Vinpocetine, a Phosphodiesterase Type 1 Inhibitor, Mitigates Locomotor Hyperactivity in Female Mice Exposed to Lead During Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Treatment
2.2. Open Field Test
2.3. Determination of Blood Lead Levels (BLLs)
2.4. Statistical Analysis
3. Results
3.1. Blood Lead Levels
3.2. Litter Size and Body Mass Gain
3.3. Open Field Test
4. Discussion
4.1. Sex Difference in Lead-Induced Locomotor Hyperactivity
4.2. Vinpocetine Ameliorates Lead-Induced Locomotor Hyperactivity
4.3. Study Limitations and Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caito, S.; Aschner, M. Developmental Neurotoxicity of Lead. Adv. Neurobiol. 2017, 18, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Lidsky, T.I.; Schneider, J.S. Lead Neurotoxicity in Children: Basic Mechanisms and Clinical Correlates. Brain 2003, 126, 5–19. [Google Scholar] [CrossRef]
- Rocha, A.; Trujillo, K.A. Neurotoxicology Neurotoxicity of Low-Level Lead Exposure: History, Mechanisms of Action, and Behavioral Effects in Humans and Preclinical Models. Neurotoxicology 2019, 73, 58–80. [Google Scholar] [CrossRef] [PubMed]
- Guilarte, T.R.; Opler, M.; Pletnikov, M. Is Lead Exposure in Early Life an Environmental Risk Factor for Schizophrenia? Neurobiological Connections and Testable Hypotheses. Neurotoxicology 2012, 33, 560–574. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, L.V.; Kaminski, J.W.; Holbrook, J.R.; Bitsko, R.H.; Yeh, M.; Courtney, J.G.; O’Masta, B.; Maher, B.; Cerles, A.; McGowan, K.; et al. A Systematic Review and Meta-Analysis of Chemical Exposures and Attention-Deficit/Hyperactivity Disorder in Children. Prev. Sci. 2024, 25, 225–248. [Google Scholar] [CrossRef] [PubMed]
- Farmani, R.; Mehrpour, O.; Kooshki, A.; Nakhaee, S. Exploring the Link between Toxic Metal Exposure and ADHD: A Systematic Review of Pb and Hg. J. Neurodev. Disord. 2024, 16, 44. [Google Scholar] [CrossRef]
- Gu, Q.; Liu, J.; Zhang, X.; Huang, A.; Yu, X.; Wu, K.; Huang, Y. Association between Heavy Metals Exposure and Risk of Attention Deficit Hyperactivity Disorder (ADHD) in Children: A Systematic Review and Meta-Analysis. Eur. Child Adolesc. Psychiatry 2024. [Google Scholar] [CrossRef] [PubMed]
- Pennington, A.F.; Smith, M.R.; Chuke, S.O.; Cornwell, C.R.; Allwood, P.B.; Courtney, J.G. Effects of Blood Lead Levels < 10 m g/DL in School-Age Children and Adolescents: A Scoping Review. Pediatrics 2024, 154. [Google Scholar]
- Rosenauer, V.; Schwarz, M.I.; Vlasak, T.; Barth, A. Science of the Total Environment Childhood Lead Exposure Increases the Risk of Attention-Deficit-Hyperactivity Disorder: A Meta-Analysis. Sci. Total Environ. 2024, 951, 175574. [Google Scholar] [CrossRef]
- Ma, T.; Chen, H.H.; Ho, I.K. Effects of Chronic Lead (Pb) Exposure on Neurobehavioral Function and Dopaminergic Neurotransmitter Receptors in Rats. Toxicol. Lett. 1999, 105, 111–121. [Google Scholar] [CrossRef]
