Differential Effects of Electroconvulsive Therapy on Patients with Schizophrenia Versus Depressive Disorder: Clinical Distinction Between Antipsychotic and Antidepressant Effects of Electroconvulsive Therapy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Trifu, S.; Sevcenco, A.; Stănescu, M.; Drăgoi, A.M.; Cristea, M.B. Efficacy of electroconvulsive therapy as a potential first-choice treatment in treatment-resistant depression (Review). Exp. Ther. Med. 2021, 22, 1281. [Google Scholar] [CrossRef] [PubMed]
- Hermida, A.P.; Glass, O.M.; Shafi, H.; McDonald, W.M. Electroconvulsive therapy in depression: Current practice and future direction. Psychiatr. Clin. N. Am. 2018, 41, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yao, X.; Sun, L.; Zhao, L.; Xu, W.; Zhao, H.; Zhao, F.; Zou, X.; Cheng, Z.; Li, B.; et al. Effects of electroconvulsive therapy on depression and its potential mechanism. Front. Psychol. 2020, 11, 80. [Google Scholar] [CrossRef] [PubMed]
- Stippl, A.; Kirkgöze, F.N.; Bajbouj, M.; Grimm, S. Differential effects of electroconvulsive therapy in the treatment of major depressive disorder. Neuropsychobiology 2020, 79, 408–416. [Google Scholar] [CrossRef]
- Mutz, J. Brain stimulation treatment for bipolar disorder. Bipolar Disord. 2023, 25, 9–24. [Google Scholar] [CrossRef] [PubMed]
- Ljubic, N.; Ueberberg, B.; Grunze, H.; Assion, H.J. Treatment of bipolar disorders in older adults: A review. Ann. Gen. Psychiatry 2021, 20, 45. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, D.J.; Zhao, S.; Qi, F.; Nyakyoma, K.; Kwong, J.S.; Adams, C.E. Electroconvulsive therapy for treatment-resistant schizophrenia. Cochrane Database Syst. Rev. 2019, 3, CD011847. [Google Scholar] [CrossRef]
- Grover, S.; Sahoo, S.; Rabha, A.; Koirala, R. ECT in schizophrenia: A review of the evidence. Acta Neuropsychiatr. 2019, 31, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.A.; Mathur, N.; Malhotra, A.K.; Braga, R.J. Electroconvulsive therapy and schizophrenia: A systematic review. Mol. Neuropsychiatry 2019, 5, 75–83. [Google Scholar] [CrossRef]
- Ousdal, O.T.; Argyelan, M.; Narr, K.L.; Abbott, C.; Wade, B.; Vandenbulcke, M.; Urretavizcaya, M.; Tendolkar, I.; Takamiya, A.; Stek, M.L.; et al. Brain changes induced by electroconvulsive therapy are broadly distributed. Biol. Psychiatry 2020, 87, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.H.; Espinoza, R.T.; Pirnia, T.; Shi, J.; Wang, Y.; Ayers, B.; Leaver, A.; Woods, R.P.; Narr, K.L. Structural plasticity of the hippocampus and amygdala induced by electroconvulsive therapy in major depression. Biol. Psychiatry 2016, 79, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Takamiya, A.; Plitman, E.; Chung, J.K.; Chakravarty, M.; Graff-Guerrero, A.; Mimura, M.; Kishimoto, T. Acute and long-term effects of electroconvulsive therapy on human dentate gyrus. Neuropsychopharmacology 2019, 44, 1805–1811. [Google Scholar] [CrossRef]
- Thomann, P.A.; Wolf, R.C.; Nolte, H.M.; Hirjak, D.; Hofer, S.; Seidl, U.; Depping, M.S.; Stieltjes, B.; Maier-Hein, K.; Sambataro, F.; et al. Neuromodulation in response to electroconvulsive therapy in schizophrenia and major depression. Brain Stimul. 2017, 10, 637–644. [Google Scholar] [CrossRef]
