholar] [CrossRef]
- Uzzan, S.; Azab, A.N. Anti-TNF-α Compounds as a Treatment for Depression. Molecules 2021, 26, 2368. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Zhu, Z.H.; Li, R.H.; Yin, X.Y.; Chen, R.F.; Man, L.J.; Hou, W.L.; Zhu, H.L.; Wang, J.; Zhang, H.; et al. Association between Increased Serum Interleukin-8 Levels and Improved Cognition in Major Depressive Patients with SSRIs. BMC Psychiatry 2023, 23, 122. [Google Scholar] [CrossRef]
- Islam, S.; Islam, T.; Nahar, Z.; Shahriar, M.; Islam, S.M.A.; Bhuiyan, M.A.; Islam, M.R. Altered Serum Adiponectin and Interleukin-8 Levels Are Associated in the Pathophysiology of Major Depressive Disorder: A Case-Control Study. PLoS ONE 2022, 17, e0276619. [Google Scholar] [CrossRef] [PubMed]
- Günther, S.; Fagone, P.; Jalce, G.; Atanasov, A.G.; Guignabert, C.; Nicoletti, F. Role of MIF and D-DT in Immune-Inflammatory, Autoimmune, and Chronic Respiratory Diseases: From Pathogenic Factors to Therapeutic Targets. Drug Discov. Today 2019, 24, 428–439. [Google Scholar] [CrossRef] [PubMed]
- Bloom, J.; Al-Abed, Y. MIF: Mood Improving/Inhibiting Factor? J. Neuroinflamm. 2014, 11, 11. [Google Scholar] [CrossRef]
- Rajewska-Rager, A.; Staniek, M.; Kucharska-Kowalczyk, K.; Kapelski, P.; Lepczynska, N.; Dmitrzak-Weglarz, M.; Pawlak, J.; Skibinska, M. Temperament and Character Dimensions as Psychological Markers of Mood Disorders in Polish Adolescents and Young Adults—A Prospective Study. Early Interv. Psychiatry 2022, 16, 1240–1248. [Google Scholar] [CrossRef]
- Kaufman, J.; Birmaher, B.; Brent, D.; Rao, U.; Flynn, C.; Moreci, P.; Williamson, D.; Ryan, N. Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL): Initial Reliability and Validity Data. J. Am. Acad. Child. Adolesc. Psychiatry 1997, 36, 980–988. [Google Scholar] [CrossRef] [PubMed]
- First, M.B.; Gibbon, M. The Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I) and the Structured Clinical Interview for DSM-IV Axis II Disorders (SCID-II). In Comprehensive Handbook of Psychological Assessment, Vol. 2: Personality Assessment; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; pp. 134–143. ISBN 978-0-471-41612-8. [Google Scholar]
- Hamilton, M. A Rating Scale for Depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef]
- Young, R.C.; Biggs, J.T.; Ziegler, V.E.; Meyer, D.A. A Rating Scale for Mania: Reliability, Validity and Sensitivity. Br. J. Psychiatry 1978, 133, 429–435. [Google Scholar] [CrossRef]
- Rajewska-Rager, A.; Dmitrzak-Weglarz, M.; Kapelski, P.; Lepczynska, N.; Pawlak, J.; Twarowska-Hauser, J.; Skibinska, M. Longitudinal Assessment of S100B Serum Levels and Clinical Factors in Youth Patients with Mood Disorders. Sci. Rep. 2021, 11, 11973. [Google Scholar] [CrossRef]
- Skibinska, M.; Kapelski, P.; Dmitrzak-Weglarz, M.; Lepczynska, N.; Pawlak, J.; Twarowska-Hauser, J.; Szczepankiewicz, A.; Rajewska-Rager, A. Elevated Epidermal Growth Factor (EGF) as Candidate Biomarker of Mood Disorders—Longitudinal Study in Adolescent and Young Adult Patients. J. Clin. Med. 2021, 10, 4064. [Google Scholar] [CrossRef]
- Skibinska, M.; Rajewska-Rager, A.; Dmitrzak-Weglarz, M.; Kapelski, P.; Lepczynska, N.; Kaczmarek, M.; Pawlak, J. Interleukin-8 and Tumor Necrosis Factor-Alpha in Youth with Mood Disorders—A Longitudinal Study. Front. Psychiatry 2022, 13, 964538. [Google Scholar] [CrossRef]
