Effect of Vibro-Tactile Stimulation Sequence and Support Surface Inclination on Gait and Balance Measures †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Equipment
2.3. Procedure
2.4. Data Analysis
2.5. Statistics
3. Results
3.1. Sensory Perception
3.2. Spatiotemporal
3.3. Balance Measures
3.4. Comfort and Sequence Perception
4. Discussion
4.1. The Effect of Incline on Balance Measures
4.2. Vibro-Tactile Stimulation in the Gait-like and Random Sequences Did Not Alter Gait Measures
4.3. Vibro-Tactile Stimulation May Not Affect the Perception of Pressure
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Inglis, J.T.; Kennedy, P.M.; Wells, C.; Chua, R. The role of cutaneous receptors in the foot. Adv. Exp. Med. Biol. 2002, 508, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Felicetti, G.; Thoumie, P.; Do, M.; Schieppati, M. Cutaneous and muscular afferents from the foot and sensory fusion processing: Physiology and pathology in neuropathies. J. Peripher. Nerv. Syst. 2021, 26, 17–34. [Google Scholar] [CrossRef] [PubMed]
- Kavounoudias, A.; Roll, R.; Roll, J.-P. The plantar sole is a ‘dynamometric map’ for human balance control. NeuroReport 1998, 9, 3247–3252. [Google Scholar] [CrossRef] [PubMed]
- Roll, R.; Kavounoudias, A.; Roll, J.-P. Cutaneous afferents from human plantar sole contribute to body posture awareness. NeuroReport 2002, 13, 1957–1961. [Google Scholar] [CrossRef] [PubMed]
- Nurse, M.A.; Nigg, B.M. The effect of changes in foot sensation on plantar pressure and muscle activity. Clin. Biomech. 2001, 16, 719–727. [Google Scholar] [CrossRef]
- Hof, A.L.; van Bockel, R.M.; Schoppen, T.; Postema, K. Control of lateral balance in walking. Experimental findings in normal subjects and above-knee amputees. Gait Posture 2007, 25, 250–258. [Google Scholar] [CrossRef]
- Alam, U.; Riley, D.R.; Jugdey, R.S.; Azmi, S.; Rajbhandari, S.; D’août, K.; Malik, R.A. Diabetic Neuropathy and Gait: A Review. Diabetes Ther. 2017, 8, 1253–1264. [Google Scholar] [CrossRef]
- Cavanagh, P.; Derr, J.; Ulbrecht, J.; Maser, R.; Orchard, T. Problems with Gait and Posture in Neuropathic Patients with Insulin-Dependent Diabetes Mellitus. Diabet. Med. 1992, 9, 469–474. [Google Scholar] [CrossRef]
- Cruz-Almeida, Y.; Black, M.L.; Christou, E.A.; Clark, D.J. Site-specific differences in the association between plantar tactile perception and mobility function in older adults. Front. Aging Neurosci. 2014, 6, 68. [Google Scholar] [CrossRef]
- Strzalkowski, N.D.J.; Peters, R.M.; Inglis, J.T.; Bent, L.R. Cutaneous afferent innervation of the human foot sole: What can we learn from single-unit recordings? J. Neurophysiol. 2018, 120, 1233–1246. [Google Scholar] [CrossRef]
- Kavounoudias, A.; Roll, R.; Roll, J.-P. Specific whole-body shifts induced by frequency-modulated vibrations of human plantar soles. Neurosci. Lett. 1999, 266, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Chien, J.H.; Ambati, V.N.P.; Huang, C.-K.; Mukherjee, M. Tactile stimuli affect long-range correlations of stride interval and stride length differently during walking. Exp. Brain Res. 2017, 235, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, M.; Eikema, D.J.A.; Chien, J.H.; Myers, S.A.; Scott-Pandorf, M.; Bloomberg, J.J.; Stergiou, N. Plantar tactile perturbations enhance transfer of split-belt locomotor adaptation. Exp. Brain Res. 2015, 233, 3005–3012. [Google Scholar] [CrossRef] [PubMed]