- Jiang, Y.; Xia, M.; Li, X.; Tang, Y.; Li, C.; Huang, H.; Dong, D.; Jiang, S.; Wang, J.; Xu, J.; et al. Insular changes induced by electroconvulsive therapy response to symptom improvements in schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 89, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Shan, X.; Zhang, H.; Dong, Z.; Chen, J.; Liu, F.; Zhao, J.; Zhang, H.; Guo, W. Increased subcortical region volume induced by electroconvulsive therapy in patients with schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 271, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, H.; Yamasaki, S.; Kubota, M.; Hazama, M.; Fushimi, Y.; Miyata, J.; Murai, T.; Suwa, T. Commonalities and differences in ECT-induced gray matter volume change between depression and schizophrenia. NeuroImage Clin. 2023, 38, 103429. [Google Scholar] [CrossRef]
- Ishida, T.; Nakamura, Y.; Tanaka, S.C.; Mitsuyama, Y.; Yokoyama, S.; Shinzato, H.; Itai, E.; Okada, G.; Kobayashi, Y.; Kawashima, T.; et al. Aberrant large-scale network interactions across psychiatric disorders revealed by large-sample multi-site resting-state functional magnetic resonance imaging datasets. Schizophr. Bull. 2023, 49, 933–943. [Google Scholar] [CrossRef]
- Maffioletti, E.; Carvalho Silva, R.; Bortolomasi, M.; Baune, B.T.; Gennarelli, M.; Minelli, A. Molecular biomarkers of electroconvulsive therapy effects and clinical response: Understanding the present to shape the future. Brain Sci. 2021, 11, 1120. [Google Scholar] [CrossRef] [PubMed]
- Mizoguchi, Y.; Monji, A.; Nabekura, J. Brain-derived neurotrophic factor induces long-lasting Ca2+-activated K+ currents in rat visual cortex neurons. Eur. J. Neurosci. 2002, 16, 1417–1424. [Google Scholar] [CrossRef] [PubMed]
- Mizoguchi, Y.; Monji, A.; Kato, T.; Seki, Y.; Gotoh, L.; Horikawa, H.; Suzuki, S.O.; Iwaki, T.; Yonaha, M.; Hashioka, S.; et al. Brain-derived neurotrophic factor induces sustained elevation of intracellular Ca2+ in rodent microglia. J. Immunol. 2009, 183, 7778–7786. [Google Scholar] [CrossRef]
- Mizoguchi, Y.; Kato, T.A.; Seki, Y.; Ohgidani, M.; Sagata, N.; Horikawa, H.; Yamauchi, Y.; Sato-Kasai, M.; Hayakawa, K.; Inoue, R.; et al. Brain-derived neurotrophic factor (BDNF) induces sustained intracellular Ca2+ elevation through the up-regulation of surface transient receptor potential 3 (TRPC3) channels in rodent microglia. J. Biol. Chem. 2014, 289, 18549–18555. [Google Scholar] [CrossRef] [PubMed]
- Park, S.C.; Jang, E.Y.; Kim, D.; Jun, T.Y.; Lee, M.S.; Kim, J.M.; Kim, J.B.; Jo, S.J.; Park, Y.C. Dimensional approach to symptom factors of major depressive disorder in Koreans, using the Brief Psychiatric Rating Scale: The Clinical Research Center for Depression of South Korea study. Kaohsiung J. Med. Sci. 2015, 31, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Zanello, A.; Berthoud, L.; Ventura, J.; Merlo, M.C.G. The Brief Psychiatric Rating Scale version 4.0 factorial structure and its sensitivity in the treatment of outpatients with unipolar depression. Psychiatry Res. 2013, 210, 626–633. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Arlington, VA, USA, 2013. [Google Scholar] [CrossRef]