- He, H.Y.; Cline, H.T. What Is Excitation/Inhibition and How Is It Regulated? A Case of the Elephant and the Wisemen. J. Exp. Neurosci. 2019, 13, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Vogels, T.; Sprekeler, H.; Zenke, F.; Clopath, C.; Gerstner, W. Inhibitory Plasticity Balances Excitation and Inhibition in Sensory. Science 2011, 334, 1569–1573. [Google Scholar] [CrossRef]
- Bâ, A. Neurobiology of Neuronal Network Alteration in Intellectual Disability Related to Fetal Alcohol Spectrum Disorders. J. Behav. Brain Sci. 2022, 12, 43–81. [Google Scholar] [CrossRef]
- Rubenstein, J.L.R.; Merzenich, M.M. Model of Autism: Increased Ratio of Excitation/Inhibition in Key Neural Systems. Genes Brain Behav. 2003, 2, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Lambertsen, K.L.; Gramsbergen, J.B.; Sivasaravanaparan, M.; Ditzel, N.; Sevelsted-Møller, L.M.; Oliván-Viguera, A.; Rabjerg, M.; Wulff, H.; Köhler, R. Genetic KCa3.1-Deficiency Produces Locomotor Hyperactivity and Alterations in Cerebral Monoamine Levels. PLoS ONE 2012, 7, e47744. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Pinto, J.; Paes-Branco, D.; Cristina-Rodrigues, F.; Krahe, T.E.; Manhães, A.C.; Abreu-Villaça, Y.; Filgueiras, C.C. GABAA Overactivation Potentiates the Effects of NMDA Blockade during the Brain Growth Spurt in Eliciting Locomotor Hyperactivity in Juvenile Mice. Neurotoxicol. Teratol. 2015, 50, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Patel, B.; Kumar, S.; Manorama, D. Neonatal Benzo [a] Pyrene Exposure Induces Oxidative Stress and DNA Damage Causing Neurobehavioural Changes during the Early Adolescence Period in Rats. Dev. Neurosci. 2016, 38, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Sagvolden, T.; Johansen, E.B.; Aase, H.; Russell, V.A. A Dynamic Developmental Theory of Attention-Deficit/Hyperactivity Disorder (ADHD) Predominantly Hyperactive/Impulsive and Combined Subtypes. Behav. Brain Sci. 2005, 28, 397–419. [Google Scholar] [CrossRef] [PubMed]
- Moreira, E.G.; Vassilieff, I.; Vassilieff, V.S. Developmental Lead Exposure: Behavioral Alterations in the Short and Long Term. Neurotoxicol. Teratol. 2001, 23, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Silbergeld, E.K.; Goldberg, A.M. Lead-Induced Behavioral Dysfunction: An Animal Model of Hyperactivity. Exp. Neurol. 1974, 42, 146–157. [Google Scholar] [CrossRef]
- Nunes, F.; Ferreira-Rosa, K.; Pereira, M.d.S.; Kubrusly, R.C.; Manhães, A.C.; Abreu-Villaça, Y.; Filgueiras, C.C. Acute Administration of Vinpocetine, a Phosphodiesterase Type 1 Inhibitor, Ameliorates Hyperactivity in a Mice Model of Fetal Alcohol Spectrum Disorder. Drug Alcohol Depend. 2011, 119, 81–87. [Google Scholar] [CrossRef]
- Paine, T.A.; Neve, R.L.; Carlezon, W.A. Attention Deficits and Hyperactivity Following Inhibition of CAMP-Dependent Protein Kinase Within the Medial Prefrontal Cortex of Rats. Neuropsychopharmacology 2009, 34, 2143–2155. [Google Scholar] [CrossRef] [PubMed]
