The Protective Effect of Glibenclamide in a Model of Hemorrhagic Encephalopathy of Prematurity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sur1 Expression Following IUI
2.2. Intravenous Pressure and Hemorrhage
2.3. Serum Glucose, Mortality, Periventricular Hemorrhages and ED-1
2.4. Functional Outcomes
2.4.1. Beam Walk
2.4.2. Accelerating Rotarod
2.4.3. Thigmotaxis
2.4.4. Incremental Learning
2.4.5. Rapid Learning Task
2.5. Developmental Delay
2.6. Discussion
3. Experimental Section
Number of Dams | Number of Pups | ||
---|---|---|---|
SERIES 1 | naïve | 2 | 6 |
IUI | 3 | 12 | |
SERIES 2 | naïve | 3 | 28 |
TI-CTR | 7 | 72 | |
TI-GLIB | 7 | 84 | |
SERIES 3 | naïve | 2 | 21 or 30 * |
TI-CTR | 4 | 28 or 37 * | |
TI-GLIB | 4 | 28 or 37 * |
4. Conclusion
Acknowledgements
Conflict of interest
References
- Tarby, T.J.; Volpe, J.J. Intraventricular hemorrhage in the premature infant. Pediatr. Clin. North Am. 1982, 29, 1077–1104. [Google Scholar]
- Armstrong, D.L.; Sauls, C.D.; Goddard-Finegold, J. Neuropathologic findings in short-term survivors of intraventricular hemorrhage. Am. J. Dis. Child. 1987, 141, 617–621. [Google Scholar]
- Vergani, P.; Locatelli, A.; Doria, V.; Assi, F.; Paterlini, G.; Pezzullo, J.C.; Ghidini, A. Intraventricular hemorrhage and periventricular leukomalacia in preterm infants. Obstet. Gynecol. 2004, 104, 225–231. [Google Scholar]
- Volpe, J.J. Encephalopathy of prematurity includes neuronal abnormalities. Pediatrics 2005, 116, 221–225. [Google Scholar] [CrossRef]
- Volpe, J.J. Brain injury in premature infants: A complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009, 8, 110–124. [Google Scholar] [CrossRef]
- Kinney, H.C. The encephalopathy of prematurity: One pediatric neuropathologist’s perspective. Semin. Pediatr. Neurol. 2009, 16, 179–190. [Google Scholar] [CrossRef]
- Folkerth, R.D. Neuropathologic substrate of cerebral palsy. J. Child Neurol. 2005, 20, 940–949. [Google Scholar] [CrossRef]
- Volpe, J.J. Neurologic outcome of prematurity. Arch. Neurol. 1998, 55, 297–300. [Google Scholar] [CrossRef]
- Bassan, H.; Limperopoulos, C.; Visconti, K.; Mayer, D.L.; Feldman, H.A.; Avery, L.; Benson, C.B.; Stewart, J.; Ringer, S.A.; Soul, J.S.; et al. Neurodevelopmental outcome in survivors of periventricular hemorrhagic infarction. Pediatrics 2007, 120, 785–792. [Google Scholar] [CrossRef]
- Aarnoudse-Moens, C.S.; Weisglas-Kuperus, N.; van Goudoever, J.B.; Oosterlaan, J. Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics 2009, 124, 717–728. [Google Scholar] [CrossRef]
- Claas, M.J.; Bruinse, H.W.; Koopman, C.; van Haastert, I.C.; Peelen, L.M.; de Vries, L.S. Two-year neurodevelopmental outcome of preterm born children ≤750 g at birth. Arch. Dis. Child. Fetal Neonatal Ed. 2011, 96, 169–177. [Google Scholar] [CrossRef]
- Doyle, L.W.; Anderson, P.J. Adult outcome of extremely preterm infants. Pediatrics 2010, 126, 342–351. [Google Scholar] [CrossRef]
- Levy, M.L.; Masri, L.S.; McComb, J.G. Outcome for preterm infants with germinal matrix hemorrhage and progressive hydrocephalus. Neurosurgery 1997, 41, 1111–1117. [Google Scholar] [CrossRef]