- Dazzi, F.; Shafer, A.; Lauriola, M. Meta-analysis of the Brief Psychiatric Rating Scale–Expanded (BPRS-E) structure and arguments for a new version. J. Psychiatr. Res. 2016, 81, 140–151. [Google Scholar] [CrossRef]
- Wessels, J.M.; Agarwal, R.K.; Somani, A.; Verschoor, C.P.; Agarwal, S.K.; Foster, W.G. Factors affecting stability of plasma brain-derived neurotrophic factor. Sci. Rep. 2020, 10, 20232. [Google Scholar] [CrossRef]
- Nakagawa, S.; Cuthill, I.C. Effect size, confidence interval, and statistical significance: A practical guide for biologists. Biol. Rev. Camb. Philos. Soc. 2007, 82, 591–605. [Google Scholar] [CrossRef] [PubMed]
- Szota, A.M.; Kowalewska, B.; Ćwiklińska-Jurkowska, M.; Dróżdż, W. The influence of electroconvulsive therapy (ECT) on brain-derived neurotrophic factor (BDNF) plasma level in patients with schizophrenia—A systematic review and meta-analysis. J. Clin. Med. 2023, 12, 5728. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, J.; He, K.; Mo, X.; Yu, R.; Min, J.; Zhu, T.; Ma, Y.; He, X.; Lv, F.; et al. Innovative neuroimaging biomarker distinction of major depressive disorder and bipolar disorder through structural connectome analysis and machine learning models. Diagnostics 2024, 14, 389. [Google Scholar] [CrossRef] [PubMed]
- Mizoguchi, Y.; Ishibashi, H.; Nabekura, J. The action of BDNF on GABA(A) currents changes from potentiating to suppressing during maturation of rat hippocampal CA1 pyramidal neurons. J. Physiol. 2003, 548, 703–709. [Google Scholar] [CrossRef]
- Ghit, A.; Assal, D.; Al-Shami, A.S.; Hussein, D.E.E. GABAA receptors: Structure, function, pharmacology, and related disorders. J. Genet. Eng. Biotechnol. 2021, 19, 123. [Google Scholar] [CrossRef] [PubMed]
- Mizoguchi, Y.; Kato, T.A.; Horikawa, H.; Monji, A. Microglial intracellular Ca(2+) signaling as a target of antipsychotic actions for the treatment of schizophrenia. Front. Cell. Neurosci. 2014, 8, 370. [Google Scholar] [CrossRef]
- Ohto, A.; Mizoguchi, Y.; Imamura, Y.; Kojima, N.; Yamada, S.; Monji, A. No association of both serum pro-brain-derived neurotrophic factor (pro BDNF) and BDNF concentrations with depressive state in community-dwelling elderly people. Psychogeriatrics 2021, 21, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Rocha, R.B.; Dondossola, E.R.; Grande, A.J.; Colonetti, T.; Ceretta, L.B.; Passos, I.C.; Quevedo, J.; da Rosa, M.I. Increased BDNF levels after electroconvulsive therapy in patients with major depressive disorder: A meta-analysis study. J. Psychiatr. Res. 2016, 83, 47–53. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Tang, X.; Xiao, W.; Ye, F.; Sha, W.; Jia, Q. Neurotrophic factor changes are essential for predict electroconvulsive therapy outcome in schizophrenia. Schizophr. Res. 2020, 218, 295–297. [Google Scholar] [CrossRef]
- Meshkat, S.; Alnefeesi, Y.; Jawad, M.Y.; Di Vincenzo, J.D.; Rodrigues, N.B.; Ceban, F.; Mw Lui, L.; McIntyre, R.S.; Rosenblat, J.D. Brain-Derived Neurotrophic Factor (BDNF) as a biomarker of treatment response in patients with Treatment Resistant Depression (TRD): A systematic review & meta-analysis. Psychiatry Res. 2022, 317, 114857. [Google Scholar] [CrossRef]