- Zwir, I.; Arnedo, J.; Del-Val, C.; Pulkki-Råback, L.; Konte, B.; Yang, S.S.; Romero-Zaliz, R.; Hintsanen, M.; Cloninger, K.M.; Garcia, D.; et al. Uncovering the Complex Genetics of Human Temperament. Mol. Psychiatry 2020, 25, 2275–2294. [Google Scholar] [CrossRef]
- Porcelli, S.; Marsano, A.; Caletti, E.; Sala, M.; Abbiati, V.; Bellani, M.; Perlini, C.; Rossetti, M.G.; Mandolini, G.M.; Pigoni, A.; et al. Temperament and Character Inventory in Bipolar Disorder versus Healthy Controls and Modulatory Effects of 3 Key Functional Gene Variants. Neuropsychobiology 2017, 76, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Tommasi, M.; Sergi, M.R.; Konstantinidou, F.; Franzago, M.; Pesce, M.; Fratta, I.L.; Grilli, A.; Stuppia, L.; Picconi, L.; Saggino, A.; et al. Association of COMT, BDNF and 5-HTT Functional Polymorphisms with Personality Characteristics. Front. Biosci. 2021, 26, 1064–1074. [Google Scholar] [CrossRef]
- Andre, K.; Kampman, O.; Viikki, M.; Setälä-Soikkeli, E.; Illi, A.; Mononen, N.; Lehtimäki, T.; Leinonen, E. BDNF and NRG1 Polymorphisms and Temperament in Selective Serotonin Reuptake Inhibitor-Treated Patients with Major Depression. Acta Neuropsychiatrica 2018, 30, 168–174. [Google Scholar] [CrossRef]
- Kazantseva, A.; Gaysina, D.; Kutlumbetova, Y.; Kanzafarova, R.; Malykh, S.; Lobaskova, M.; Khusnutdinova, E. Brain Derived Neurotrophic Factor Gene (BDNF) and Personality Traits: The Modifying Effect of Season of Birth and Sex. Progress. Neuro-Psychopharmacol. Biol. Psychiatry 2014, 56, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Minelli, A.; Zanardini, R.; Bonvicini, C.; Sartori, R.; Pedrini, L.; Gennarelli, M.; Bocchio-Chiavetto, L. BDNF Serum Levels, but Not BDNF Val66Met Genotype, Are Correlated with Personality Traits in Healthy Subjects. Eur. Arch. Psychiatry Clin. Neurosci. 2011, 261, 323–329. [Google Scholar] [CrossRef]
- Yasui-Furukori, N.; Tsuchimine, S.; Kaneda, A.; Sugawara, N.; Ishioka, M.; Kaneko, S. Association between Plasma Brain-Derived Neurotrophic Factor Levels and Personality Traits in Healthy Japanese Subjects. Psychiatry Res. 2013, 210, 220–223. [Google Scholar] [CrossRef]
- Bhang, S.-Y.; Kim, K.; Choi, S.-W.; Ahn, J.-H. Do Levels of Brain-Derived Neurotrophic Factor (BDNF) in Plasma Correlate with Psychopathology in Healthy Subjects? Neurosci. Lett. 2012, 512, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Nomoto, H.; Baba, H.; Satomura, E.; Maeshima, H.; Takebayashi, N.; Namekawa, Y.; Suzuki, T.; Arai, H. Serum Brain-Derived Neurotrophic Factor Levels and Personality Traits in Patients with Major Depression. BMC Psychiatry 2015, 15, 33. [Google Scholar] [CrossRef] [PubMed]
- Dmitrzak-Weglarz, M.; Skibinska, M.; Slopien, A.; Tyszkiewicz, M.; Pawlak, J.; Maciukiewicz, M.; Zaremba, D.; Rajewski, A.; Hauser, J. Serum Neurotrophin Concentrations in Polish Adolescent Girls with Anorexia Nervosa. Neuropsychobiology 2013, 67, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Demenescu, L.R.; Sweeney-Reed, C.M.; Krause, A.L.; Metzger, C.D.; Walter, M. Novelty Seeking and Reward Dependence-Related Large-Scale Brain Networks Functional Connectivity Variation during Salience Expectancy. Hum. Brain Mapp. 2017, 38, 4064–4077. [Google Scholar] [CrossRef]