- Pikus, H.J.; Levy, M.L.; Gans, W.; Mendel, E.; McComb, J.G. Outcome, cost analysis, and long-term follow-up in preterm infants with massive grade IV germinal matrix hemorrhage and progressive hydrocephalus. Neurosurgery 1997, 40, 983–988. [Google Scholar] [CrossRef]
- Roze, E.; Kerstjens, J.M.; Maathuis, C.G.; ter Horst, H.J.; Bos, A.F. Risk factors for adverse outcome in preterm infants with periventricular hemorrhagic infarction. Pediatrics 2008, 122, e46–e52. [Google Scholar] [CrossRef]
- Balasubramaniam, J.; Xue, M.; Buist, R.J.; Ivanco, T.L.; Natuik, S.; Del Bigio, M.R. Persistent motor deficit following infusion of autologous blood into the periventricular region of neonatal rats. Exp. Neurol. 2006, 197, 122–132. [Google Scholar] [CrossRef]
- Juliet, P.A.; Frost, E.E.; Balasubramaniam, J.; Del Bigio, M.R. Toxic effect of blood components on perinatal rat subventricular zone cells and oligodendrocyte precursor cell proliferation, differentiation and migration in culture. J. Neurochem. 2009, 109, 1285–1299. [Google Scholar] [CrossRef]
- Mito, T.; Becker, L.E.; Perlman, M.; Takashima, S. A neuropathologic analysis of neonatal deaths occurring in a single neonatal unit over a 20-year period. Pediatr. Pathol. 1993, 13, 773–785. [Google Scholar] [CrossRef]
- Bloch, J.R. Antenatal events causing neonatal brain injury in premature infants. J. Obstet. Gynecol. Neonatal Nurs. 2005, 34, 358–366. [Google Scholar] [CrossRef]
- Ballabh, P. Intraventricular hemorrhage in premature infants: Mechanism of disease. Pediatr. Res. 2010, 67, 1–8. [Google Scholar] [CrossRef]
- Sotrel, A.; Lorenzo, A.V. Ultrastructure of blood vessels in the ganglionic eminence of premature rabbits with spontaneous germinal matrix hemorrhages. J. Neuropathol. Exp. Neurol. 1989, 48, 462–482. [Google Scholar] [CrossRef]
- Ment, L.R.; Stewart, W.B.; Ardito, T.A.; Madri, J.A. Beagle pup germinal matrix maturation studies. Stroke 1991, 22, 390–395. [Google Scholar] [CrossRef]
- Ment, L.R.; Stewart, W.B.; Ardito, T.A.; Madri, J.A. Germinal matrix microvascular maturation correlates inversely with the risk period for neonatal intraventricular hemorrhage. Brain Res. Dev. Brain Res. 1995, 84, 142–149. [Google Scholar] [CrossRef]
- Wei, W.; Xin-Ya, S.; Cai-Dong, L.; Zhong-Han, K.; Chun-Peng, C. Relationship between extracellular matrix both in choroid plexus and the wall of lateral ventricles and intraventricular hemorrhage in preterm neonates. Clin. Anat. 2000, 13, 422–428. [Google Scholar] [CrossRef]
- Anstrom, J.A.; Brown, W.R.; Moody, D.M.; Thore, C.R.; Challa, V.R.; Block, S.M. Subependymal veins in premature neonates: implications for hemorrhage. Pediatr. Neurol. 2004, 30, 46–53. [Google Scholar] [CrossRef]
- Scott, D.E.; Bergevin, M. Fine structural correlates of the choroid plexus of the lateral cerebral ventricle of the human fetal brain. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2005, 282, 8–12. [Google Scholar]
- Braun, A.; Xu, H.; Hu, F.; Kocherlakota, P.; Siegel, D.; Chander, P.; Ungvari, Z.; Csiszar, A.; Nedergaard, M.; Ballabh, P. Paucity of pericytes in germinal matrix vasculature of premature infants. J. Neurosci. 2007, 27, 12012–12024. [Google Scholar]