- Novak, P.; Novak, V. Effect of step-synchronized vibration stimulation of soles on gait in Parkinson’s disease: A pilot study. J. Neuroeng. Rehabil. 2006, 3, 9. [Google Scholar] [CrossRef]
- Liang, J.N.; Ho, K.-Y.; Hung, V.; Reilly, A.; Wood, R.; Yuskov, N.; Lee, Y.-J. Effects of augmented somatosensory input using vibratory insoles to improve walking in individuals with chronic post-stroke hemiparesis. Gait Posture 2021, 86, 77–82. [Google Scholar] [CrossRef]
- Pathak, P.; Moon, J.; Roh, S.-G.; Roh, C.; Shim, Y.; Ahn, J. Application of vibration to the soles reduces minimum toe clearance variability during walking. PLoS ONE 2022, 17, e0261732. [Google Scholar] [CrossRef]
- Song, H.; Wang, Z.; Siu, K.-C.; Chien, J.H. Applying Supra- or Sub-Threshold Plantar Vibrations Increases the Toe Clearance While Stepping over an Obstacle. J. Mot. Behav. 2022, 54, 558–566. [Google Scholar] [CrossRef]
- Galica, A.M.; Kang, H.G.; Priplata, A.A.; D’andrea, S.E.; Starobinets, O.V.; Sorond, F.A.; Cupples, L.A.; Lipsitz, L.A. Subsensory vibrations to the feet reduce gait variability in elderly fallers. Gait Posture 2009, 30, 383–387. [Google Scholar] [CrossRef]
- Stephen, D.G.; Wilcox, B.J.; Niemi, J.B.; Franz, J.; Kerrigan, D.C.; D’andrea, S.E. Baseline-dependent effect of noise-enhanced insoles on gait variability in healthy elderly walkers. Gait Posture 2012, 36, 537–540. [Google Scholar] [CrossRef]
- Yamashita, S.; Igarashi, K.; Ogihara, N. Reducing the foot trajectory variabilities during walking through vibratory stimulation of the plantar surface of the foot. Sci. Rep. 2021, 11, 1–8. [Google Scholar] [CrossRef]
- Xie, H.; Liang, H.; Chien, J.H. Different types of plantar vibration affect gait characteristics differently while walking on different inclines. PeerJ 2023, 11, e14619. [Google Scholar] [CrossRef] [PubMed]
- Engsberg, C.; Rains, A.; Sado, T.; Wang, Y.; Barlow, S.; Mukherjee, M. The Effect of Gaitlike Plantar Stimulation During Walking. Physiology 2023, 38. [Google Scholar] [CrossRef]
- Engsberg, C.; Hunt, N.; Mukherjee, M. Gait Kinematic Dependent Plantar Stimulation. In Proceedings of the 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 15–19 July 2024; pp. 1–4. [Google Scholar]
- Torres-Oviedo, G.; Bastian, A.J. Seeing Is Believing: Effects of Visual Contextual Cues on Learning and Transfer of Locomotor Adaptation. J. Neurosci. 2010, 30, 17015–17022. [Google Scholar] [CrossRef] [PubMed]
- Eikema, D.J.A.; Chien, J.H.; Stergiou, N.; Myers, S.A.; Scott-Pandorf, M.M.; Bloomberg, J.J.; Mukherjee, M. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation. Exp. Brain Res. 2015, 234, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Peterka, R.J.; Loughlin, P.J. Dynamic Regulation of Sensorimotor Integration in Human Postural Control. J. Neurophysiol. 2004, 91, 410–423. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.S.; Schlink, B.R.; Hairston, W.D.; König, P.; Ferris, D.P. Restricted vision increases sensorimotor cortex involvement in human walking. J. Neurophysiol. 2017, 118, 1943–1951. [Google Scholar] [CrossRef]