- Capuron, L.; Pagnoni, G.; Demetrashvili, M.; Woolwine, B.J.; Nemeroff, C.B.; Berns, G.S.; Miller, A.H. Anterior Cingulate Activation and Error Processing during Interferon-Alpha Treatment. Biol. Psychiatry 2005, 58, 190–196. [Google Scholar] [CrossRef]
- Steiner, J.; Walter, M.; Gos, T.; Guillemin, G.J.; Bernstein, H.-G.; Sarnyai, Z.; Mawrin, C.; Brisch, R.; Bielau, H.; Meyer zu Schwabedissen, L.; et al. Severe Depression Is Associated with Increased Microglial Quinolinic Acid in Subregions of the Anterior Cingulate Gyrus: Evidence for an Immune-Modulated Glutamatergic Neurotransmission? J. Neuroinflamm. 2011, 8, 94. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.H.; Raison, C.L. The Role of Inflammation in Depression: From Evolutionary Imperative to Modern Treatment Target. Nat. Rev. Immunol. 2016, 16, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Slavich, G.M.; Way, B.M.; Eisenberger, N.I.; Taylor, S.E. Neural Sensitivity to Social Rejection Is Associated with Inflammatory Responses to Social Stress. Proc. Natl. Acad. Sci. USA 2010, 107, 14817–14822. [Google Scholar] [CrossRef] [PubMed]
- Eisenberger, N.I.; Lieberman, M.D.; Williams, K.D. Does Rejection Hurt? An FMRI Study of Social Exclusion. Science 2003, 302, 290–292. [Google Scholar] [CrossRef] [PubMed]
- Ando, T.; Dunn, A.J. Mouse Tumor Necrosis Factor-Alpha Increases Brain Tryptophan Concentrations and Norepinephrine Metabolism While Activating the HPA Axis in Mice. Neuroimmunomodulation 1999, 6, 319–329. [Google Scholar] [CrossRef]
- Reynolds, J.L.; Ignatowski, T.A.; Sud, R.; Spengler, R.N. An Antidepressant Mechanism of Desipramine Is to Decrease Tumor Necrosis Factor-Alpha Production Culminating in Increases in Noradrenergic Neurotransmission. Neuroscience 2005, 133, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, J.L.; Ignatowski, T.A.; Spengler, R.N. Effect of Tumor Necrosis Factor-Alpha on the Reciprocal G-Protein-Induced Regulation of Norepinephrine Release by the Alpha2-Adrenergic Receptor. J. Neurosci. Res. 2005, 79, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.-B.; Blakely, R.D.; Hewlett, W.A. The Proinflammatory Cytokines Interleukin-1beta and Tumor Necrosis Factor-Alpha Activate Serotonin Transporters. Neuropsychopharmacology 2006, 31, 2121–2131. [Google Scholar] [CrossRef]
- Hamer, D.H.; Greenberg, B.D.; Sabol, S.Z.; Murphy, D.L. Role of the Serotonin Transporter Gene in Temperament and Character. J. Pers. Disord. 1999, 13, 312–327. [Google Scholar] [CrossRef]
- Heils, A.; Teufel, A.; Petri, S.; Stöber, G.; Riederer, P.; Bengel, D.; Lesch, K.P. Allelic Variation of Human Serotonin Transporter Gene Expression. J. Neurochem. 1996, 66, 2621–2624. [Google Scholar] [CrossRef] [PubMed]
- Saiz, P.A.; Garcia-Portilla, M.P.; Herrero, R.; Arango, C.; Corcoran, P.; Morales, B.; Bascarán, M.-T.; Alvarez, V.; Coto, E.; Paredes, B.; et al. Interactions between Functional Serotonergic Polymorphisms and Demographic Factors Influence Personality Traits in Healthy Spanish Caucasians. Psychiatr. Genet. 2010, 20, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Lee, B.C.; Kim, Y.K.; Kim, S.E. Cerebral Metabolic Correlates of Personality Traits in Healthy Adults: A FDG PET Study. J. Nucl. Med. 2010, 51, 1823. [Google Scholar]