- Xu, H.; Hu, F.; Sado, Y.; Ninomiya, Y.; Borza, D.B.; Ungvari, Z.; Lagamma, E.F.; Csiszar, A.; Nedergaard, M.; Ballabh, P. Maturational changes in laminin, fibronectin, collagen IV, and perlecan in germinal matrix, cortex, and white matter and effect of betamethasone. J. Neurosci. Res. 2008, 86, 1482–1500. [Google Scholar] [CrossRef]
- Ballabh, P.; Xu, H.; Hu, F.; Braun, A.; Smith, K.; Rivera, A.; Lou, N.; Ungvari, Z.; Goldman, S.A.; Csiszar, A.; Nedergaard, M. Angiogenic inhibition reduces germinal matrix hemorrhage. Nat. Med. 2007, 13, 477–485. [Google Scholar] [CrossRef]
- Baburamani, A.A.; Ek, C.J.; Walker, D.W.; Castillo-Melendez, M. Vulnerability of the developing brain to hypoxic-ischemic damage: Contribution of the cerebral vasculature to injury and repair? Front. Physiol. 2012, 3, 424. [Google Scholar]
- Ghazi-Birry, H.S.; Brown, W.R.; Moody, D.M.; Challa, V.R.; Block, S.M.; Reboussin, D.M. Human germinal matrix: Venous origin of hemorrhage and vascular characteristics. AJNR Am. J. Neuroradiol. 1997, 18, 219–229. [Google Scholar]
- Nakamura, Y.; Okudera, T.; Fukuda, S.; Hashimoto, T. Germinal matrix hemorrhage of venous origin in preterm neonates. Hum. Pathol. 1990, 21, 1059–1062. [Google Scholar] [CrossRef]
- Kadri, H.; Mawla, A.A.; Kazah, J. The incidence, timing, and predisposing factors of germinal matrix and intraventricular hemorrhage (GMH/IVH) in preterm neonates. Childs Nerv. Syst. 2006, 22, 1086–1090. [Google Scholar] [CrossRef]
- Aly, H.; Hammad, T.A.; Essers, J.; Wung, J.T. Is mechanical ventilation associated with intraventricular hemorrhage in preterm infants? Brain Dev. 2012, 34, 201–205. [Google Scholar] [CrossRef]
- Pellicer, A.; Gaya, F.; Madero, R.; Quero, J.; Cabanas, F. Noninvasive continuous monitoring of the effects of head position on brain hemodynamics in ventilated infants. Pediatrics 2002, 109, 434–440. [Google Scholar] [CrossRef]
- Donat, J.F.; Okazaki, H.; Kleinberg, F.; Reagan, T.J. Intraventricular hemorrhages in full-term and premature infants. Mayo. Clin. Proc. 1978, 53, 437–441. [Google Scholar]
- Lacey, D.J.; Terplan, K. Intraventricular hemorrhage in full-term neonates. Dev. Med. Child Neurol. 1982, 24, 332–337. [Google Scholar] [CrossRef]
- Reeder, J.D.; Kaude, J.V.; Setzer, E.S. Choroid plexus hemorrhage in premature neonates: Recognition by sonography. AJNR Am. J. Neuroradiol. 1982, 3, 619–622. [Google Scholar]
- Shen, E.Y.; Hung, H.Y.; Hsu, C.H.; Kao, H.A.; Huang, F.Y. Choroid plexus hemorrhage: Clinical and sonografic findings of nine cases. Zhonghua Yi Xue Za Zhi (Taipei) 1988, 42, 47–52. [Google Scholar]
- Gradnitzer, E.; Urlesberger, B.; Maurer, U.; Riccabona, M.; Muller, W. Cerebral hemorrhage in term newborn infants—An analysis of 10 years (1989–1999). Wien. Med. Wochenschr. 2002, 152, 9–13. [Google Scholar]
- Koltz, M.T.; Tosun, C.; Kurland, D.B.; Coksaygan, T.; Castellani, R.J.; Ivanova, S.; Gerzanich, V.; Simard, J.M. Tandem insults of prenatal ischemia plus postnatal raised intrathoracic pressure in a novel rat model of encephalopathy of prematurity. J. Neurosurg. Pediatr. 2011, 8, 628–639. [Google Scholar] [CrossRef]
- Kunte, H.; Busch, M.A.; Trostdorf, K.; Vollnberg, B.; Harms, L.; Mehta, R.; Castellani, R.J.; Mandava, P.; Kent, T.A.; Simard, J.M. Hemorrhagic transformation of ischemic stroke in diabetics on sulfonylureas. Ann. Neurol. 2012, 72, 799–806. [Google Scholar] [CrossRef]
