Head Injury and Amyotrophic Lateral Sclerosis: Population-Based Study from the National ALS Registry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analytic Population
2.2. Outcomes
2.3. Covariates
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALS | Amyotrophic lateral sclerosis |
aOR | Adjusted odds ratio |
ATSDR | Agency for Toxic Substances and Disease Registry |
BMAA | β-N-methylamino-l-alanine |
BMI | Body mass index |
CDC | Centers for Disease Control and Prevention |
CTE | Chronic traumatic encephalopathy |
HI | Head injury |
MDPI | Multidisciplinary Digital Publishing Institute |
OR | Odds ratios |
TBI | Traumatic brain injury |
TDP-43 | TAR DNA-binding protein 43 |
References
- UPH Service. ALS Registry Act 110th Congress. Public Law; UPH Service: Washington, DC, USA, 2008; pp. 110–373. [Google Scholar]
- Ryan, M.; Heverin, M.; McLaughlin, R.L.; Hardiman, O. Lifetime Risk and Heritability of Amyotrophic Lateral Sclerosis. JAMA Neurol. 2019, 76, 1367–1374. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Lin, J.; Jiang, Q.; Yang, T.; Xiao, Y.; Huang, J.; Hou, Y.; Wei, Q.; Cui, Y.; Wang, S.; et al. Genetic Modifiers of Age at Onset for Amyotrophic Lateral Sclerosis: A Genome-Wide Association Study. Ann. Neurol. 2023, 94, 933–941. [Google Scholar] [CrossRef] [PubMed]
- van Es, M.A.; Hardiman, O.; Chio, A.; Al-Chalabi, A.; Pasterkamp, R.J.; Veldink, J.H.; van den Berg, L.H. Amyotrophic lateral sclerosis. Lancet 2017, 390, 2084–2098. [Google Scholar] [CrossRef]
- Raymond, J.; Oskarsson, B.; Mehta, P.; Horton, K. Clinical characteristics of a large cohort of US participants enrolled in the National Amyotrophic Lateral Sclerosis (ALS) Registry, 2010–2015. Amyotroph. Lateral Scler. Front. Degener. 2019, 20, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Ingre, C.; Roos, P.M.; Piehl, F.; Kamel, F.; Fang, F. Risk factors for amyotrophic lateral sclerosis. Clin. Epidemiol. 2015, 7, 181–193. [Google Scholar] [CrossRef] [PubMed]
- de Munck, E.; Muñoz-Sáez, E.; Miguel, B.G.; Solas, M.T.; Ojeda, I.; Martínez, A.; Gil, C.; Arahuetes, R.M. beta-N-methylamino-l-alanine causes neurological and pathological phenotypes mimicking Amyotrophic Lateral Sclerosis (ALS): The first step towards an experimental model for sporadic ALS. Environ. Toxicol. Pharmacol. 2013, 36, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Chapman, L.; Cooper-Knock, J.; Shaw, P.J. Physical activity as an exogenous risk factor for amyotrophic lateral sclerosis: A review of the evidence. Brain 2023, 146, 1745–1757. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Wang, S.; Huang, J.; Lin, J.; Yang, T.; Xiao, Y.; Jiang, Q.; Huang, R.; Li, C.; Shang, H. Physical activity as risk factor in amyotrophic lateral sclerosis: A systematic review and meta-analysis. J. Neurol. 2023, 270, 2438–2450. [Google Scholar] [CrossRef] [PubMed]
- Raymond, J.; Mehta, P.; Larson, T.; Factor-Litvak, P.; Davis, B.; Horton, K. History of vigorous leisure-time physical activity and early onset amyotrophic lateral sclerosis (ALS), data from the national ALS registry: 2010–2018. Amyotroph. Lateral Scler. Front. Degener. 2021, 22, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Nowicka, N.; Juranek, J.; Juranek, J.K.; Wojtkiewicz, J. Risk Factors and Emerging Therapies in Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci. 2019, 20, 2616. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, N.D.; Iverson, G.L.; Cogan, A.; Dams-O-Connor, K.; Delmonico, R.; Graf, M.J.P.; Iaccarino, M.A.; Kajankova, M.; Kamins, J.; McCulloch, K.L.; et al. The American Congress of Rehabilitation Medicine Diagnostic Criteria for Mild Traumatic Brain Injury. Arch. Phys. Med. Rehabil. 2023, 104, 1343–1355. [Google Scholar] [CrossRef] [PubMed]
- Barker, S.; Paul, B.D.; Pieper, A.A. Increased Risk of Aging-Related Neurodegenerative Disease after Traumatic Brain Injury. Biomedicines 2023, 11, 1154. [Google Scholar] [CrossRef] [PubMed]
- Bjorklund, G.R.; Wong, J.; Brafman, D.; Bowser, R.; Stabenfeldt, S.E. Traumatic brain injury induces TDP-43 mislocalization and neurodegenerative effects in tissue distal to the primary injury site in a non-transgenic mouse. Acta Neuropathol. Commun. 2023, 11, 137. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.C.; Yaffe, K. Epidemiology of mild traumatic brain injury and neurodegenerative disease. Mol. Cell Neurosci. 2015, 66 Pt B, 75–80. [Google Scholar] [CrossRef]