- Pascoli, V.; Valjent, E.; Corvol, J.; Tassin, J.; Girault, J.; Herve, D. CAMP and Extracellular Signal-Regulated Kinase Signaling in Response to D-Amphetamine and Methylphenidate in the Prefrontal Cortex in Vivo: Role of β1-Adrenoceptors. Mol. Pharmacol. 2005, 68, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Toscano, C.D.; Guilarte, T.R. Lead Neurotoxicity: From Exposure to Molecular Effects. Brain Res. Rev. 2005, 49, 529–554. [Google Scholar] [CrossRef] [PubMed]
- Toscano, C.D.; Mcglothan, J.L.; Guilarte, T.R. Lead Exposure Alters Cyclic-AMP Response Element Binding Protein Phosphorylation and Binding Activity in the Developing Rat Brain. Dev. Brain Res. 2003, 145, 219–228. [Google Scholar] [CrossRef]
- Toscano, C.D.; Hashemzadeh-Gargari, H.; Mcglothan, J.L.; Guilarte, R. Developmental Pb2+ Exposure Alters NMDAR Subtypes and Reduces CREB Phosphorylation in the Rat Brain. Dev. Brain Res. 2002, 139, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Luhach, K.; Golani, L.K.; Singh, B.; Sharma, B. Vinpocetine, a PDE1 Modulator, Regulates Markers of Cerebral Health, in Fl Ammation, and Oxidative Stress in a Rat Model of Prenatal Alcohol-Induced Experimental Attention de Fi Cit Hyperactivity Disorder. Alcohol 2022, 105, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Krahe, T.E.; Wang, W.; Medina, A.E. Phosphodiesterase Inhibition Increases CREB Phosphorylation and Restores Orientation Selectivity in a Model of Fetal Alcohol Spectrum Disorders. PLoS ONE 2009, 4, e0006643. [Google Scholar] [CrossRef] [PubMed]
- Medina, A.E. Therapeutic Utility of Phosphodiesterase Type I Inhibitors in Neurological Conditions. Front. Neurosci. 2011, 5, 2007–2011. [Google Scholar] [CrossRef]
- Lantz, C.L.; Wang, W.; Medina, A.E. Early Alcohol Exposure Disrupts Visual Cortex Plasticity in Mice. Int. J. Dev. Neurosci. 2012, 30, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Filgueiras, C.C.; Krahe, T.E.; Medina, A.E. Phosphodiesterase Type 1 Inhibition Improves Learning in Rats Exposed to Alcohol during the Third Trimester Equivalent of Human Gestation. Neurosci. Lett. 2010, 473, 202–207. [Google Scholar] [CrossRef]
- Araujo, U.C.; Krahe, T.E.; Ribeiro-Carvalho, A.; Gomes, R.A.A.; Lotufo, B.M.; Moreira, M.d.F.R.; de Abreu-Villaça, Y.; Manhães, A.C.; Filgueiras, C.C. Forced Swimming Stress Increases Natatory Activity of Lead-Exposed Mice. Toxicol. Res. 2021, 37, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zeng, Z.; Xu, X.; Tian, Q.; Zheng, K.; Huo, X. Blood Lead Levels of Children Exposed to e-Waste: A Systematic Review and Meta-Analysis. Environ. Sci. Pollut. Res. 2023, 30, 64860–64871. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Huang, L.; Xu, J.; Specht, A.J.; Yan, C.; Geng, H.; Shen, X.; Nie, L.H.; Hu, H. Science of the Total Environment Blood Lead, Bone Lead and Child Attention-de Fi Cit-Hyperactivity-Disorder- like Behavior. Sci. Total Environ. 2019, 659, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). National Childhood Blood Lead Surveillance Data; National Center for Environmental Health, Division of Environmental Health Science and Practice: 2022. Available online: https://www.cdc.gov/lead-prevention/php/data/national-surveillance-data.html (accessed on 28 January 2025).