- Simard, J.M.; Woo, S.K.; Schwartzbauer, G.T.; Gerzanich, V. Sulfonylurea receptor 1 in central nervous system injury: A focused review. J. Cereb. Blood Flow Metab. 2012, 32, 1699–1717. [Google Scholar] [CrossRef]
- Simard, J.M.; Castellani, R.J.; Ivanova, S.; Koltz, M.T.; Gerzanich, V. Sulfonylurea receptor 1 in the germinal matrix of premature infants. Pediatr. Res. 2008, 64, 648–652. [Google Scholar] [CrossRef]
- Kunte, H.; Schmidt, S.; Eliasziw, M.; del Zoppo, G.J.; Simard, J.M.; Masuhr, F.; Weih, M.; Dirnagl, U. Sulfonylureas improve outcome in patients with type 2 diabetes and acute ischemic stroke. Stroke 2007, 38, 2526–2530. [Google Scholar] [CrossRef]
- Woo, S.K.; Kwon, M.S.; Geng, Z.; Chen, Z.; Ivanov, A.; Bhatta, S.; Gerzanich, V.; Simard, J.M. Sequential activation of hypoxia-inducible factor 1 and specificity protein 1 is required for hypoxia-induced transcriptional stimulation of Abcc8. J. Cereb. Blood Flow Metab. 2012, 32, 525–536. [Google Scholar] [CrossRef]
- Sivan, E.; Feldman, B.; Dolitzki, M.; Nevo, N.; Dekel, N.; Karasik, A. Glyburide crosses the placenta in vivo in pregnant rats. Diabetologia 1995, 38, 753–756. [Google Scholar] [CrossRef]
- Sienkiewicz-Jarosz, H.; Czlonkowska, A.I.; Siemiatkowski, M.; Maciejak, P.; Szyndler, J.; Plaznik, A. The effects of physostigmine and cholinergic receptor ligands on novelty-induced neophobia. J. Neural Transm. 2000, 107, 1403–1412. [Google Scholar] [CrossRef]
- Lee, I.; Rao, G.; Knierim, J.J. A double dissociation between hippocampal subfields: Differential time course of CA3 and CA1 place cells for processing changed environments. Neuron 2004, 42, 803–815. [Google Scholar] [CrossRef]
- Leutgeb, J.K.; Leutgeb, S.; Moser, M.B.; Moser, E.I. Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 2007, 315, 961–966. [Google Scholar] [CrossRef]
- McHugh, T.J.; Jones, M.W.; Quinn, J.J.; Balthasar, N.; Coppari, R.; Elmquist, J.K.; Lowell, B.B.; Fanselow, M.S.; Wilson, M.A.; Tonegawa, S. Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 2007, 317, 94–99. [Google Scholar] [CrossRef]
- Nakashiba, T.; Young, J.Z.; McHugh, T.J.; Buhl, D.L.; Tonegawa, S. Transgenic inhibition of synaptic transmission reveals role of CA3 output in hippocampal learning. Science 2008, 319, 1260–1264. [Google Scholar] [CrossRef]
- Liu, J.; Feng, Z.C.; Yin, X.J.; Chen, H.; Lu, J.; Qiao, X. The role of antenatal corticosteroids for improving the maturation of choroid plexus capillaries in fetal mice. Eur J. Pediatr. 2008, 167, 1209–1212. [Google Scholar] [CrossRef]
- Vinukonda, G.; Dummula, K.; Malik, S.; Hu, F.; Thompson, C.I.; Csiszar, A.; Ungvari, Z.; Ballabh, P. Effect of prenatal glucocorticoids on cerebral vasculature of the developing brain. Stroke 2010, 41, 1766–1773. [Google Scholar] [CrossRef]
- Aghajafari, F.; Murphy, K.; Matthews, S.; Ohlsson, A.; Amankwah, K.; Hannah, M. Repeated doses of antenatal corticosteroids in animals: A systematic review. Am. J. Obstet. Gynecol. 2002, 186, 843–849. [Google Scholar] [CrossRef]
- Murphy, K.E.; Hannah, M.E.; Willan, A.R.; Hewson, S.A.; Ohlsson, A.; Kelly, E.N.; Matthews, S.G.; Saigal, S.; Asztalos, E.; Ross, S.; et al. Multiple courses of antenatal corticosteroids for preterm birth (MACS): A randomised controlled trial. Lancet 2008, 372, 2143–2151. [Google Scholar] [CrossRef]