- Haley, R.W. Excess incidence of ALS in young Gulf War veterans. Neurology 2003, 61, 750–756. [Google Scholar] [CrossRef]
- Horner, R.D.; Grambow, S.C.; Coffman, C.J.; Lindquist, J.H.; Oddone, E.Z.; Allen, K.D.; Kasarskis, E.J. Amyotrophic lateral sclerosis among 1991 Gulf War veterans: Evidence for a time-limited outbreak. Neuroepidemiology 2008, 31, 28–32. [Google Scholar] [CrossRef]
- Schmidt, S.; Kwee, L.C.; Allen, K.D.; Oddone, E.Z. Association of ALS with head injury, cigarette smoking and APOE genotypes. J. Neurol. Sci. 2010, 291, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Sagiraju, H.K.R.; Živković, S.; VanCott, A.C.; Patwa, H.; de Porras, D.G.R.; Amuan, M.E.; Pugh, M.J.V. Amyotrophic lateral sclerosis among Veterans deployed in support of post-9/11 US conflicts. Mil. Med. 2020, 185, e501–e509. [Google Scholar] [CrossRef]
- Chen, H.; Richard, M.; Sandler, D.P.; Umbach, D.M.; Kamel, F. Head injury and amyotrophic lateral sclerosis. Am. J. Epidemiol. 2007, 166, 810–816. [Google Scholar] [CrossRef]
- Watanabe, Y.; Watanabe, T. Meta-analytic evaluation of the association between head injury and risk of amyotrophic lateral sclerosis. Eur. J. Epidemiol. 2017, 32, 867–879. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Ou, S.; Cui, H.; Li, X.; Yin, Z.; Gu, D.; Wang, Z. Head injury and amyotrophic lateral sclerosis: A meta-analysis. Neuroepidemiology 2021, 55, 11–19. [Google Scholar] [CrossRef]
- Franz, C.K.; Joshi, D.; Daley, E.L.; Grant, R.A.; Dalamagkas, K.; Leung, A.; Finan, J.D.; Kiskinis, E. Impact of traumatic brain injury on amyotrophic lateral sclerosis: From bedside to bench. J. Neurophysiol. 2019, 122, 1174–1185. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, G.M.; Ma, A.M.; Ko, A.; Harada, M.Y.; Wyss, L.; Haro, P.S.; Vit, J.-P.; Shelest, O.; Rhee, P.; Svendsen, C.N.; et al. A model of recurrent concussion that leads to long-term motor deficits, CTE-like tauopathy and exacerbation of an ALS phenotype. J. Trauma Acute Care Surg. 2016, 81, 1070–1079. [Google Scholar] [CrossRef]
- Perry, D.C.; Sturm, V.E.; Peterson, M.J.; Pieper, C.F.; Bullock, T.; Boeve, B.F.; Miller, B.L.; Guskiewicz, K.M.; Berger, M.S.; Kramer, J.H.; et al. Association of traumatic brain injury with subsequent neurological and psychiatric disease: A meta-analysis. J. Neurosurg. 2016, 124, 511–526. [Google Scholar] [CrossRef] [PubMed]
- McKee, A.C.; Mez, J.; Abdolmohammadi, B.; Butler, M.; Huber, B.R.; Uretsky, M.; Babcock, K.; Cherry, J.D.; Alvarez, V.E.; Martin, B.; et al. Neuropathologic and clinical findings in young contact sport athletes exposed to repetitive head impacts. JAMA Neurol. 2023, 80, 1037–1050. [Google Scholar] [CrossRef]
- Felmus, M.T.; Patten, B.M.; Swanke, L. Antecedent events in amyotrophic lateral sclerosis. Neurology 1976, 26, 167. [Google Scholar] [CrossRef]
- Janssen, P.H.; Mandrekar, J.; Mielke, M.M.; Ahlskog, J.E.; Boeve, B.F.; Josephs, K.; Savica, R. High School Football and Late-Life Risk of Neurodegenerative Syndromes, 1956–1970; Elsevier: Amsterdam, The Netherlands, 2017; pp. 66–71. [Google Scholar]
- Longstreth, W.; McGuire, V.; Koepsell, T.; Wang, Y.; Van Belle, G. Risk of amyotrophic lateral sclerosis and history of physical activity: A population-based case-control study. Arch. Neurol. 1998, 55, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Blecher, R.; Elliott, M.A.; Yilmaz, E.; Dettori, J.R.; Oskouian, R.J.; Patel, A.; Clarke, A.; Hutton, M.; McGuire, R.; Dunn, R.; et al. Contact sports as a risk factor for amyotrophic lateral sclerosis: A systematic review. Glob. Spine J. 2019, 9, 104–118. [Google Scholar] [CrossRef] [PubMed]
- Iverson, G.L.; Castellani, R.J.; Cassidy, J.D.; Schneider, G.M.; Schneider, K.J.; Echemendia, R.J.; Bailes, J.E.; Hayden, K.A.; Koerte, I.K.; Manley, G.T.; et al. Examining later-in-life health risks associated with sport-related concussion and repetitive head impacts: A systematic review of case-control and cohort studies. Br. J. Sports Med. 2023, 57, 810–821. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; Antao, V.; Kaye, W.; Sanchez, M.; Williamson, D.; Bryan, L.; Muravov, O.; Horton, K.; Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, Atlanta, Georgia; Centers for Disease Control and Prevention (CDC). Prevalence of amyotrophic lateral sclerosis—United States, 2010–2011. MMWR Suppl. 2014, 63, 1–14. [Google Scholar] [PubMed]
- Wonder, C. Bridged-Race Population Estimates 1990–2020. 2022. Available online: https://wonder.cdc.gov/Bridged-Race-v2020.HTML (accessed on 28 June 2022).