- Abreu-Villaça, Y.; Carvalho-Graça, A.C.; Skinner, G.; Lotufo, B.M.; Duarte-Pinheiro, V.H.S.; Ribeiro-Carvalho, A.; Manhães, A.C.; Filgueiras, C.C. NeuroToxicology Hyperactivity and Memory/Learning Deficits Evoked by Developmental Exposure to Nicotine and/or Ethanol Are Mitigated by CAMP and CGMP Signaling Cascades Activation. Neurotoxicology 2018, 66, 150–159. [Google Scholar] [CrossRef]
- Wainwright, P.E. Issues of Design and Analysis Relating to the Use of Multiparous Species in Developmental Nutritional Studies. J. Nutr. 1998, 128, 661–663. [Google Scholar] [CrossRef] [PubMed]
- Prut, L.; Belzung, C. The Open Field as a Paradigm to Measure the Effects of Drugs on Anxiety-like Behaviors: A Review. Eur. J. Pharmacol. 2003, 463, 3–33. [Google Scholar] [CrossRef]
- Lorenc-Koci, E.; Czarnecka, A. Role of Nitric Oxide in the Regulation of Motor Function. An Overview of Behavioral, Biochemical and Histological Studies in Animal Models. Pharmacol. Rep. 2013, 65, 1043–1055. [Google Scholar] [CrossRef]
- Braun, J.M.; Kahn, R.S.; Froehlich, T.; Auinger, P.; Lanphear, B.P. Exposures to Environmental Toxicants and Attention Deficit Hyperactivity Disorder in U.S. Children. Environ. Health Perspect. 2006, 114, 1904–1909. [Google Scholar] [CrossRef]
- Golter, M.; Michaelson, I.A. Growth, Behavior, and Brain Catecholamines in Lead-Exposed Neonatal Rats: A Reappraisal. Science 1975, 187, 359–361. [Google Scholar] [CrossRef]
- Luo, M.; Xu, Y.; Cai, R.; Tang, Y.; Ge, M.; Liu, Z.; Xu, L.; Hu, F.; Ruan, D.; Wang, H. Epigenetic Histone Modification Regulates Developmental Lead Exposure Induced Hyperactivity in Rats. Toxicol. Lett. 2014, 225, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Silbergeld, E.K.; Goldberg, A.M. Hyperactivity: A Lead Induced Behavior Disorder. Environ. Health Perspect. 1974, 7, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.W.; Liang, Y.X.; Hu, X.H. Effects of Low Level Lead Exposure on Behavior of Young Rats. Zhongguo Yao Li Xue Bao 1994, 15, 316–319. [Google Scholar] [PubMed]
- Trombini, T.V.; Pedroso, C.G.; Ponce, D.; Almeida, A.A.; Godinho, A.F. Developmental Lead Exposure in Rats: Is a Behavioral Sequel Extended at F2 Generation? Pharmacol. Biochem. Behav. 2001, 68, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.W.; Pothakos, K.; Schneider, J.S. Sex and Rearing Condition Modify the Effects of Perinatal Lead Exposure on Learning and Memory. Neurotoxicology 2012, 33, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Bunn, T.L.; Parsons, P.J.; Kao, E.; Dietert, R.R. Exposure to Lead during Critical Windows of Embryonic Development: Differential Immunotoxic Outcome Based on Stage of Exposure and Gender. Toxicol. Sci. 2001, 66, 57–66. [Google Scholar] [CrossRef]
- Cory-slechta, D.A.; Virgolini, M.B.; Thiruchelvam, M.; Weston, D.D.; Bauter, M.R. Maternal Stress Modulates the Effects of Developmental Lead Exposure. Environ. Health Perspect. 2004, 112, 717–730. [Google Scholar] [CrossRef]