- Tsai, S.-Y.; Sajatovic, M.; Hsu, J.-L.; Chung, K.-H.; Chen, P.-H.; Huang, Y.-J. Peripheral Inflammatory Markers Associated with Brain Volume Reduction in Patients with Bipolar I Disorder. Acta Neuropsychiatr. 2022, 34, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Wada, S.; Honma, M.; Masaoka, Y.; Yoshida, M.; Koiwa, N.; Sugiyama, H.; Iizuka, N.; Kubota, S.; Kokudai, Y.; Yoshikawa, A.; et al. Volume of the Right Supramarginal Gyrus Is Associated with a Maintenance of Emotion Recognition Ability. PLoS ONE 2021, 16, e0254623. [Google Scholar] [CrossRef] [PubMed]
- Silani, G.; Lamm, C.; Ruff, C.C.; Singer, T. Right Supramarginal Gyrus Is Crucial to Overcome Emotional Egocentricity Bias in Social Judgments. J. Neurosci. 2013, 33, 15466–15476. [Google Scholar] [CrossRef] [PubMed]
- Eda, T.; Mizuno, M.; Araki, K.; Iwakura, Y.; Namba, H.; Sotoyama, H.; Kakita, A.; Takahashi, H.; Satoh, H.; Chan, S.-Y.; et al. Neurobehavioral Deficits of Epidermal Growth Factor-Overexpressing Transgenic Mice: Impact on Dopamine Metabolism. Neurosci. Lett. 2013, 547, 21–25. [Google Scholar] [CrossRef]
- Gil, C.; Najib, A.; Aguilera, J. Serotonin Transport Is Modulated Differently by Tetanus Toxin and Growth Factors. Neurochem. Int. 2003, 42, 535–542. [Google Scholar] [CrossRef]
- Keltikangas-Järvinen, L.; Puttonen, S.; Kivimäki, M.; Rontu, R.; Lehtimäki, T. Cloninger’s Temperament Dimensions and Epidermal Growth Factor A61G Polymorphism in Finnish Adults. Genes. Brain Behav. 2006, 5, 11–18. [Google Scholar] [CrossRef]
- Suchankova, P.; Baghaei, F.; Rosmond, R.; Holm, G.; Anckarsäter, H.; Ekman, A. Genetic Variability within the S100B Gene Influences the Personality Trait Self-Directedness. Psychoneuroendocrinology 2011, 36, 919–923. [Google Scholar] [CrossRef] [PubMed]
MDD + BD | MDD | BD | |
---|---|---|---|
n | 74 | 50 | 24 |
Female/Male | 54/20 | 38/12 | 16/8 |
Mean age (±SD) | 18.49 (±3.34) | 18.31 (±3.28) | 18.95 (±3.52) |
Mean age at illness onset (±SD) | 16.82 (±2.68) | 16.8 (±2.94) | 16.86 (±2.05) |
Drug-free yes/no | 25/49 | 21/29 | 4/20 |
Inpatient/outpatient | 56/18 | 35/15 | 21/3 |
Family history of any psychiatric disorder yes/no | 46/28 | 35/15 | 11/13 |
Family history of affective disorder yes/no | 37/37 | 29/31 | 8/16 |
HDRS-17 | 14.88 (±8.17) | 19.28 (±5.39) | 5.71 (±4.48) |
YMRS | 6.12 (±8.63) | 0.96 (±1.48) | 16.88 (±7.29) |
tBDNF (pg/mL) (mean ± SD) | 25,265.07 (±8083.81) | 24,107.78 (±6437.74) | 27,676.1 (±10,494.6) |
mBDNF (pg/mL) (mean ± SD) | 23,020.96 (±8372.06) | 21,748.73 (±6602.92) | 25,671.43 (±10,896.38) |
proBDNF (pg/mL) (mean ± SD) | 2244.11 (±2232.92) | 2359.04 (±2320.40) | 2004.67 (±2065.33) |
rBDNF (mean ± SD) | 24.06 (±24.94) | 24.20 (±26.16) | 23.75 (±22.50) |
EGF (pg/mL) (mean ± SD) | 224.73 (±152.16) | 222.92 (±148.87) | 228.48 (±162.01) |
MIF (pg/mL) (mean ± SD) | 1864.62 (±1056.00) | 1928.81 (±1148.07) | 1730.90 (±838.88) |
SCF (pg/mL) (mean ± SD) | 157.49 (±103.35) | 163.70 (±118.33) | 144.78 (±63.08) |