- Mehta, P.; Kaye, W.; Raymond, J.; Punjani, R.; Larson, T.; Cohen, J.; Muravov, O.; Horton, K. Prevalence of Amyotrophic Lateral Sclerosis—United States, 2015. Mmwr-Morb. Mortal. Wkly. Rep. 2018, 67, 1285–1289. [Google Scholar] [CrossRef] [PubMed]
- Brooks, B.R. El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial “Clinical limits of amyotrophic lateral sclerosis” workshop contributors. J. Neurol. Sci. 1994, 124, 96–107. [Google Scholar] [CrossRef]
- Allen, K.; Kasarskis, E.; Bedlack, R.; Rozear, M.; Morgenlander, J.; Sabet, A.; Sams, L.; Lindquist, J.; Harrelson, M.; Coffman, C.; et al. The National Registry of Veterans with amyotrophic lateral sclerosis. Neuroepidemiology 2008, 30, 180–190. [Google Scholar] [CrossRef]
- Rechtman, L.; Brenner, S.; Wright, M.; Ritsick, M.; Rahman, F.; Han, M.; Raymond, J.; Larson, T.; Horton, D.K.; Mehta, P. Impact of the National Amyotrophic Lateral Sclerosis Registry: Analysis of Registry-funded Research. Ann. Clin. Transl. Neurol. 2022, 9, 1692–1701. [Google Scholar] [CrossRef] [PubMed]
- (ACES) ACoES. ALS Consortium of Epidemiologic Studies (ACES): Stanford School of Medicine. Available online: http://aces.stanford.edu/ (accessed on 11 April 2024).
- Horton, D.K.; Mehta, P.; Antao, V.C. Quantifying a nonnotifiable disease in the United States: The National Amyotrophic Lateral Sclerosis Registry model. JAMA 2014, 312, 1097–1098. [Google Scholar] [CrossRef] [PubMed]
- US Department of Health and Human Services. HHS Regional Offices; US Department of Health and Human Services: Washington, DC, USA, 2017. Available online: https://www.hhs.gov/about/agencies/iea/regional-offices/index.html (accessed on 11 April 2024).
- Bryan, L.; Kaye, W.; Antao, V.; Mehta, P.; Muravov, O.; Horton, D.K. Preliminary Results of National Amyotrophic Lateral Sclerosis (ALS) Registry Risk Factor Survey Data. PLoS ONE 2016, 11, e0153683. [Google Scholar] [CrossRef]
- Cedarbaum, J.M.; Stambler, N.; Malta, E.; Fuller, C.; Hilt, D.; Thurmond, B.; Nakanishi, A. The ALSFRS-R: A revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J. Neurol. Sci. 1999, 169, 13–21. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Physical Status: The Use and Interpretation of Anthropometry, Report of a WHO Expert Committee; World Health Organization Technical Report Series 854; World Health Organization: Geneva, Switzerland, 1995; pp. 1–452.