- de Souza Lisboa, S.F.; Gonçalves, G.; Komatsu, F.; Queiroz, C.A.; Almeida, A.A.; Moreira, E.G. Developmental Lead Exposure Induces Depressive-like Behavior in Female Rats. Drug Chem. Toxicol. 2005, 28, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.S.; Kidd, S.K.; Anderson, D.W. Influence of Developmental Lead Exposure on Expression of DNA Methyltransferases and Methyl Cytosine-Binding Proteins in Hippocampus. Toxicol. Lett. 2013, 217, 75–81. [Google Scholar] [CrossRef]
- Tartaglione, A.M.; Serafini, M.M.; Raggi, A.; Iacoponi, F.; Zianni, E.; Scalfari, A.; Minghetti, L.; Ricceri, L.; Cubadda, F.; Calamandrei, G.; et al. Sex-Dependent effects of Developmental Lead Exposure in Wistar Rats: Evidence from Behavioral and Molecular Correlates. Int. J. Mol. Sci. 2020, 21, 2664. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Singh, V.; Wang, Z.; Voisin, G.; Lefebvre, F.; Navenot, J.; Evans, B.; Verma, M.; Anderson, D.W.; Schneider, J.S. Effects of Developmental Lead Exposure on the Hippocampal Methylome: Influences of Sex and Timing and Level of Exposure. Toxicol. Lett. 2018, 290, 63–72. [Google Scholar] [CrossRef]
- Varma, G.; Sobolewski, M.; Cory-slechta, D.A.; Schneider, J.S. NeuroToxicology Sex- and Brain Region-Specific Effects of Prenatal Stress and Lead Exposure on Permissive and Repressive Post-Translational Histone Modifications from Embryonic Development through Adulthood. Neurotoxicology 2017, 62, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Svoboda, L.K.; Wang, K.; Jones, T.R.; Colacino, J.A.; Sartor, M.A.; Dolinoy, D.C. Sex-Specific Alterations in Cardiac DNA Methylation in Adult Mice by Perinatal Lead Exposure. Int. J. Environ. Res. Public Health 2021, 18, 577. [Google Scholar] [CrossRef]
- Bokara, K.K.; Brown, E.; McCormick, R.; Yallapragada, P.R.; Rajanna, S.; Bettaiya, R. Lead-Induced Increase in Antioxidant Enzymes and Lipid Peroxidation Products in Developing Rat Brain. Biometals 2008, 21, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Jett, D.A.; Kuhlmann, A.C.; Farmer, S.J.; Guilate, T.R. Age-Dependent Effects of Developmental Lead Exposure on Performance in the Morris Water Maze. Pharmacol. Biochem. Behav. 1997, 57, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Jett, D.A.; Guilarte, T.R. Developmental Lead Exposure Alters N-Methyl-D-Aspartate and Muscarinic Cholinergic Receptors in the Rat Hippocampus: An Autoradiographic Study. Neurotoxicology 1995, 16, 7–18. [Google Scholar] [PubMed]
- Szczerbak, G.; Nowak, P.; Kostrzewa, R.M.; Brus, R. Maternal Lead Exposure Produces Long-Term Enhancement of Dopaminergic Reactivity in Rat Offspring. Neurochem. Res. 2007, 32, 1791–1798. [Google Scholar] [CrossRef] [PubMed]
- Gilbertson, R.J.; Barron, S. Neonatal Ethanol and Nicotine Exposure Causes Locomotor Activity Changes in Preweanling Animals. Pharmacol. Biochem. Behav. 2005, 81, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Melcer, T.; Gonzalez, D.; Barron, S.; Riley, E.P. Hyperactivity in Preweanling Rats Following Postnatal Alcohol Exposure. Alcohol 1994, 11, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Tran, J.D.; Cronise, K.; Marino, M.D.; Jenkins, W.J.; Kelly, S.J. Critical Periods for the Effects of Alcohol Exposure on Brain Weight, Body Weight, Activity and Investigation. Behav. Brain Res. 2000, 116, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Bond, N.W.; Di Giusto, E.L. Prenatal Alcohol Consumption and Open-Field Behaviour in Rats: Effects of Age at Time of Testing. Psychopharmacology 1977, 52, 311–312. [Google Scholar] [CrossRef] [PubMed]