- Zhou, Y.; Fathali, N.; Lekic, T.; Tang, J.; Zhang, J.H. Glibenclamide improves neurological function in neonatal hypoxia-ischemia in rats. Brain Res. 2009, 1270, 131–139. [Google Scholar] [CrossRef]
- Wali, B.; Ishrat, T.; Atif, F.; Hua, F.; Stein, D.G.; Sayeed, I. Glibenclamide administration attenuates infarct volume, hemispheric swelling, and functional impairments following permanent focal cerebral ischemia in rats. Stroke Res. Treat. 2012, 2012, 460909. [Google Scholar]
- Nakahata, K.; Kinoshita, H.; Hirano, Y.; Kimoto, Y.; Iranami, H.; Hatano, Y. Mild hypercapnia induces vasodilation via adenosine triphosphate-sensitive K+ channels in parenchymal microvessels of the rat cerebral cortex. Anesthesiology 2003, 99, 1333–1339. [Google Scholar] [CrossRef]
- Reid, J.M.; Davies, A.G.; Ashcroft, F.M.; Paterson, D.J. Effect of L-NMMA, cromakalim, and glibenclamide on cerebral blood flow in hypercapnia and hypoxia. Am. J. Physiol. 1995, 269, H916–H922. [Google Scholar]
- Ortega, F.J.; Jolkkonen, J.; Mahy, N.; Rodriguez, M.J. Glibenclamide enhances neurogenesis and improves long-term functional recovery after transient focal cerebral ischemia. J. Cereb. Blood Flow Metab. 2013, 33, 356–364. [Google Scholar] [CrossRef]
- Ortega, F.J.; Gimeno-Bayon, J.; Espinosa-Parrilla, J.F.; Carrasco, J.L.; Batlle, M.; Pugliese, M.; Mahy, N.; Rodriguez, M.J. ATP-dependent potassium channel blockade strengthens microglial neuroprotection after hypoxia-ischemia in rats. Exp. Neurol. 2012, 235, 282–296. [Google Scholar] [CrossRef]
- Feig, D.S.; Briggs, G.G.; Kraemer, J.M.; Ambrose, P.J.; Moskovitz, D.N.; Nageotte, M.; Donat, D.J.; Padilla, G.; Wan, S.; Klein, J.; Koren, G. Transfer of glyburide and glipizide into breast milk. Diabetes Care 2005, 28, 1851–1855. [Google Scholar] [CrossRef]
- Glatstein, M.M.; Djokanovic, N.; Garcia-Bournissen, F.; Finkelstein, Y.; Koren, G. Use of hypoglycemic drugs during lactation. Can. Fam. Physician 2009, 55, 371–373. [Google Scholar]
- Balasubramaniam, J.; Del Bigio, M.R. Animal models of germinal matrix hemorrhage. J. Child. Neurol. 2006, 21, 365–371. [Google Scholar]
- Alles, Y.C.; Greggio, S.; Alles, R.M.; Azevedo, P.N.; Xavier, L.L.; DaCosta, J.C. A novel preclinical rodent model of collagenase-induced germinal matrix/intraventricular hemorrhage. Brain Res. 2010, 1356, 130–138. [Google Scholar] [CrossRef]
- Lekic, T.; Manaenko, A.; Rolland, W.; Tang, J.; Zhang, J.H. A novel preclinical model of germinal matrix hemorrhage using neonatal rats. Acta Neurochir. Suppl. 2011, 111, 55–60. [Google Scholar] [CrossRef]
- Lekic, T.; Manaenko, A.; Rolland, W.; Krafft, P.R.; Peters, R.; Hartman, R.E.; Altay, O.; Tang, J.; Zhang, J.H. Rodent neonatal germinal matrix hemorrhage mimics the human brain injury, neurological consequences, and post-hemorrhagic hydrocephalus. Exp. Neurol. 2012, 236, 69–78. [Google Scholar] [CrossRef]
- Lorenzo, A.V.; Welch, K.; Conner, S. Spontaneous germinal matrix and intraventricular hemorrhage in prematurely born rabbits. J. Neurosurg. 1982, 56, 404–410. [Google Scholar] [CrossRef]