- Luna, J.; Diagana, M.; Aissa, L.A.; Tazir, M.; Pacha, L.A.; Kacem, I.; Gouider, R.; Henning, F.; Basse, A.; Cisse, O.; et al. Clinical features and prognosis of amyotrophic lateral sclerosis in Africa: The TROPALS study. J. Neurol. Neurosurg. Psychiatry 2019, 90, 20–29. [Google Scholar] [CrossRef]
- SAS Institute, Inc. SAS User’s Guide: Statistics; SAS Institute: Cary, NC, USA, 1985. [Google Scholar]
- Wang, H.-K.; Lee, Y.-C.; Huang, C.-Y.; Liliang, P.-C.; Lu, K.; Chen, H.-J.; Li, Y.-C.; Tsai, K.-J. Traumatic brain injury causes frontotemporal dementia and TDP-43 proteolysis. Neuroscience 2015, 300, 94–103. [Google Scholar] [CrossRef]
- Anderson, E.N.; Morera, A.A.; Kour, S.; Cherry, J.D.; Ramesh, N.; Gleixner, A.; Schwartz, J.C.; Ebmeier, C.; Old, W.; Donnelly, C.J.; et al. Traumatic injury compromises nucleocytoplasmic transport and leads to TDP-43 pathology. Elife 2021, 10, e67587. [Google Scholar] [CrossRef] [PubMed]
- Scotter, E.L.; Chen, H.J.; Shaw, C.E. TDP-43 Proteinopathy and ALS: Insights into Disease Mechanisms and Therapeutic Targets. Neurotherapeutics 2015, 12, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.C.; Polymenidou, M.; Cleveland, D.W. Converging mechanisms in ALS and FTD: Disrupted RNA and protein homeostasis. Neuron 2013, 79, 416–438. [Google Scholar] [CrossRef]
- Brettschneider, J.; Libon, D.J.; Toledo, J.B.; Xie, S.X.; McCluskey, L.; Elman, L.; Geser, F.; Lee, V.M.-Y.; Grossman, M.; Trojanowski, J.Q. Microglial activation and TDP-43 pathology correlate with executive dysfunction in amyotrophic lateral sclerosis. Acta Neuropathol. 2012, 123, 395–407. [Google Scholar] [CrossRef] [PubMed]
- Johnson, V.E.; Stewart, J.E.; Begbie, F.D.; Trojanowski, J.Q.; Smith, D.H.; Stewart, W. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain 2013, 136 Pt 1, 28–42. [Google Scholar] [CrossRef]
- Ramlackhansingh, A.F.; Brooks, D.J.; Greenwood, R.J.; Bose, S.K.; Turkheimer, F.E.; Kinnunen, K.M.; Gentleman, S.; Heckemann, R.A.; Gunanayagam, K.; Gelosa, G.; et al. Inflammation after trauma: Microglial activation and traumatic brain injury. Ann. Neurol. 2011, 70, 374–383. [Google Scholar] [CrossRef]
- Kumar, A.; Loane, D.J. Neuroinflammation after traumatic brain injury: Opportunities for therapeutic intervention. Brain Behav. Immun. 2012, 26, 1191–1201. [Google Scholar] [CrossRef] [PubMed]
- Brettschneider, J.; Toledo, J.B.; Van Deerlin, V.M.; Elman, L.; McCluskey, L.; Lee, V.M.-Y.; Trojanowski, J.Q. Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis. PLoS ONE 2012, 7, e39216. [Google Scholar] [CrossRef] [PubMed]
- Fournier, C.N.; Gearing, M.; Upadhyayula, S.R.; Klein, M.; Glass, J.D. Head injury does not alter disease progression or neuropathologic outcomes in ALS. Neurology 2015, 84, 1788–1795. [Google Scholar] [CrossRef] [PubMed]
- Peters, T.L.; Fang, F.; Weibull, C.E.; Sandler, D.P.; Kamel, F.; Ye, W. Severe head injury and amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Front. Degener. 2013, 14, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Pupillo, E.; Messina, P.; Logroscino, G.; Zoccolella, S.; Chiò, A.; Calvo, A.; Corbo, M.; Lunetta, C.; Micheli, A.; Millul, A.; et al. Trauma and amyotrophic lateral sclerosis: A case-control study from a population-based registry. Eur. J. Neurol. 2012, 19, 1509–1517. [Google Scholar] [CrossRef]
- Seelen, M.; van Doormaal, P.T.C.; Visser, A.E.; Huisman, M.H.B.; Roozekrans, M.H.J.; de Jong, S.W.; van der Kooi, A.J.; de Visser, M.; Voermans, N.C.; Veldink, J.H.; et al. Prior medical conditions and the risk of amyotrophic lateral sclerosis. J. Neurol. 2014, 261, 1949–1956. [Google Scholar] [CrossRef] [PubMed]
- Lian, L.; Liu, M.; Cui, L.; Guan, Y.; Liu, T.; Cui, B.; Zhang, K.; Tai, H.; Shen, D. Environmental risk factors and amyotrophic lateral sclerosis (ALS): A case-control study of ALS in China. J. Clin. Neurosci. 2019, 66, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Filippini, T.; Fiore, M.; Tesauro, M.; Malagoli, C.; Consonni, M.; Violi, F.; Arcolin, E.; Iacuzio, L.; Oliveri Conti, G.; Cristaldi, A.; et al. Clinical and Lifestyle Factors and Risk of Amyotrophic Lateral Sclerosis: A Population-Based Case-Control Study. Int. J. Environ. Res. Public. Health 2020, 17, 857. [Google Scholar] [CrossRef] [PubMed]
- Seals, R.M.; Hansen, J.; Gredal, O.; Weisskopf, M.G. Physical Trauma and Amyotrophic Lateral Sclerosis: A Population-Based Study Using Danish National Registries. Am. J. Epidemiol. 2016, 183, 294–301. [Google Scholar] [CrossRef]