- Dursun, I.; Jakubowska-Doǧru, E.; Uzbay, T. Effects of Prenatal Exposure to Alcohol on Activity, Anxiety, Motor Coordination, and Memory in Young Adult Wistar Rats. Pharmacol. Biochem. Behav. 2006, 85, 345–355. [Google Scholar] [CrossRef]
- Filgueiras, C.C.; Ribeiro-Carvalho, A.; Nunes, F.; Abreu-Villaça, Y.; Manhães, A.C. Early Ethanol Exposure in Mice Increases Laterality of Rotational Side Preference in the Free-Swimming Test. Pharmacol. Biochem. Behav. 2009, 93, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Hart, E.L.; Lahey, B.B.; Loeber, R.; Applegate, B.; Frick, P.J. Developmental Change in Attention-Deficit Hyperactivity Disorder in Boys: A Four-Year Longitudinal Study. J. Abnorm. Child Psychol. 1995, 23, 729–749. [Google Scholar] [CrossRef]
- Biederman, J.; Mick, E.; Faraone, S.V. Age-Dependent Decline of Symptoms of Attention Deficit Hyperactivity Disorder: Impact of Remission Definition and Symptom Type. Am. J. Psychiatry 2000, 157, 816–818. [Google Scholar] [CrossRef] [PubMed]
- Davies, W. Sex Differences in Attention Deficit Hyperactivity Disorder: Candidate Genetic and Endocrine Mechanisms. Front. Neuroendocrinol. 2014, 35, 331–346. [Google Scholar] [CrossRef] [PubMed]
- Monuteaux, M.C.; Mick, E.; Faraone, S.V.; Biederman, J. The Influence of Sex on the Course and Psychiatric Correlates of ADHD from Childhood to Adolescence: A Longitudinal Study. J. Child Psychol. Psychiatry Allied Discip. 2010, 51, 233–241. [Google Scholar] [CrossRef]
- Arnsten, A.F.T. Catecholamine Influences on Dorsolateral Prefrontal Cortical Networks. Biol. Psychiatry 2011, 69, e89–e99. [Google Scholar] [CrossRef]
- van der Kooij, M.A.; Glennon, J.C. Animal Models Concerning the Role of Dopamine in Attention-Deficit Hyperactivity Disorder. Neurosci. Biobehav. Rev. 2007, 31, 597–618. [Google Scholar] [CrossRef] [PubMed]
- Silbergeld, E.K.; Goldberg, A.M. Pharmacological and Neurochemical Investigations of Lead-Induced Hyperactivit. Neuropharmacology 1975, 14, 431–444. [Google Scholar] [CrossRef]
- Herrera-Mundo, N.; Sitges, M. Vinpocetine and α-Tocopherol Prevent the Increase in Da and Oxidative Stress Induced by 3-NPA in Striatum Isolated Nerve Endings. J. Neurochem. 2013, 124, 233–240. [Google Scholar] [CrossRef]
- Trejo, F.; Nekrassov, V.; Sitges, M. Characterization of Vinpocetine Effects on DA and DOPAC Release in Striatal Isolated Nerve Endings. Brain Res. 2001, 909, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, N.; Miyashiro, M.; Baba, J.; Sawa, A. Rolipram, a Selective Inhibitor of Phosphodiesterase Type 4, Pronouncedly Enhanced the Forskolin-Induced Promotion of Dopamine Biosynthesis in Primary Cultured Rat Mesencephalic Neurons. Jpn. J. Pharmacol. 1997, 75, 91–95. [Google Scholar] [CrossRef]