- Sun, J.; Walters, M.; Svensson, N.; Lloyd, D. The influence of surface slope on human gait characteristics: A study of urban pedestrians walking on an inclined surface. Ergonomics 1996, 39, 677–692. [Google Scholar] [CrossRef]
- Chien, J.H.; Eikema, D.-J.A.; Mukherjee, M.; Stergiou, N. Locomotor Sensory Organization Test: A Novel Paradigm for the Assessment of Sensory Contributions in Gait. Ann. Biomed. Eng. 2014, 42, 2512–2523. [Google Scholar] [CrossRef]
- Chien, J.H.; Mukherjee, M.; Siu, K.-C.; Stergiou, N. Locomotor Sensory Organization Test: How Sensory Conflict Affects the Temporal Structure of Sway Variability During Gait. Ann. Biomed. Eng. 2016, 44, 1625–1635. [Google Scholar] [CrossRef]
- Chien, J.H.; Mukherjee, M.; Kent, J.; Stergiou, N. Mastoid vibration affects dynamic postural control during gait in healthy older adults. Sci. Rep. 2017, 7, srep41547. [Google Scholar] [CrossRef]
- Lin, Y.; Mukherjee, M.; Stergiou, N.; Chien, J.H. Using mastoid vibration to detect age-related uni/bilateral vestibular deterioration during standing. J. Vestib. Res. 2022, 32, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.K.; Hnat, S.K.; Bogert, A.J.v.D. An elaborate data set on human gait and the effect of mechanical perturbations. PeerJ 2015, 3, e918. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, S.; Dubuc, R.; Gossard, J.-P. Dynamic Sensorimotor Interactions in Locomotion. Physiol. Rev. 2006, 86, 89–154. [Google Scholar] [CrossRef] [PubMed]
- Zeni, J.A., Jr.; Richards, J.G.; Higginson, J.S. Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture 2008, 27, 710–714. [Google Scholar] [CrossRef]
- Hoogkamer, W.; Bruijn, S.M.; Duysens, J. Stride length asymmetry in split-belt locomotion. Gait Posture 2014, 39, 652–654. [Google Scholar] [CrossRef]
- Hak, L.; Houdijk, H.; Beek, P.J.; van Dieën, J.H. Steps to take to enhance gait stability: The effect of stride frequency, stride length, and walking speed on local dynamic stability and margins of stability. PLoS ONE 2013, 8, e82842. [Google Scholar] [CrossRef]
- Vieira, M.F.; Rodrigues, F.B.; Souza, G.S.d.S.e.; Magnani, R.M.; Lehnen, G.C.; Andrade, A.O. Linear and Nonlinear Gait Features in Older Adults Walking on Inclined Surfaces at Different Speeds. Ann. Biomed. Eng. 2017, 45, 1560–1571. [Google Scholar] [CrossRef]
- Vieira, M.F.; Rodrigues, F.B.; Souza, G.S.d.S.e.; Magnani, R.M.; Lehnen, G.C.; Campos, N.G.; Andrade, A.O. Gait stability, variability and complexity on inclined surfaces. J. Biomech. 2017, 54, 73–79. [Google Scholar] [CrossRef]
- Young, P.M.M.; Wilken, J.M.; Dingwell, J.B. Dynamic margins of stability during human walking in destabilizing environments. J. Biomech. 2012, 45, 1053–1059. [Google Scholar] [CrossRef]
- Peebles, A.T.; Reinholdt, A.; Bruetsch, A.P.; Lynch, S.G.; Huisinga, J.M. Dynamic margin of stability during gait is altered in persons with multiple sclerosis. J. Biomech. 2016, 49, 3949–3955. [Google Scholar] [CrossRef]
- Hunter, J.M.; Mackin, E.J.; Callahan, A.D. Rehabilitation of the Hand: Surgery and Terapy; Mosby: Philadelphia, PA, USA, 1995; Volume 4. [Google Scholar]