- Binazzi, A.; Belli, S.; Uccelli, R.; Desiato, M.T.; Talamanca, I.F.; Antonini, G.; Corsi, F.M.; Scoppetta, C.; Inghilleri, M.; Pontieri, F.E.; et al. An exploratory case-control study on spinal and bulbar forms of amyotrophic lateral sclerosis in the province of Rome. Amyotroph. Lateral Scler. 2009, 10, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.P. Loss of Consciousness: Pathophysiology and Implications in Grading and Safe Return to Play. J. Athl. Train. 2001, 36, 249–252. [Google Scholar]
- Levin, H.S.; Williams, D.H.; Eisenberg, H.M.; High, W.M., Jr.; Guinto, F.C., Jr. Serial MRI and neurobehavioural findings after mild to moderate closed head injury. J. Neurol. Neurosurg. Psychiatry 1992, 55, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Ratan, S.K.; Pandey, R.M.; Ratan, J. Association among duration of unconsciousness, Glasgow Coma Scale, and cranial computed tomography abnormalities in head-injured children. Clin. Pediatr. 2001, 40, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Kay, T. Neuropsychological treatment of mild traumatic brain injury. J. Head. Trauma. Rehabil. 1993, 8, 74–85. [Google Scholar] [CrossRef]
- Suwatcharangkoon, S.; Meyers, E.; Falo, C.; Schmidt, J.M.; Agarwal, S.; Claassen, J.; Mayer, S.A. Loss of Consciousness at Onset of Subarachnoid Hemorrhage as an Important Marker of Early Brain Injury. JAMA Neurol. 2016, 73, 28–35. [Google Scholar] [CrossRef]
- Gresham, L.S.; Molgaard, C.A.; Golbeck, A.L.; Smith, R. Amyotrophic lateral sclerosis and history of skeletal fracture: A case-control study. Neurology 1987, 37, 717–719. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.B.; Annegers, J.F.; Kokmen, E.; O’Brien, P.C.; Kurland, L.T. Brain injury and neurologic sequelae: A cohort study of dementia, parkinsonism, and amyotrophic lateral sclerosis. Neurology 1991, 41, 1554–1557. [Google Scholar] [CrossRef] [PubMed]
- Peters, T.L.; Weibull, C.E.; Fang, F.; Sandler, D.P.; Lambert, P.C.; Ye, W.; Kamel, F. Association of fractures with the incidence of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Front. Degener. 2017, 18, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Caplliure-Llopis, J.; Escriva, D.; Benlloch, M.; de la Rubia Orti, J.E.; Estrela, J.M.; Barrios, C. Poor Bone Quality in Patients With Amyotrophic Lateral Sclerosis. Front. Neurol. 2020, 11, 599216. [Google Scholar] [CrossRef]
- Morini, E.; Portaro, S.; Leonetti, D.; De Cola, M.C.; De Luca, R.; Bonanno, M.; Quartarone, A.; Calabrò, R.S. Bone Health Status in Individuals with Amyotrophic Lateral Sclerosis: A Cross-Sectional Study on the Role of the Trabecular Bone Score and Its Implications in Neurorehabilitation. Int. J. Environ. Res. Public. Health 2023, 20, 2923. [Google Scholar] [CrossRef]
- Fang, F.; Kwee, L.C.; Allen, K.D.; Umbach, D.M.; Ye, W.; Watson, M.; Keller, J.; Oddone, E.Z.; Sandler, D.P.; Schmidt, S.; et al. Association between blood lead and the risk of amyotrophic lateral sclerosis. Am. J. Epidemiol. 2010, 171, 1126–1133. [Google Scholar] [CrossRef] [PubMed]
- Kamel, F.; Umbach, D.; Hu, H.; Munsat, T.; Shefner, J.; Taylor, J.; Sandler, D. Lead exposure as a risk factor for amyotrophic lateral sclerosis. Neurodegener. Dis. 2005, 2, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Karam, C.; Barrett, M.J.; Imperato, T.; MacGowan, D.J.; Scelsa, S. Vitamin D deficiency and its supplementation in patients with amyotrophic lateral sclerosis. J. Clin. Neurosci. 2013, 20, 1550–1553. [Google Scholar]
- Camu, W.; Tremblier, B.; Plassot, C.; Alphandery, S.; Salsac, C.; Pageot, N.; Juntas-Morales, R.; Scamps, F.; Daures, J.-P.; Raoul, C. Vitamin D confers protection to motoneurons and is a prognostic factor of amyotrophic lateral sclerosis. Neurobiol. Aging 2014, 35, 1198–1205. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.; Maseeh, A. Vitamin D: The “sunshine” vitamin. J. Pharmacol. Pharmacother. 2012, 3, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Shevroja, E.; Mo Costabella, F.; Gonzalez Rodriguez, E.; Lamy, O.; Hans, D. The fracture predictive ability of lumbar spine BMD and TBS as calculated based on different combinations of the lumbar spine vertebrae. Arch. Osteoporos. 2022, 17, 83. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yi, J.; Bonewald, L. Muscle-Bone Crosstalk in Amyotrophic Lateral Sclerosis. Curr. Osteoporos. Rep. 2015, 13, 274–279. [Google Scholar] [CrossRef] [PubMed]
- US Department of Health and Human Services. What Are the Possible Effects of Traumatic Brain Injury (TBI)? 2024. Available online: https://www.nichd.nih.gov/health/topics/tbi/conditioninfo/effects#:~:text=Cognition%2C%20such%20as%20difficulty%20learning,and%20explaining%20feelings%20or%20thoughts (accessed on 23 January 2024).