- Altar, C.A.; Boyar, W.C.; Him, H.S. Discriminatory Roles for D1 and D2 Dopamine Receptor Subtypes in the in Vivo Control of Neostriatal Cyclic GMP. Eur. J. Pharmacol. 1990, 181, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Russell, V.A. Dopamine Hypofunction Possibly Results from a Defect in Glutamate-Stimulated Release of Dopamine in the Nucleus Accumbens Shell of a Rat Model for Attention Deficit Hyperactivity Disorder—The Spontaneously Hypertensive Rat. Neurosci. Biobehav. Rev. 2003, 27, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Parkitna, J.R.; Bilbao, A.; Rieker, C.; Engblom, D.; Piechota, M.; Nordheim, A.; Spanagel, R.; Schütz, G. Loss of the Serum Response Factor in the Dopamine System Leads to Hyperactivity. FASEB J. 2010, 24, 2427–2435. [Google Scholar] [CrossRef] [PubMed]
- Gong, R.; Ding, C.; Hu, J.; Lu, Y.; Liu, F.; Mann, E.; Xu, F.; Cohen, M.B.; Luo, M. Role for the Membrane Receptor Guanylyl Cyclase-C in Attention Deficiency and Hyperactive Behavior. Science 2011, 333, 1642–1646. [Google Scholar] [CrossRef]
- Gill, K.D.; Gupta, V.; Sandhir, R. Ca2+/Calmodulin-Mediated Neurotransmitter Release and Neurobehavioural Deficits Following Lead Exposure. Cell Biochem. Funct. 2003, 21, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Bollen, E.; Prickaerts, J. Critical Review Phosphodiesterases in Neurodegenerative Disorders. IUBMB Life 2012, 64, 965–970. [Google Scholar] [CrossRef]
- Lugnier, C. Cyclic Nucleotide Phosphodiesterase (PDE) Superfamily: A New Target for the Development of Specific Therapeutic Agents. Pharmacol. Ther. 2006, 109, 366–398. [Google Scholar] [CrossRef] [PubMed]
- Hossain, S.; Ph, D.; Bhowmick, S.; Jahan, S.; Rozario, L.; Sarkar, M.; Islam, S.; Ahmed, M.; Rahman, A.; Karim, B.; et al. NeuroToxicology Maternal Lead Exposure Decreases the Levels of Brain Development and Cognition-Related Proteins with Concomitant Upsurges of Oxidative Stress, in Fl Ammatory Response and Apoptosis in the Offspring Rats. Neurotoxicology 2016, 56, 150–158. [Google Scholar] [CrossRef] [PubMed]
- She, K.; Yuan, N.; Huang, M.; Zhu, W.; Tang, M.; Ma, Q.; Chen, J. Emerging Role of Microglia in the Developing Dopaminergic System: Perturbation by Early Life Stress. Neural Regen. Res. 2025, 20, 10-4103. [Google Scholar] [CrossRef] [PubMed]
- Garre-morata, L.; Haro, D.; Gonz, R.; Escames, G.; Molina-Carballo, A.; Acuña-Castroviejo, D. Changes in Cortisol and in Oxidative/Nitrosative Stress Indicators after ADHD Treatment. Antioxidants 2024, 13, 92. [Google Scholar] [CrossRef] [PubMed]
- Benito, E.; Barco, A. CREB’s Control of Intrinsic and Synaptic Plasticity: Implications for CREB-Dependent Memory Models. Trends Neurosci. 2010, 33, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Knöll, B.; Nordheim, A. Functional Versatility of Transcription Factors in the Nervous System: The SRF Paradigm. Trends Neurosci. 2009, 32, 432–442. [Google Scholar] [CrossRef]
- Meador, K.J.; Leeman-markowski, B.; Medina, A.E.; Illamola, S.M.; Seliger, J.; Novak, G.; Lin, C.; Ivanisevic, M.; Razavi, B.; Marino, S.; et al. Epilepsy & Behavior Vinpocetine, Cognition, and Epilepsy. Epilepsy Behav. 2021, 119, 107988. [Google Scholar] [CrossRef]