- Akbas, I.; Balaban, O.D. Changes in serum levels of brain-derived neurotrophic factor with electroconvulsive therapy and pharmacotherapy and its clinical correlates in male schizophrenia patients. Acta Neuropsychiatr. 2022, 34, 99–105. [Google Scholar] [CrossRef]
- Li, H.; Cui, L.; Li, J.; Liu, Y.; Chen, Y. Comparative efficacy and acceptability of neuromodulation procedures in the treatment of treatment-resistant depression: A network meta-analysis of randomized controlled trials. J. Affect. Disord. 2021, 287, 115–124. [Google Scholar] [CrossRef]
- Leiknes, K.A.; Jarosh-von Schweder, L.; Høie, B. Contemporary use and practice of electroconvulsive therapy worldwide. Brain Behav. 2012, 2, 283–344. [Google Scholar] [CrossRef]
- Socci, C.; Medda, P.; Toni, C.; Lattanzi, L.; Tripodi, B.; Vannucchi, G.; Perugi, G. Electroconvulsive therapy and age: Age-related clinical features and effectiveness in treatment resistant major depressive episode. J. Affect. Disord. 2018, 227, 627–632. [Google Scholar] [CrossRef]
Patients | No | Age | Sex | Diagnosis | Diagnosis (F-Code) | Onset Age (y) | Illness Period Until ECT (y) | Number of Hospitalizations | Electrode Arrangement | Number of Acute ECT Treatments | Number of Continuation ECT Treatments | Number of Maintenance ECT Treatments | Concomitant Psychotropics | Disorganization Responses to ECT | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
before | after | ||||||||||||||
1 | 1 | 27 | M | SCZ | SCZ (F20.0) | 20 | 7 | 2 | bf | 12 | - | - | HPD 9 mg, Que 400 mg | HPD 3 mg, Ola 20 mg | - |
2 | 3 | 26 | M | SCZ | SCZ (F20.9) | 18 | 8 | 2 | bf | 15 | 18 | 10 | Ola 20 mg, HPD 9 mg | Ola 20 mg, Lam 200 mg, LPZ 50 mg | - |
3 | 4 | 64 | M | SCZ | SCZ (F20.2) | 28 | 36 | 5 | bf | 11 | 8 | - | Zot 75 mg | Zot 75 mg | - |
4 | 5 | 32 | M | SCZ | SCZ (F20.9) | 25 | 7 | 2 | bf | 12 | 25 | 2 | Ris 12 mg, Que 200 mg | Ris 10 mg, HPD 4.5 mg | - |
5 | 7 | 19 | M | SCZ | SCZ (F20.9) | 15 | 7 | 4 | bf | 12 | - | - | Clo 600 mg | Clo 550 mg | |
6 | 8 | 30 | M | SCZ | SCZ (F20.9) | 24 | 6 | 6 | bf | 27 | 10 | - | Zot 150 mg, HPDinj 5 mg | Ola 20 mg, Zot 150 mg, HPDinj 5 mg | Frequent epileptic wave, cognitive function decline |
7 | 11 | 44 | M | SCZ | SCZ (F20.9) | 16 | 28 | 17 | bf | 12 | - | - | Ris 12 mg, Ase 20 mg | Ris 12 mg, Ase 20 mg | First ECT started in 2011 |
8 | 12 | 45 | F | SCZ | SCZ (F20.9) | 22 | 23 | 45 | bf | 19 | 17 | - | Ola 5 mg, Ris 1 mg | Ola 20 mg, | |
9 | 23 | 45 | M | SCZ | SCZ (F20.9) | 18 | 17 | 18 | bf | 28 | - | - | Clo 400 mg, Lam 300 mg | Clo 400 mg, Lam 300 mg | Memory impairment present |
10 | 26 | 64 | M | SCZ | SCZ (F20.2) | 30 | 34 | 2 | ru | 12 | 5 | 4 | Ase 15 mg, CPZ 100 mg | Ase 15 mg, CPZ 100 mg | |
11 | 28 | 69 | F | SCZ | SCZ (F20.9) | 31 | 38 | 11 | ru | 12 | - | - | Olz 20 mg | Olz 15 mg | Slowing of brain waves on EEG |
12 | 29 | 47 | F | SCZ | SCZ (F23.9) | 47 | 0 | 1 | bf | 15 | - | - | Que 300 mg | Que 750 mg, Pal 3 mg | |
13 | 31 | 50 | M | SCZ | SCZ (F20.9) | 19 | 31 | 13 | bf | 15 | - | - | Clo 500 mg | Clo 500 mg | Slowing of brain waves on EEG |
14 | 9 | 20 | F | SCZ | SCZ (F20.9) | 19 | 1 | 11 | bf | 13 | 13 | - | Ola 5 mg | Ola 5 mg, HPDinj 20 mg | Elevated BDNF levels due to hemolysis |