- Swanson, T.M.; Isaacson, B.M.; Cyborski, C.M.; French, L.M.; Tsao, J.W.; Pasquina, P.F. Traumatic Brain Injury Incidence, Clinical Overview, and Policies in the US Military Health System Since 2000. Public Health Rep. 2017, 132, 251–259. [Google Scholar] [CrossRef] [PubMed]
- McKay, K.A.; Smith, K.A.; Smertinaite, L.; Fang, F.; Ingre, C.; Taube, F. Military service and related risk factors for amyotrophic lateral sclerosis. Acta Neurol. Scand. 2021, 143, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Hardiman, O.; Al-Chalabi, A.; Brayne, C.; Beghi, E.; Berg, L.H.v.D.; Chio, A.; Martin, S.; Logroscino, G.; Rooney, J. The changing picture of amyotrophic lateral sclerosis: Lessons from European registers. J. Neurol. Neurosurg. Psychiatry 2017, 88, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Stephens, H.E.; Joyce, N.C.; Oskarsson, B. National Study of Muscle Cramps in ALS in the USA. Amyotroph. Lateral Scler. Front. Degener. 2017, 18, 32–36. [Google Scholar] [CrossRef]
- Rooney, J.P.; Visser, A.E.; D’Ovidio, F.; Vermeulen, R.; Beghi, E.; Chio, A.; Veldink, J.H.; Logroscino, G.; Berg, L.H.v.D.; Hardiman, O. A case-control study of hormonal exposures as etiologic factors for ALS in women. Neurology 2017, 89, 1283–1290. [Google Scholar] [CrossRef]
- Mehta, P.; Mehta, P.; Raymond, J.; Raymond, J.; Zhang, Y.; Zhang, Y.; Punjani, R.; Punjani, R.; Han, M.; Han, M.; et al. Prevalence of amyotrophic lateral sclerosis in the United States, 2018. Amyotroph. Lateral Scler. Front. Degener. 2023, 24, 702–708. [Google Scholar] [CrossRef]
- White, M.A.; Sreedharan, J. Amyotrophic lateral sclerosis: Recent genetic highlights. Curr. Opin. Neurol. 2016, 29, 557–564. [Google Scholar] [CrossRef] [PubMed]
Characteristic | No. (%) | |||
---|---|---|---|---|
Overall (N = 3424) | Patients with HI (n = 1937) | Patients Without HI (n = 1487) | p Value | |
Age at ALS diagnosis (years) | <0.001 | |||
18–39 | 101 (3.0) | 53 (2.7) | 48 (3.2) | |
40–49 | 335 (9.8) | 195 (10.1) | 140 (9.4) | |
50–59 | 956 (27.9) | 577 (29.8) | 379 (25.5) | |
60–69 | 1336 (39.0) | 758 (39.1) | 578 (38.9) | |
70–79 | 624 (18.2) | 327 (16.9) | 297 (20.0) | |
≥80 | 72 (2.1) | 27 (1.4) | 45 (3.0) | |
Sex | <0.001 | |||
Male | 1936 (56.5) | 1171 (60.5) | 765 (51.5) | |
Female | 1488 (43.5) | 766 (39.5) | 722 (48.5) | |
Race b | 0.008 | |||
White | 3303 (96.5) | 1885 (97.3) | 1418 (95.3) | |
Black | 54 (1.6) | 22 (1.1) | 32 (2.2) | |
Other | 67 (2.0) | 30 (1.6) | 37 (2.5) | |
Ethnicity | 0.04 | |||
Non-Hispanic | 3331 (97.3) | 1894 (97.8) | 1437 (96.6) | |
Hispanic | 93 (2.7) | 43 (2.2) | 50 (3.4) | |
BMI at registration | 0.002 | |||
Below/ideal weight | 1150 (33.8) | 607 (31.6) | 543 (36.6) | |
Overweight/obese | 2254 (66.2) | 1314 (68.4) | 940 (63.4) | |
BMI at age 40 | 0.03 | |||
Below/ideal weight | 1105 (33.6) | 597 (32.0) | 508 (35.6) | |
Overweight/obese | 2188 (66.4) | 1268 (68.0) | 920 (64.4) | |
Education level | <0.001 | |||