- Süptitz, F.; Karamanidis, K.; Catalá, M.M.; Brüggemann, G.-P. Symmetry and reproducibility of the components of dynamic stability in young adults at different walking velocities on the treadmill. J. Electromyogr. Kinesiol. 2012, 22, 301–307. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, M.-E.; Siragy, T.; Hill, A.; Nantel, J. Walking on Mild Slopes and Altering Arm Swing Each Induce Specific Strategies in Healthy Young Adults. Front. Sports Act. Living 2022, 3, 805147. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, P.M.; Inglis, J.T. Distribution and behaviour of glabrous cutaneous receptors in the human foot sole. J. Physiol. 2002, 538, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Afzal, M.R.; Oh, M.-K.; Lee, C.-H.; Park, Y.S.; Yoon, J. A Portable Gait Asymmetry Rehabilitation System for Individuals with Stroke Using a Vibrotactile Feedback. BioMed Res. Int. 2015, 2015, 1–16. [Google Scholar] [CrossRef]
- van Beers, R.J.; Baraduc, P.; Wolpert, D.M. Role of uncertainty in sensorimotor control. Philos. Trans. R. Soc. B Biol. Sci. 2002, 357, 1137–1145. [Google Scholar] [CrossRef]
- Do, M.C.; Bussel, B.; Breniere, Y. Influence of plantar cutaneous afferents on early compensatory reactions to forward fall. Exp. Brain Res. 1990, 79, 319–324. [Google Scholar] [CrossRef]
- Thoumie, P.; Do, M.C. Changes in motor activity and biomechanics during balance recovery following cutaneous and muscular deafferentation. Exp. Brain Res. 1996, 110, 289–297. [Google Scholar] [CrossRef]
- Perry, S.D.; McIlroy, E.W.; Maki, B.E. The role of plantar cutaneous mechanoreceptors in the control of compensatory stepping reactions evoked by unpredictable, multi-directional perturbation. Brain Res. 2000, 877, 401–406. [Google Scholar] [CrossRef]
- Meyer, P.F.; Oddsson, L.I.E.; De Luca, C.J. Reduced plantar sensitivity alters postural responses to lateral perturbations of balance. Exp. Brain Res. 2004, 157, 526–536. [Google Scholar] [CrossRef]
- Oddsson, L.I.E.; De Luca, C.J.; Meyer, P.F. The role of plantar cutaneous sensation in unperturbed stance. Exp. Brain Res. 2004, 156, 505–512. [Google Scholar] [CrossRef]
- Höhne, A.; Stark, C.; Brüggemann, G.-P.; Arampatzis, A. Effects of reduced plantar cutaneous afferent feedback on locomotor adjustments in dynamic stability during perturbed walking. J. Biomech. 2011, 44, 2194–2200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhang, K.; Zhou, J.; Chai, Y.; Long, Y.; Wang, X.; Manor, B.; Zhang, J.; Fang, J. An mri-compatible foot-sole stimulation system enabling characterization of the brain response to walking-related tactile stimuli. Front. Neurosci. 2019, 13, 1075. [Google Scholar] [CrossRef]
- Labriffe, M.; Annweiler, C.; Amirova, L.E.; Gauquelin-Koch, G.; Ter Minassian, A.; Leiber, L.-M.; Beauchet, O.; Custaud, M.-A.; Dinomais, M. Brain activity during mental imagery of gait versus gait-like plantar stimulation: A novel combined functional MRI paradigm to better understand cerebral gait control. Front. Hum. Neurosci. 2017, 11, 106. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, A.; Bai, L.; Ginty, D.D. The gentle touch receptors of mammalian skin. Science 2014, 346, 950–954. [Google Scholar] [CrossRef] [PubMed]
- Gardner, E.P. Touch. In Encyclopedia of Life Sciences; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
Monofilament Test | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Right (Filament) | Left (Filament) | |||||||||||
Subject | Big Toe | MT1 | MT5 | Sole | Heel | Little Toe | Big Toe | MT1 | MT5 | Sole | Heel | Little toe |