15 | 16 | 38 | F | SCZ | SCZ (F20.9) | 23 | 15 | 8 | bf | 16 | - | - | CPZ 50 mg, Zot 50 mg | CPZ 150 mg | Slowing of brain waves on EEG Elevated BDNF levels due to hemolysis |
16 | 20 | 52 | F | SCZ | SCZ (F20.9) | 19 | 33 | 5 | bf | 23 | - | - | Ola 6.25 mg, Ris 2 mg | Ola 20 mg | Elevated BDNF levels due to hemolysis |
17 | 6 | 61 | M | MDD+BD | BD (F31.4) | 44 | 47 | 6 | bf | 15 | 8 | 6 | Mir 30 mg | Lam 100 mg | |
18 | 10 | 70 | F | MDD+BD | MDD (F32.9) | 52 | 18 | 7 | bf | 7 | - | - | Ola 5 mg, Mir 45 mg | Ola 5 mg, Mir 30 mg | |
19 | 13 | 57 | M | MDD+BD | BD (F31.9) | 39 | 18 | 2 | bf | 26 | 8 | - | Mil 50 mg | ||
20 | 15 | 68 | F | MDD+BD | MDD (F32.9) | 67 | 1 | 3 | bf | 12 | 5 | 5 | Esc 20 mg, Ris 8 mg, Ven 225 mg | Esc 20 mg, Que 12.5 mg | |
21 | 17 | 61 | F | MDD+BD | MDD (F32.9) | 60 | 1 | 3 | bf | 13 | 8 | - | Mir 30 mg, Ola 20 mg | Mir 30 mg, Ola 20 mg | Memory impairment present |
22 | 21 | 70 | M | MDD+BD | BD (F31.5) | 69 | 1 | 1 | ru | 15 | 8 | - | Esc 20 mg, Mir 45 mg, Ari 3 mg | - | |
23 | 24 | 63 | F | MDD+BD | BD (F31.9) | 50 | 13 | 3 | ru | 10 | 12 | - | VPA 800 mg, Que 112.5 mg | VPA 600 mg, Que 112.5 mg | |
24 | 30 | 67 | F | SCZ | MDD (F32.3) | 66 | 1 | 1 | ru | 9 | - | - | Ris 1 mg, Esc 20 mg | Esc 20 mg | |
Excluded group | |||||||||||||||
25 | 2 | 68 | F | BD (F31.9) | bf | 7 | Ari 3 mg | Discontinued due to liver dysfunction and fever | |||||||
26 | 14 | 57 | F | SSD (F45.9) | ru | 2 | Que 125 mg, Mir 15 mg | Discontinued due to eye pain and discomfort in the mouth | |||||||
27 | 19 | 75 | F | SC (F20.9) | bf | 2 | Ris 2 mg, LPZ 25 mg | Interrupted due to bradycardia and cardiac arrest |
Diagnosis | SCZ | MDD+BD | p-Value |
---|---|---|---|
Age (y) | 43.4 ± 16.2 | 64.2 ± 5.1 | 0.0035 * |
Sex (M%) | 58.8 | 42.8 | |
Onset age (y) | 25.8 ± 12.8 | 54.4 ± 11.3 | <0.0001 * |
Illness period until ECT (y) | 17.1 ± 13.7 | 14.1 ± 16.4 | 0.6462 |
Number of hospitalizations | 9.0 ± 10.7 | 3.5 ± 2.1 | 0.0249 * |
Number of acute ECT treatments | 15.4 ± 5.6 | 14.0 ± 6.0 | 0.5719 |
Number of continuation ECT treatments | 12.0 ± 7.9 | 8.1 ± 2.2 | 0.2783 |
Number of maintenance ECT treatments | 5.3 ± 4.1 | 5.5 ± 0.7 | 0.9608 |
Pre-ECT | Post-ECT | |||||||
---|---|---|---|---|---|---|---|---|
BPRS | SCZ | MDD+BD | SCZ | MDD+BD | ||||
Subitem | r | p | r | p | r | p | r | p |
1 Somatic concern | 0.1671 | 0.5681 | −0.2155 | 0.6816 | −0.0500 | 0.7714 | −0.0254 | 0.9200 |
2 Anxiety | −0.1109 | 0.7056 | −0.3383 | 0.5178 | 0.1040 | 0.5462 | 0.1392 | 0.5818 |
3 Depression | 0.1017 | 0.7294 | −0.4929 | 0.3205 | 0.0585 | 0.7345 | 0.1130 | 0.6553 |
4 Suicidality | 0.1245 | 0.6716 | −0.2386 | 0.6489 | 0.2286 | 0.1798 | 0.3256 | 0.1873 |
5 Guilt | 0.0373 | 0.8990 | −0.3973 | 0.4354 | 0.0501 | 0.7713 | 0.0946 | 0.7087 |
6 Hostility | −0.4240 | 0.1308 | 0.6171 | 0.1918 | 0.1231 | 0.5235 | 0.7283 | 0.0006 * |
7 Elevated mood | −0.4662 | 0.0928 | 0.7732 | 0.0713 | −0.0844 | 0.6243 | −0.1240 | 0.6236 |
8 Grandiosity | −0.0822 | 0.7799 | 0.6223 | 0.1870 | 0.0118 | 0.9443 | −0.1240 | 0.4593 |
9 Suspiciousness | −0.0101 | 0.9728 | 0.1038 | 0.8448 | 0.4007 | 0.0154 * | 0.5229 | 0.0260 * |