- Conner, E.S.; Lorenzo, A.V.; Welch, K.; Dorval, B. The role of intracranial hypotension in neonatal intraventricular hemorrhage. J. Neurosurg. 1983, 58, 204–209. [Google Scholar] [CrossRef]
- Chua, C.O.; Chahboune, H.; Braun, A.; Dummula, K.; Chua, C.E.; Yu, J.; Ungvari, Z.; Sherbany, A.A.; Hyder, F.; Ballabh, P. Consequences of intraventricular hemorrhage in a rabbit pup model. Stroke 2009, 40, 3369–3377. [Google Scholar] [CrossRef]
- Coulter, D.M.; Gooch, W.M. Falling intracranial pressure: an important element in the genesis of intracranial hemorrhage in the beagle puppy. Biol. Neonate 1993, 63, 316–326. [Google Scholar] [CrossRef]
- Georgiadis, P.; Xu, H.; Chua, C.; Hu, F.; Collins, L.; Huynh, C.; Lagamma, E.F.; Ballabh, P. Characterization of acute brain injuries and neurobehavioral profiles in a rabbit model of germinal matrix hemorrhage. Stroke 2008, 39, 3378–3388. [Google Scholar] [CrossRef]
- Simard, J.M.; Geng, Z.; Silver, F.L.; Sheth, K.N.; Kimberly, W.T.; Stern, B.J.; Colucci, M.; Gerzanich, V. Does inhibiting Sur1 complement rt-PA in cerebral ischemia? Ann. N. Y. Acad. Sci. 2012, 1268, 95–107. [Google Scholar] [CrossRef]
- Woo, S.K.; Kwon, M.S.; Ivanov, A.; Gerzanich, V.; Simard, J.M. The Sulfonylurea receptor 1 (Sur1)—Transient receptor potential melastatin 4 (Trpm4) channel. J. Biol. Chem. 2013, 288, 3655–3667. [Google Scholar] [CrossRef]
- Xu, Q.; Ji, Y.S.; Schmedtje, J.F., Jr. Sp1 increases expression of cyclooxygenase-2 in hypoxic vascular endothelium. Implications for the mechanisms of aortic aneurysm and heart failure. J. Biol. Chem. 2000, 275, 24583–24589. [Google Scholar]
- Simard, J.M.; Chen, M.; Tarasov, K.V.; Bhatta, S.; Ivanova, S.; Melnitchenko, L.; Tsymbalyuk, N.; West, G.A.; Gerzanich, V. Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat. Med. 2006, 12, 433–440. [Google Scholar] [CrossRef]
- Melamed, N.; Yogev, Y. Can pregnant diabetics be treated with glyburide? Womens Health (Lond. Engl.) 2009, 5, 649–658. [Google Scholar] [CrossRef]
- Moretti, M.E.; Rezvani, M.; Koren, G. Safety of glyburide for gestational diabetes: A meta-analysis of pregnancy outcomes. Ann. Pharmacother. 2008, 42, 483–490. [Google Scholar] [CrossRef]
- Kimber-Trojnar, Z.; Marciniak, B.; Leszczynska-Gorzelak, B.; Trojnar, M.; Oleszczuk, J. Glyburide for the treatment of gestational diabetes mellitus. Pharmacol. Rep. 2008, 60, 308–318. [Google Scholar]
- Cheng, Y.W.; Chung, J.H.; Block-Kurbisch, I.; Inturrisi, M.; Caughey, A.B. Treatment of gestational diabetes mellitus: Glyburide compared to subcutaneous insulin therapy and associated perinatal outcomes. J. Matern. Fetal Neonatal Med. 2011, 25, 379–384. [Google Scholar]
- Feig, D.S.; Briggs, G.G.; Koren, G. Oral antidiabetic agents in pregnancy and lactation: A paradigm shift? Ann. Pharmacother. 2007, 41, 1174–1180. [Google Scholar] [CrossRef]
- Merlob, P.; Levitt, O.; Stahl, B. Oral antihyperglycemic agents during pregnancy and lactation: A review. Paediatr. Drugs 2002, 4, 755–760. [Google Scholar]
- Ballas, J.; Moore, T.R.; Ramos, G.A. Management of diabetes in pregnancy. Curr. Diab. Rep. 2012, 12, 33–42. [Google Scholar] [CrossRef]