High-school or less | 517 (15.1) | 282 (14.6) | 235 (15.8) | |
Some college or trade school degree | 772 (22.6) | 486 (25.1) | 286 (19.2) | |
Bachelor’s degree or more | 2135 (62.3) | 1169 (60.3) | 966 (65.0) | |
Leisure physical activity level | <0.001 | |||
Never vigorous activity | 441 (13.2) | 211 (11.1) | 230 (16.0) | |
Vigorous activity | 2893 (86.8) | 1685 (88.9) | 1208 (84.0) | |
Military status | 0.66 | |||
Yes | 554 (16.2) | 323 (16.7) | 231 (15.6) | |
No | 2867 (83.8) | 1613 (83.3) | 1254 (84.4) |
Outcome | Number (N = 3424) | Crude OR (95% CI) | p Value | Adjusted OR (95% CI) b | p Value |
---|---|---|---|---|---|
Head injury, any mechanism (HI) | |||||
Yes c | 1937 | 1.20 (1.05, 1.38) | 0.008 | 1.22 (1.06, 1.41) | 0.007 |
0 injuries | 1487 | 1.00 (ref) | 1.00 (ref) | ||
1–2 injuries | 1275 | 1.10 (0.94, 1.28) | 0.24 | 1.13 (0.96, 1.33) | 0.14 |
3–4 injuries | 372 | 1.32 (1.05, 1.66) | 0.02 | 1.31 (1.03, 1.67) | 0.03 |
5+ injuries | 292 | 1.59 (1.24, 2.05) | <0.001 | 1.53 (1.17, 2.00) | 0.002 |
Age at first HI (years) | |||||
<18 | 1171 | 2.29 (1.75, 2.99) | <0.001 | 2.03 (1.53, 2.70) | <0.001 |
18–39 | 466 | 1.83 (1.34, 2.48) | <0.001 | 1.48 (1.06, 2.06) | 0.02 |
40+ | 348 | 1.00 (ref) | 1.00 (ref) | ||
Loss of consciousness | |||||
Yes | 538 | 1.38 (1.15, 1.66) | <0.001 | 1.44 (1.18, 1.75) | <0.001 |
Time unconscious | |||||
No loss of consciousness | 2721 | 1.00 (ref) | 1.00 (ref) | ||
< 5 min | 334 | 1.56 (1.24, 1.96) | <0.001 | 1.62 (1.27, 2.06) | <0.001 |
5–59 min | 95 | 1.01 (0.66, 1.53) | 0.97 | 1.06 (0.69, 1.63) | 0.79 |
1–24 h | 34 | 1.40 (0.71, 2.77) | 0.33 | 1.65 (0.82, 3.35) | 0.16 |
Longer than 1 day | 21 | 1.18 (0.50, 2.82) | 0.70 | 1.32 (0.55, 3.19) | 0.54 |
HI requiring emergency department or hospitalization c | |||||
Yes | 861 | 1.13 (0.96, 1.32) | 0.13 | 1.15 (0.98, 1.36) | 0.09 |
HI causing a skull fracture c | |||||
Yes | 70 | 1.75 (1.09, 2.82) | 0.02 | 1.55 (0.93, 2.60) | 0.09 |
HI causing a seizure c | |||||
Yes | 20 | 1.46 (0.61, 3.53) | 0.40 | 1.66 (0.67, 4.12) | 0.27 |
HI causing memory loss c | |||||
Yes | 106 | 1.32 (0.89, 1.94) | 0.17 | 1.28 (0.85, 1.91) | 0.24 |
Characteristic | No. (%) | ||
---|---|---|---|
Patients with HI Before 18 Years (n = 1171) | Patients Without HI (n = 1487) | p Value | |
Median age at ALS diagnosis | 59 | 64 | 0.05 |
Age at diagnosis (years) | <0.001 | ||
18–39 | 38 (3.2) | 48 (3.2) | |
40–49 | 133 (11.4) | 140 (9.4) | |
50–59 | 379 (32.4) | 379 (25.5) | |
60–69 | 442 (37.8) | 578 (38.9) | |
70–79 | 169 (14.4) | 297 (20.0) | |
≥80 | 10 (0.8) | 45 (3.0) | |
Sex | <0.001 | ||
Male | 776 (66.3) | 765 (54.5) | |
Female | 395 (33.7) | 722 (48.5) | |
Race b | 0.001 | ||
White | 1147 (98.0) | 1418 (95.4) | |
Black | 10 (0.9) | 32 (2.1) | |
Other | 14 (1.1) | 37 (2.5) | |
Ethnicity | 0.01 | ||
Non-Hispanic | 1150 (98.2) | 1437 (96.7) | |
Hispanic | 21 (1.8) | 50 (3.3) | |
BMI at registration | <0.001 | ||
Below/ideal weight | 336 (28.9) | 543 (36.6) | |
Overweight/obese | 825 (71.1) | 940 (63.4) | |