10 Hallucinations | 0.1377 | 0.2320 | 0.2671 | 0.6088 | 0.2286 | 0.1800 | 0.3256 | 0.1873 |
11 Unusual thought content | −0.2588 | 0.8618 | −0.1111 | 0.8839 | 0.1473 | 0.3911 | 0.2277 | 0.3635 |
12 Bizarre behavior | −0.3672 | 0.1963 | −0.0266 | 0.9599 | 0.1970 | 0.2494 | 0.0737 | 0.7714 |
13 Self-neglect | 0.2665 | 0.3571 | −0.4150 | 0.4132 | 0.0493 | 0.7752 | 0.0538 | 0.8320 |
14 Disorientation | −0.1670 | 0.5680 | −0.2585 | 0.6208 | 0.2666 | 0.1159 | 0.4477 | 0.0624 |
15 Conceptual disorganization | −0.0634 | 0.8293 | −0.4044 | 0.4264 | 0.0839 | 0.6265 | 0.4859 | 0.0409 * |
16 Blunted effect | −0.1171 | 0.6899 | −0.4383 | 0.3846 | −0.1109 | 0.5192 | 0.4145 | 0.0872 |
17 Emotional withdrawal | 0.1111 | 0.7054 | −0.7229 | 0.1045 | −0.0510 | 0.7671 | 0.3649 | 0.1365 |
18 Motor retardation | −0.0316 | 0.9144 | −0.2155 | 0.6816 | 0.1787 | 0.297 | 0.3470 | 0.1583 |
19 Tension | 0.3357 | 0.2406 | −0.3310 | 0.5215 | −0.1649 | 0.3364 | 0.5327 | 0.0228 * |
20 Uncooperativeness | 0.1258 | 0.6682 | 0.5852 | 0.2224 | 0.1522 | 0.8062 | 0.7282 | 0.0006 * |
21 Excitement | −0.3584 | 0.2082 | 0.4334 | 0.3906 | 0.0292 | 0.8658 | 0.8775 | <0.0001 * |
22 Distractibility | 0.0985 | 0.7374 | −0.5905 | 0.2172 | −0.1809 | 0.2907 | 0.3066 | 0.2159 |
23 Motor hyperactivity | −0.0779 | 0.7912 | 0.5700 | 0.2376 | −0.0833 | 0.6289 | 0.3256 | 0.1873 |
24 Mannerisms and posturing | 0.0207 | 0.9944 | 0.1541 | 0.7707 | −0.1301 | 0.4492 | 0.5680 | 0.0139 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakayama, N.; Nakahara, T.; Iwanaga, H.; Hashimoto, M.; Mitsudo, T.; Imamura, Y.; Kunitake, H.; Mizoguchi, Y.; Ueno, T. Differential Effects of Electroconvulsive Therapy on Patients with Schizophrenia Versus Depressive Disorder: Clinical Distinction Between Antipsychotic and Antidepressant Effects of Electroconvulsive Therapy. Brain Sci. 2025, 15, 126. https://doi.org/10.3390/brainsci15020126
Nakayama N, Nakahara T, Iwanaga H, Hashimoto M, Mitsudo T, Imamura Y, Kunitake H, Mizoguchi Y, Ueno T. Differential Effects of Electroconvulsive Therapy on Patients with Schizophrenia Versus Depressive Disorder: Clinical Distinction Between Antipsychotic and Antidepressant Effects of Electroconvulsive Therapy. Brain Sciences. 2025; 15(2):126. https://doi.org/10.3390/brainsci15020126
Chicago/Turabian StyleNakayama, Naho, Tatsuo Nakahara, Hideyuki Iwanaga, Manabu Hashimoto, Takako Mitsudo, Yoshiomi Imamura, Hiroko Kunitake, Yoshito Mizoguchi, and Takefumi Ueno. 2025. "Differential Effects of Electroconvulsive Therapy on Patients with Schizophrenia Versus Depressive Disorder: Clinical Distinction Between Antipsychotic and Antidepressant Effects of Electroconvulsive Therapy" Brain Sciences 15, no. 2: 126. https://doi.org/10.3390/brainsci15020126
APA StyleNakayama, N., Nakahara, T., Iwanaga, H., Hashimoto, M., Mitsudo, T., Imamura, Y., Kunitake, H., Mizoguchi, Y., & Ueno, T. (2025). Differential Effects of Electroconvulsive Therapy on Patients with Schizophrenia Versus Depressive Disorder: Clinical Distinction Between Antipsychotic and Antidepressant Effects of Electroconvulsive Therapy. Brain Sciences, 15(2), 126. https://doi.org/10.3390/brainsci15020126