- Hebert, M.F.; Ma, X.; Naraharisetti, S.B.; Krudys, K.M.; Umans, J.G.; Hankins, G.D.; Caritis, S.N.; Miodovnik, M.; Mattison, D.R.; Unadkat, J.D.; et al. Are we optimizing gestational diabetes treatment with glyburide? The pharmacologic basis for better clinical practice. Clin. Pharmacol. Ther. 2009, 85, 607–614. [Google Scholar] [CrossRef]
- Alexander, B.T. Placental insufficiency leads to development of hypertension in growth-restricted offspring. Hypertension 2003, 41, 457–462. [Google Scholar] [CrossRef]
- Simard, J.M.; Woo, S.K.; Tsymbalyuk, N.; Voloshyn, O.; Yurovsky, V.; Ivanova, S.; Lee, R.; Gerzanich, V. Glibenclamide-10-h treatment window in a clinically relevant model of stroke. Transl. Stroke Res. 2012, 3, 286–295. [Google Scholar] [CrossRef]
- Feeney, D.M.; Gonzalez, A.; Law, W.A. Amphetamine, haloperidol, and experience interact to affect rate of recovery after motor cortex injury. Science 1982, 217, 855–857. [Google Scholar]
- Wagner, A.K.; Postal, B.A.; Darrah, S.D.; Chen, X.; Khan, A.S. Deficits in novelty exploration after controlled cortical impact. J. Neurotrauma 2007, 24, 1308–1320. [Google Scholar] [CrossRef]
- D’Hooge, R.; de Deyn, P.P. Applications of the Morris water maze in the study of learning and memory. Brain Res. Brain Res. Rev. 2001, 36, 60–90. [Google Scholar] [CrossRef]
- Morris, R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 1984, 11, 47–60. [Google Scholar] [CrossRef]
- Patel, A.D.; Gerzanich, V.; Geng, Z.; Simard, J.M. Glibenclamide reduces hippocampal injury and preserves rapid spatial learning in a model of traumatic brain injury. J. Neuropathol. Exp. Neurol. 2010, 69, 1177–1190. [Google Scholar] [CrossRef]
- Rinaman, L. Postnatal development of catecholamine inputs to the paraventricular nucleus of the hypothalamus in rats. J. Comp. Neurol. 2001, 438, 411–422. [Google Scholar] [CrossRef]
- Conover, W.J.; Iman, R.L. Rank Transformations as a bridge between parametric and nonparametric statistics. Am. Stat. 1981, 35, 124–133. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Tosun, C.; Koltz, M.T.; Kurland, D.B.; Ijaz, H.; Gurakar, M.; Schwartzbauer, G.; Coksaygan, T.; Ivanova, S.; Gerzanich, V.; Simard, J.M. The Protective Effect of Glibenclamide in a Model of Hemorrhagic Encephalopathy of Prematurity. Brain Sci. 2013, 3, 215-238. https://doi.org/10.3390/brainsci3010215
Tosun C, Koltz MT, Kurland DB, Ijaz H, Gurakar M, Schwartzbauer G, Coksaygan T, Ivanova S, Gerzanich V, Simard JM. The Protective Effect of Glibenclamide in a Model of Hemorrhagic Encephalopathy of Prematurity. Brain Sciences. 2013; 3(1):215-238. https://doi.org/10.3390/brainsci3010215
Chicago/Turabian StyleTosun, Cigdem, Michael T. Koltz, David B. Kurland, Hina Ijaz, Melda Gurakar, Gary Schwartzbauer, Turhan Coksaygan, Svetlana Ivanova, Volodymyr Gerzanich, and J. Marc Simard. 2013. "The Protective Effect of Glibenclamide in a Model of Hemorrhagic Encephalopathy of Prematurity" Brain Sciences 3, no. 1: 215-238. https://doi.org/10.3390/brainsci3010215
APA StyleTosun, C., Koltz, M. T., Kurland, D. B., Ijaz, H., Gurakar, M., Schwartzbauer, G., Coksaygan, T., Ivanova, S., Gerzanich, V., & Simard, J. M. (2013). The Protective Effect of Glibenclamide in a Model of Hemorrhagic Encephalopathy of Prematurity. Brain Sciences, 3(1), 215-238. https://doi.org/10.3390/brainsci3010215