BMI at age 40 years | <0.001 | ||
Below/ideal weight | 328 (29.2) | 508 (35.6) | |
Overweight/obese | 794 (70.8) | 920 (64.4) | |
Education level | <0.001 | ||
High-school or less | 146 (12.5) | 235 (15.8) | |
Some college or trade school degree | 303 (25.9) | 286 (19.2) | |
Bachelor’s degree or more | 722 (61.6) | 966 (65.0) | |
Leisure physical activity level | <0.001 | ||
Never vigorous activity | 103 (8.9) | 230 (16.0) | |
Vigorous activity | 1049 (91.1) | 1208 (84.0) | |
Military status | 0.38 | ||
Yes | 200 (17.1) | 231 (15.6) | |
No | 971 (92.9) | 1254 (84.3) |
Number | Crude OR (95% CI) | p Value | Adjusted OR (95% CI) a | p Value | |
---|---|---|---|---|---|
HI | |||||
Yes | 1171 | 1.44 (1.23, 1.70) | <0.001 | 1.45 (1.23, 1.71) | <0.001 |
0 injuries b | 1487 | 1.00 (ref) | 1.00 (ref) | ||
1–2 injuries | 653 | 1.23 (1.02, 1.49) | 0.03 | 1.28 (1.05, 1.56) | 0.01 |
3–4 injuries | 266 | 1.70 (1.31, 2.21) | <0.001 | 1.69 (1.29, 2.23) | <0.001 |
5+ injuries | 252 | 1.79 (1.37, 2.33) | <0.001 | 1.70 (1.28, 2.26) | <0.001 |
Loss of consciousness | |||||
Yes/No | 350 | 1.48 (1.18, 1.85) | <0.001 | 1.55 (1.22, 1.96) | <0.001 |
Time unconscious | |||||
No loss of consciousness | 2183 | 1.00 (ref) | 1.00 (ref) | ||
<5 min | 227 | 1.74 (1.32, 2.29) | <0.001 | 1.83 (1.37, 2.44) | <0.001 |
5–59 min | 58 | 1.06 (0.62, 1.79) | 0.84 | 1.10 (0.64, 1.90) | 0.72 |
1–24 h | 25 | 1.38 (0.63, 3.04) | 0.42 | 1.66 (0.74, 3.70) | 0.22 |
HI requiring emergency department or hospitalization | |||||
Yes c | 453 | 1.52 (1.24, 1.86) | <0.001 | 1.50 (1.21, 1.86) | <0.001 |
HI causing a skull fracture | |||||
Yes c | 43 | 1.76 (0.96, 3.2) | 0.07 | 1.47 (0.77, 2.83) | 0.25 |
HI causing a seizure | |||||
Yes c | 11 | 1.15 (0.35, 3.78) | 0.82 | 1.17 (0.35, 3.95) | 0.80 |
HI causing memory loss | |||||
Yes c | 60 | 1.06 (0.63, 1.77) | 0.84 | 1.03 (0.61, 1.76) | 0.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raymond, J.; Howard, I.M.; Berry, J.; Larson, T.; Horton, D.K.; Mehta, P. Head Injury and Amyotrophic Lateral Sclerosis: Population-Based Study from the National ALS Registry. Brain Sci. 2025, 15, 143. https://doi.org/10.3390/brainsci15020143
Raymond J, Howard IM, Berry J, Larson T, Horton DK, Mehta P. Head Injury and Amyotrophic Lateral Sclerosis: Population-Based Study from the National ALS Registry. Brain Sciences. 2025; 15(2):143. https://doi.org/10.3390/brainsci15020143
Chicago/Turabian StyleRaymond, Jaime, Ileana M. Howard, Jasmine Berry, Theodore Larson, D. Kevin Horton, and Paul Mehta. 2025. "Head Injury and Amyotrophic Lateral Sclerosis: Population-Based Study from the National ALS Registry" Brain Sciences 15, no. 2: 143. https://doi.org/10.3390/brainsci15020143
APA StyleRaymond, J., Howard, I. M., Berry, J., Larson, T., Horton, D. K., & Mehta, P. (2025). Head Injury and Amyotrophic Lateral Sclerosis: Population-Based Study from the National ALS Registry. Brain Sciences, 15(2), 143. https://doi.org/10.3390/brainsci15020143