S100B (pg/mL) (mean ± SD) | 150.41 (±74.76) | 149.28 (±64.71) | 152.69 (±93.29) |
TNF-alpha (pg/mL) (mean ± SD) | 7.35 (±2.78) | 6.85 (±2.42) | 8.30 (±3.23) |
IL-8 (pg/mL) (mean ± SD) | 12.57 (±14.70) | 9.87 (±9.83) | 17.85 (±20.54) |
MDD + BD | R | p | MDD | R | p |
---|---|---|---|---|---|
IL-8 and self-directedness (SD) | 0.36 | 0.003 | IL-8 and reward-dependence (RD) | 0.40 | 0.008 |
TNF-alpha and harm-avoidance (HA) | −0.32 | 0.01 | TNF-alpha and reward-dependence (RD) | 0.50 | <0.00 |
TNF-alpha and reward-dependence (RD) | 0.35 | 0.005 | IL-8 and attachment (RD2) | 0.44 | 0.0033 |
TNF-alpha and self-directedness (SD) | 0.39 | 0.002 | TNF-alpha and attachment (RD2) | 0.53 | <0.001 |
IL-8 and anticipatory worry (HA1) | −0.38 | 0.002 | EGF and self-acceptance (SD4) | 0.40 | 0.004 |
TNF-alpha and anticipatory worry (HA1) | −0.34 | 0.007 | TNF-alpha and resourcefulness (SD3) | 0.39 | 0.011 |
TNF-alpha and fatigability (HA4) | −0.33 | 0.008 | s100b and empathy (C2) | −0.43 | 0.003 |
TNF-alpha and attachment (RD2) | 0.45 | <0.001 | BD | ||
IL-8 and purposefulness (SD2) | 0.37 | 0.002 | EGF and novelty-seeking (NS) | 0.59 | 0.002 |
IL-8 and enlightened second nature (SD5) | 0.33 | 0.008 | rBDNF and self-transcendence (ST) | 0.56 | 0.006 |
TNF-alpha and purposefulness (SD2) | 0.53 | <0.001 | tBDNF and persistence (PS) | 0.58 | 0.003 |
TNF-alpha and resourcefulness (SD3) | 0.38 | 0.002 | mBDNF and persistence (PS) | 0.7 | <0.001 |
TNF-alpha and enlightened second nature (SD5) | 0.38 | 0.002 | rBDNF and disorderliness (NS4) | 0.69 | <0.001 |
s100b and empathy (C2) | −0.35 | 0.004 | rBDNF and transpersonal identification (ST2) | 0.6 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terczynska, M.; Bargiel, W.; Grabarczyk, M.; Kozlowski, T.; Zakowicz, P.; Bojarski, D.; Wasicka-Przewozna, K.; Kapelski, P.; Rajewska-Rager, A.; Skibinska, M. Circulating Growth Factors and Cytokines Correlate with Temperament and Character Dimensions in Adolescents with Mood Disorders. Brain Sci. 2025, 15, 121. https://doi.org/10.3390/brainsci15020121
Terczynska M, Bargiel W, Grabarczyk M, Kozlowski T, Zakowicz P, Bojarski D, Wasicka-Przewozna K, Kapelski P, Rajewska-Rager A, Skibinska M. Circulating Growth Factors and Cytokines Correlate with Temperament and Character Dimensions in Adolescents with Mood Disorders. Brain Sciences. 2025; 15(2):121. https://doi.org/10.3390/brainsci15020121
Chicago/Turabian StyleTerczynska, Maria, Weronika Bargiel, Maksymilian Grabarczyk, Tomasz Kozlowski, Przemyslaw Zakowicz, Dawid Bojarski, Karolina Wasicka-Przewozna, Pawel Kapelski, Aleksandra Rajewska-Rager, and Maria Skibinska. 2025. "Circulating Growth Factors and Cytokines Correlate with Temperament and Character Dimensions in Adolescents with Mood Disorders" Brain Sciences 15, no. 2: 121. https://doi.org/10.3390/brainsci15020121
APA StyleTerczynska, M., Bargiel, W., Grabarczyk, M., Kozlowski, T., Zakowicz, P., Bojarski, D., Wasicka-Przewozna, K., Kapelski, P., Rajewska-Rager, A., & Skibinska, M. (2025). Circulating Growth Factors and Cytokines Correlate with Temperament and Character Dimensions in Adolescents with Mood Disorders. Brain Sciences, 15(2), 121. https://doi.org/10.3390/brainsci15020121