1 | 4.31 | 2.83 | 4.31 | 3.61 | 4.31 | ~ | 4.31 | 2.83 | 4.31 | 3.61 | 4.31 | ~ |
3 | 3.61 | 4.31 | 3.61 | 3.61 | 4.31 | ~ | 3.61 | 3.61 | 4.31 | 4.31 | 4.31 | ~ |
4 | 4.31 | 2.83 | 4.31 | 4.31 | 4.31 | 4.31 | 2.83 | 4.31 | 2.83 | 2.83 | 4.31 | 4.31 |
5 | 3.61 | 3.61 | 3.61 | 3.61 | 4.31 | ~ | 3.61 | 3.61 | 3.61 | 3.61 | 4.31 | ~ |
6 | 2.83 | 4.31 | 3.61 | 4.31 | 3.61 | 3.61 | 3.61 | 3.61 | 4.31 | 3.61 | 4.31 | 4.31 |
7 | 4.31 | 4.31 | 4.31 | 4.31 | 4.31 | 4.31 | 4.31 | 4.31 | 4.31 | 4.31 | 4.31 | 4.31 |
8 | 3.61 | 2.83 | 4.31 | 2.83 | 3.61 | 3.61 | 3.61 | 2.83 | 4.31 | 2.83 | 3.61 | 3.61 |
9 | 4.31 | 3.61 | 4.31 | 3.61 | 4.31 | 4.31 | 4.31 | 3.61 | 3.61 | 3.61 | 4.31 | 4.31 |
11 | 3.61 | 3.61 | 4.31 | 4.31 | 3.61 | 4.31 | 2.83 | 3.61 | 4.31 | 4.31 | 4.31 | 3.61 |
average: | 3.83 | 3.58 | 4.08 | 3.83 | 4.08 | 4.08 | 3.67 | 3.59 | 3.99 | 3.67 | 4.23 | 4.08 |
std. dev: | 0.51 | 0.64 | 0.35 | 0.51 | 0.35 | 0.36 | 0.58 | 0.52 | 0.53 | 0.58 | 0.23 | 0.36 |
mode: | 4.31 | 2.83 | 4.31 | 3.61 | 4.31 | 4.31 | 3.61 | 3.61 | 4.31 | 3.61 | 4.31 | 4.31 |
Biothesiometer Test | ||||||
---|---|---|---|---|---|---|
Right (Microns) | Left (Microns) | |||||
Subject | MT1 | MT5 | Heel | MT1 | MT5 | Heel |
1 | 0.01 | 0.01 | 0.04 | 0.01 | 0.04 | 0.04 |
3 | 0.16 | 0.04 | 0.09 | 0.09 | 0.04 | 0.16 |
4 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
5 | 0.04 | 0.04 | 0.04 | 0.09 | 0.04 | 0.04 |
6 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
7 | 0.16 | 0.09 | 0.09 | 0.09 | 0.04 | 0.09 |
8 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
9 | 0.09 | 0.04 | 0.04 | 0.09 | 0.04 | 0.09 |
11 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
average: | 0.07 | 0.04 | 0.05 | 0.06 | 0.04 | 0.06 |
std. dev: | 0.06 | 0.02 | 0.02 | 0.03 | 0 | 0.04 |
Comfort Scale | |||
---|---|---|---|
Subject | OFF | ON | Difference |
1 | 6 | 5 | −1 |
3 | 5 | 6 | 1 |
4 | 7 | 6 | −1 |
5 | 4 | 7 | 3 |
6 | 4 | 4 | 0 |
7 | 9 | 4.5 | −4.5 |
8 | 5 | 4.5 | −0.5 |
9 | 7 | 8 | 1 |
11 | 6 | 6 | 0 |
average | 5.89 | 5.67 | −0.22 |
std. dev | 1.62 | 1.3 | 2.03 |
Pattern Response | |
---|---|
Response Examples | Response Frequency |
“The stimulation felt stronger sometimes” | 2 |
“There was a forward sequence and backward sequence” | 1 |
“There were different patterns” | 1 |
“No difference” | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Engsberg, C.P.; Hunt, N.H.; Barlow, S.; Mukherjee, M. Effect of Vibro-Tactile Stimulation Sequence and Support Surface Inclination on Gait and Balance Measures. Brain Sci. 2025, 15, 138. https://doi.org/10.3390/brainsci15020138
Engsberg CP, Hunt NH, Barlow S, Mukherjee M. Effect of Vibro-Tactile Stimulation Sequence and Support Surface Inclination on Gait and Balance Measures. Brain Sciences. 2025; 15(2):138. https://doi.org/10.3390/brainsci15020138
Chicago/Turabian StyleEngsberg, Christopher P., Nathaniel H. Hunt, Steven Barlow, and Mukul Mukherjee. 2025. "Effect of Vibro-Tactile Stimulation Sequence and Support Surface Inclination on Gait and Balance Measures" Brain Sciences 15, no. 2: 138. https://doi.org/10.3390/brainsci15020138
APA StyleEngsberg, C. P., Hunt, N. H., Barlow, S., & Mukherjee, M. (2025). Effect of Vibro-Tactile Stimulation Sequence and Support Surface Inclination on Gait and Balance Measures. Brain Sciences, 15(2), 138. https://doi.org/10.3390/brainsci15020138