- Jakubowski, M. Low-Level Environmental Lead Exposure and Intellectual Impairment in Children—The Current Concepts of Risk Assessment. Int. J. Occup. Med. Environ. Health 2011, 24, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Leviton, A.; Bellinger, D.; Allred, E.N.; Rabinowitz, M.; Needleman, H.; Schoenbaum, S. Pre- and Postnatal Low-Level Lead Exposure and Children′s Dysfunction in School. Environ. Res. 1993, 60, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.; Aschner, M. The Effect of Lead Exposure on Autism Development. Int. J. Mol. Sci. 2021, 22, 1637. [Google Scholar] [CrossRef]
- Schmidt, J. Comparative Studies on the Anticonvulsant Effectiveness of Nootropic Drugs in Kindled Rats. Biochim. Biophys. Acta 1990, 49, 413–419. [Google Scholar]
- Ji, M.; Niu, S.; Mi, H.; Jiang, P.; Li, Y. Vinpocetine Improves Dyskinesia in Parkinson’ s Disease Rats by Reducing Oxidative Stress and Activating the Wnt/β—Catenin Signaling Pathway. Chem. Biol. Drug Des. 2024, 103, e14358. [Google Scholar] [CrossRef] [PubMed]
- Luhach, K.; Kulkarni, G.T.; Singh, V.P.; Sharma, B. Vinpocetine Amended Prenatal Valproic Acid Induced Features of ASD Possibly by Altering Markers of Neuronal Function, Inflammation, and Oxidative Stress. Autism Res. 2021, 14, 2270–2286. [Google Scholar] [CrossRef]
- Panda, P.K.; Ramachandran, A.; Panda, P.; Sharawat, I.K. Safety and Efficacy of Vinpocetine as a Neuroprotective Agent in Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Neurocrit. Care 2022, 37, 314–325. [Google Scholar] [CrossRef]
Experimental Groups | PN10 | PN30 |
---|---|---|
CONT | 0.8 ± 0.2 (0.6 to 1.1) | 1.2 ± 0.2 (0.6 to 2.2) |
LEAD | 28.9 ± 4.0 (12.5 to 47.0) *** | 2.1 ± 0.8 (0.6 to 6.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araujo, U.C.; Nunes, F.; Gonçalves, B.S.; Gomes, R.A.A.; Moreira, M.d.F.R.; Nunes-Freitas, A.; Krahe, T.E.; Abreu-Villaça, Y.d.; Manhães, A.C.; Filgueiras, C.C. Vinpocetine, a Phosphodiesterase Type 1 Inhibitor, Mitigates Locomotor Hyperactivity in Female Mice Exposed to Lead During Development. Brain Sci. 2025, 15, 150. https://doi.org/10.3390/brainsci15020150
Araujo UC, Nunes F, Gonçalves BS, Gomes RAA, Moreira MdFR, Nunes-Freitas A, Krahe TE, Abreu-Villaça Yd, Manhães AC, Filgueiras CC. Vinpocetine, a Phosphodiesterase Type 1 Inhibitor, Mitigates Locomotor Hyperactivity in Female Mice Exposed to Lead During Development. Brain Sciences. 2025; 15(2):150. https://doi.org/10.3390/brainsci15020150
Chicago/Turabian StyleAraujo, Ulisses C., Fernanda Nunes, Bruno S. Gonçalves, Regina A. A. Gomes, Maria de Fátima R. Moreira, Andre Nunes-Freitas, Thomas E. Krahe, Yael de Abreu-Villaça, Alex C. Manhães, and Cláudio C. Filgueiras. 2025. "Vinpocetine, a Phosphodiesterase Type 1 Inhibitor, Mitigates Locomotor Hyperactivity in Female Mice Exposed to Lead During Development" Brain Sciences 15, no. 2: 150. https://doi.org/10.3390/brainsci15020150
APA StyleAraujo, U. C., Nunes, F., Gonçalves, B. S., Gomes, R. A. A., Moreira, M. d. F. R., Nunes-Freitas, A., Krahe, T. E., Abreu-Villaça, Y. d., Manhães, A. C., & Filgueiras, C. C. (2025). Vinpocetine, a Phosphodiesterase Type 1 Inhibitor, Mitigates Locomotor Hyperactivity in Female Mice Exposed to Lead During Development. Brain Sciences, 15(2), 150. https://doi.org/10.3390/brainsci15020150